Skip to main content

Home/ Chem 109H Fall08/ Group items tagged density

Rss Feed Group items tagged

Becky Kriger

Polymer Tutorial - 0 views

  • "Poly" means "many" and "mer" means "parts.
  • The parts are usually the same part used repeatedly in a chain-like manner. Polymers are also referred to as plastics
  • Nature has many examples of polymers. Cotton fibers are made of sugar molecules that are repeated in a chain-like manner. Hair, wool, and other natural fibers are polymers.
  • ...15 more annotations...
  • Now be aware that one of the connecting sticks can spring open. To see animation of this, move cursor over the image. As long as cursor is over image, animation repeats
  • 1) We start with several pairs of balls each with two connecting sticks. 2) Something causes one of the connecting sticks to fling open. It then connects to another ball, but in doing so, causes one of its connecting sticks to fling open. 3) In moments all of the pairs of balls are now connected. Move cursor over image to see animation.
  • Sometimes heat, high energy light, or something else causes the double-bond to break and two of the middle 4 electrons split up and end up on the two outer ends of the molecule. These electrons are unpaired, which makes them eager to join with another electron.
  • (place cursor over the image to see animated version)
  • The unpaired electron triggers the ethylene molecule that bumps into it, to shift the inside electron to pair with it. That then causes the newly unpaired inner electron to move to the outside and it is now an unpaired electron ready to cause the next ethylene molecule to repeat the process.
  • The name of this polymer is appropriately called, polyethylene.
  • This is called high density polyethylene (HDPE).
  • High density polyethylene HDPE is used for bottles, buckets, jugs, containers, toys, even synthetic lumber, and many other things.
  • Sometimes the chains get up to 500,000 carbons long. Here they are tough enough for synthetic ice, replacement joints and bullet-proof vests. This is called Ultra High Molecular Weight PolyEthylene or UHMWPE.
  • low density polyethylene (LDPE).
  • It is made by causing the long chains of ethylene to branch. That way they cannot lie next each other, which reduces the density of the polyethylene. This makes the plastic lighter and more flexible.
  • Low density polyethylene is used to make plastic bags, plastic wrap, and squeeze bottles, plus many other things.
  • The favorite properties of plastics are that they are inert and won't react with what is stored in them. They also are durable and won't easily decay, dissolve, or break apart. These are great qualities for things you keep, but when you throw them away, they won't decompose.
  • The answer is to recycle the plastics. Here we see a bunch of CDs getting recycled.
  • Here are two recycle code drawings. You already know about HDPE and LDPE.
  •  
    A simply explained introduction to polymers.
Becky Kriger

Scientific Principles:Polymers - 0 views

  • The chemical reaction in which high molecular mass molecules are formed from monomers is known as polymerization. There are two basic types of polymerization, chain-reaction (or addition) and step-reaction (or condensation) polymerization.
  • One of the most common types of polymer reactions is chain-reaction (addition) polymerization. This type of polymerization is a three step process involving two chemical entities. The first, known simply as a monomer, can be regarded as one link in a polymer chain. It initially exists as simple units. In nearly all cases, the monomers have at least one carbon-carbon double bond. Ethylene is one example of a monomer used to make a common polymer.
  • The other chemical reactant is a catalyst. In chain-reaction polymerization, the catalyst can be a free-radical peroxide added in relatively low concentrations. A free-radical is a chemical component that contains a free electron that forms a covalent bond with an electron on another molecule. The formation of a free radical from an organic peroxide is shown below:
  • ...25 more annotations...
  • The first step in the chain-reaction polymerization process, initiation, occurs when the free-radical catalyst reacts with a double bonded carbon monomer, beginning the polymer chain. The double carbon bond breaks apart, the monomer bonds to the free radical, and the free electron is transferred to the outside carbon atom in this reaction.
  • The next step in the process, propagation, is a repetitive operation in which the physical chain of the polymer is formed. The double bond of successive monomers is opened up when the monomer is reacted to the reactive polymer chain. The free electron is successively passed down the line of the chain to the outside carbon atom.
  • Thermodynamically speaking, the sum of the energies of the polymer is less than the sum of the energies of the individual monomers. Simply put, the single bounds in the polymeric chain are more stable than the double bonds of the monomer.
  • Termination occurs when another free radical (R-O.), left over from the original splitting of the organic peroxide, meets the end of the growing chain. This free-radical terminates the chain by linking with the last CH2. component of the polymer chain. This reaction produces a complete polymer chain. Termination can also occur when two unfinished chains bond together. Both termination types are diagrammed below. Other types of termination are also possible.
  • This exothermic reaction occurs extremely fast, forming individual chains of polyethylene often in less than 0.1 second.
  • Step-reaction (condensation) polymerization is another common type of polymerization. This polymerization method typically produces polymers of lower molecular weight than chain reactions and requires higher temperatures to occur. Unlike addition polymerization, step-wise reactions involve two different types of di-functional monomers or end groups that react with one another, forming a chain. Condensation polymerization also produces a small molecular by-product (water, HCl, etc.).
  • As indicated above, both addition and condensation polymers can be linear, branched, or cross-linked. Linear polymers are made up of one long continuous chain, without any excess appendages or attachments. Branched polymers have a chain structure that consists of one main chain of molecules with smaller molecular chains branching from it. A branched chain-structure tends to lower the degree of crystallinity and density of a polymer. Cross-linking in polymers occurs when primary valence bonds are formed between separate polymer chain molecules. Chains with only one type of monomer are known as homopolymers. If two or more different type monomers are involved, the resulting copolymer can have several configurations or arrangements of the monomers along the chain. The four main configurations are depicted below:
  • They can be found in either crystalline or amorphous forms. Crystalline polymers are only possible if there is a regular chemical structure (e.g., homopolymers or alternating copolymers), and the chains possess a highly ordered arrangement of their segments. Crystallinity in polymers is favored in symmetrical polymer chains, however, it is never 100%. These semi-crystalline polymers possess a rather typical liquefaction pathway, retaining their solid state until they reach their melting point at Tm.
  • Amorphous polymers do not show order. The molecular segments in amorphous polymers or the amorphous domains of semi-crystalline polymers are randomly arranged and entangled. Amorphous polymers do not have a definable Tm due to their randomness
  • At low temperatures, below their glass transition temperature (Tg), the segments are immobile and the sample is often brittle. As temperatures increase close to Tg, the molecular segments can begin to move. Above Tg, the mobility is sufficient (if no crystals are present) that the polymer can flow as a highly viscous liquid.
  • Thermoplastics are generally carbon containing polymers synthesized by addition or condensation polymerization. This process forms strong covalent bonds within the chains and weaker secondary Van der Waals bonds between the chains. Usually, these secondary forces can be easily overcome by thermal energy, making thermoplastics moldable at high temperatures.
  • Thermosets have the same Van der Waals bonds that thermoplastics do. They also have a stronger linkage to other chains. Strong covalent bonds chemically hold different chains together in a thermoset material. The chains may be directly bonded to each other or be bonded through other molecules. This "cross-linking" between the chains allows the material to resist softening upon heating.
  • Compression Molding This type of molding was among the first to be used to form plastics. It involves four steps: Pre-formed blanks, powders or pellets are placed in the bottom section of a heated mold or die. The other half of the mold is lowered and is pressure applied. The material softens under heat and pressure, flowing to fill the mold. Excess is squeezed from the mold. If a thermoset, cross-linking occurs in the mold. The mold is opened and the part is removed. For thermoplastics, the mold is cooled before removal so the part will not lose its shape. Thermosets may be ejected while they are hot and after curing is complete. This process is slow
  • Injection Molding This very common process for forming plastics involves four steps: Powder or pelletized polymer is heated to the liquid state. Under pressure, the liquid polymer is forced into a mold through an opening, called a sprue. Gates control the flow of material. The pressurized material is held in the mold until it solidifies. The mold is opened and the part removed by ejector pins. Advantages of injection molding include rapid processing, little waste, and easy automation.
  • Transfer Molding This process is a modification of compression molding. It is used primarily to produce thermosetting plastics. Its steps are: A partially polymerized material is placed in a heated chamber. A plunger forces the flowing material into molds. The material flows through sprues, runners and gates. The temperature and pressure inside the mold are higher than in the heated chamber, which induces cross-linking. The plastic cures, is hardened, the mold opened, and the part removed. Mold costs are expensive and much scrap material collects in the sprues and runners, but complex parts of varying thickness can be accurately produced.
  • Extrusion This process makes parts of constant cross section like pipes and rods. Molten polymer goes through a die to produce a final shape. It involves four steps: Pellets of the polymer are mixed with coloring and additives. The material is heated to its proper plasticity. The material is forced through a die. The material is cooled.
  • Blow Molding Blow molding produces bottles, globe light fixtures, tubs, automobile gasoline tanks, and drums. It involves: A softened plastic tube is extruded The tube is clamped at one end and inflated to fill a mold. Solid shell plastics are removed from the mold. This process is rapid and relatively inexpensive.
  • In 1989, a billion pounds of virgin PET were used to make beverage bottles of which about 20% was recycled. Of the amount recycled, 50% was used for fiberfill and strapping. The reprocessors claim to make a high quality, 99% pure, granulated PET. It sells at 35 to 60% of virgin PET costs. The major reuses of PET include sheet, fiber, film, and extrusions.
  • Of the plastics that have a potential for recycling, the rigid HDPE container is the one most likely to be found in a landfill. Less than 5% of HDPE containers are treated or processed in a manner that makes recycling easy.
  • There is a great potential for the use of recycled HDPE in base cups, drainage pipes, flower pots, plastic lumber, trash cans, automotive mud flaps, kitchen drain boards, beverage bottle crates, and pallets.
  • LDPE is recycled by giant resin suppliers and merchant processors either by burning it as a fuel for energy or reusing it in trash bags. Recycling trash bags is a big business.
  • There is much controversy concerning the recycling and reuse of PVC due to health and safety issues. When PVC is burned, the effects on the incinerator and quality of the air are often questioned. The Federal Food and Drug Administration (FDA) has ordered its staff to prepare environmental impact statements covering PVC's role in landfills and incineration. The burning of PVC releases toxic dioxins, furans, and hydrogen chloride.
  • PVC is used in food and alcoholic beverage containers with FDA approval. The future of PVC rests in the hands of the plastics industry to resolve the issue of the toxic effects of the incineration of PVC. It is of interest to note that PVC accounts for less than 1% of land fill waste.
  • PS and its manufacturers have been the target of environmentalists for several years. The manufacturers and recyclers are working hard to make recycling of PS as common as that of paper and metals. One company, Rubbermaid, is testing reclaimed PS in service trays and other utility items.
  • Table 3: Major Plastic Resins and Their Uses Resin CodeResin NameCommon UsesExamples of Recycled Products Polyethylene Terephthalate (PET or PETE) Soft drink bottles, peanut butter jars, salad dressing bottles, mouth wash jars Liquid soap bottles, strapping, fiberfill for winter coats, surfboards, paint brushes, fuzz on tennis balls, soft drink bottles, film High density Polyethylene (HDPE) Milk, water, and juice containers, grocery bags, toys, liquid detergent bottles Soft drink based cups, flower pots, drain pipes, signs, stadium seats, trash cans, re-cycling bins, traffic barrier cones, golf bag liners, toys Polyvinyl Chloride or Vinyl (PVC-V) Clear food packaging, shampoo bottles Floor mats, pipes, hoses, mud flaps Low density Polyethylene (LDPE) Bread bags, frozen food bags, grocery bags Garbage can liners, grocery bags, multi purpose bags Polypropylene (PP) Ketchup bottles, yogurt containers, margarine, tubs, medicine bottles Manhole steps, paint buckets, videocassette storage cases, ice scrapers, fast food trays, lawn mower wheels, automobile battery parts. Polystyrene (PS) Video cassette cases, compact disk jackets, coffee cups, cutlery, cafeteria trays, grocery store meat trays, fast-food sandwich container License plate holders, golf course and septic tank drainage systems, desk top accessories, hanging files, food service trays, flower pots, trash cans
Becky Kriger

Polymer - Condensation polymers - 1 views

  • Polymers are made up of extremely large, chainlike molecules consisting of numerous, smaller, repeating units called monomers. Polymer chains, which could be compared to paper clips linked together to make a long strand, appear in varying lengths. They can have branches, become intertwined, and can have cross-links. In addition, polymers can be composed of one or more types of monomer units, they can be joined by various kinds of chemical bonds, and they can be oriented in different ways. Monomers can be joined together by addition, in which all the atoms in the monomer are present in the polymer, or by condensation, in which a small molecule byproduct is also formed.
  • The importance of polymers is evident as they occur widely both in the natural world in such materials as wool, hair, silk and sand, and in the world of synthetic materials in nylon, rubber, plastics, Styrofoam, and many other materials.
  • Polymers are extremely large molecules composed of long chains, much like paper clips that are linked together to make a long strand. The individual subunits, which can range from as few as 50 to more than 20,000, are called monomers (from the Greek mono meaning one and meros meaning part). Because of their large size, polymers (from the Greek poly meaning many) are referred to as macromolecules.
  • ...21 more annotations...
  • Most synthetic polymers are made from the non-renewable resource, petroleum, and as such, the "age of plastics" is limited unless other ways are found to make them. Since most polymers have carbon atoms as the basis of their structure, in theory at least, there are numerous materials that could be used as starting points.
  • Disposing of plastics is also a serious problem, both because they contribute to the growing mounds of garbage accumulating everyday and because most are not biodegradable. Researchers are busy trying to find ways to speed-up the decomposition time which, if left to occur naturally, can take decades.
  • n order for monomers to chemically combine with each other and form long chains, there must be a mechanism by which the individual units can join or bond to each other. One method by which this happens is called addition because no atoms are gained or lost in the process. The monomers simply "add" together and the polymer is called an addition polymer.
  • The simplest chemical structure by which this can happen involves monomers that contain double bonds (sharing two pairs of electrons). When the double bond breaks and changes into a single bond, each of the other two electrons are free and available to join with another monomer that has a free electron. This process can continue on and on. Polyethylene is an example of an addition polymer.
  • The polymerization process can be started by using heat and pressure or ultraviolet light or by using another more reactive chemical such as a peroxide. Under these conditions the double bond breaks leaving extremely reactive unpaired electrons called free radicals. These free radicals react readily with other free radicals or with double bonds and the polymer chain starts to form.
  • ifferent catalysts yield polymers with different properties because the size of the molecule may vary and the chains may be linear, branched, or cross-linked. Long linear chains of 10,000 or more monomers can pack very close together and form a hard, rigid, tough plastic known as high-density polyethylene or HDPE
  • Shorter, branched chains of about 500 monomers of ethylene cannot pack as closely together and this kind of polymer is known as low-density polyethylene or LDPE.
  • The ethylene monomer has two hydrogen atoms bonded to each carbon for a total of four hydrogen atoms that are not involved in the formation of the polymer. Many other polymers can be formed when one or more of these hydrogen atoms are replaced by some other atom or group of atoms.
  • Natural and synthetic rubbers are both addition polymers. Natural rubber is obtained from the sap that oozes from rubber trees. It was named by Joseph Priestley who used it to rub out pencil marks, hence, its name, a rubber. Natural rubber can be decomposed to yield monomers of isoprene.
  • It was sticky and smelly when it got too hot and it got hard and brittle in cold weather. These undesirable properties were eliminated when, in 1839, Charles Goodyear accidentally spilled a mixture of rubber and sulfur onto a hot stove and found that it did not melt but rather formed a much stronger but still elastic product. The process, called vulcanization, led to a more stable rubber product that withstood heat (without getting sticky) and cold (without getting hard) as well as being able to recover its original shape after being stretched. The sulfur makes cross-links in the long polymer chain and helps give it strength and resiliency, that is, if stretched, it will spring back to its original shape when the stress is released.
  • A second method by which monomers bond together to form polymers is called condensation.
  • Unlike addition polymers, in which all the atoms of the monomers are present in the polymer, two products result from the formation of condensation polymers, the polymer itself and another small molecule which is often, but not always, water.
  • One of the simplest of the condensation polymers is a type of nylon called nylon 6.
  • All amino acids molecules have an amine group (NH2) at one end and a carboxylic acid (COOH) group at the other end. A polymer forms when a hydrogen atom from the amine end of one molecule and an oxygen-hydrogen group (OH) from the carboxylic acid end of a second molecule split off and form a water molecule. The monomers join together as a new chemical bond forms between the nitrogen and carbon atoms. This new bond is called an amide linkage.
  • The new molecule, just like each of the monomers from which it formed, also has an amine group at one end (that can add to the carboxylic acid group of another monomer) and it has a carboxylic acid group at the other end (that can add to the amine end of another monomer). The chain can continue to grow and form very large polymers.
  • Polymers formed by this kind of condensation reaction are referred to as polyamides.
  • Nylon became a commercial product for Du Pont when their research scientists were able to draw it into long, thin, symmetrical filaments. As these polymer chains line up side-by-side, weak chemical bonds called hydrogen bonds form between adjacent chains. This makes the filaments very strong.
  • Another similar polymer of the polyamide type is the extremely light-weight but strong material known as Kevlar. It is used in bullet-proof vests, aircraft, and in recreational uses such as canoes. Like nylon, one of the monomers from which it is made is terephthalic acid. The other one is phenylenediamine.
  • Polyesters are another type of condensation polymer, so-called because the linkages formed when the monomers join together are called esters.
  • Probably the best known polyester is known by its trade name, Dacron.
  • Dacron is used primarily in fabrics and clear beverage bottles. Films of Dacron can be coated with metallic oxides, rolled into very thin sheets (only about one-thirtieth the thickness of a human hair), magnetized, and used to make audio and video tapes. When used in this way, it is extremely strong and goes by the trade name Mylar. Because it is not chemically reactive, and is not toxic, allergenic, or flammable, and because it does not promote blood-clotting, it can be used to replace human blood vessels when they are severely blocked and damaged or to replace the skin of burn victims.
Becky Kriger

What are Ziegler-Natta Catalysts? - 0 views

  • It was discovered that Group IV metals, especially titanium, were effective polymerization catalysts for ethylene. Following Ziegler’s successful preparation of linear polyethylene in 1953, Giulio Natta prepared and isolated isotactic (crystalline) polypropylene at the Milan Polytechnic Institute. This was immediately recognized for its practical importance. Ziegler and Natta shared the Nobel Prize in Chemistry in 1963.
  • A Ziegler-Natta catalyst is composed of at least two parts: a transition metal component and a main group metal alkyl compound. The transition metal component is usually either titanium or vanadium. The main group metal alkyl compound is usually an aluminum alkyl. In common practice, the titanium component is called "the catalyst’ and the aluminum alkyl is called "the co-catalyst".
  • In some instances, especially for catalyzing the polymerization of propylene, a third component is used. This component is used to control stereoregularity
  • ...1 more annotation...
  • Today, Ziegler-Natta catalysts are used worldwide to produce the following classes of polymers from alpha olefins: High density polyethylene (HDPE) Linear low density polyethylene (LLDPE) Ultra-high molecular weight polyethylene (UHMWPE) Polypropylene (PP)--homopolymer, random copolymer and high impact copolymers Thermoplastic polyolefins (TPO’s) Ethylene propylene diene monomer polymers (EPDM) Polybutene (PB)
Becky Kriger

Addition Polymers - 0 views

  • Addition polymers are usually made from molecules that have the following general structure: Different W, X, Y, and Z groups distinguish one addition polymer from another.
  • In the first stage, a substance is split into two identical parts, each with an unpaired electron. (Peroxides, which contain an O-O bond, are often used in this role.) A molecule with an unpaired electron is called a free radical. The free radical then initiates the reaction sequence by forming a bond to one of the carbon atoms in the double bond of the monomer. One electron for this new bond comes from the free radical, and the second electron for the new bond comes from one of the two bonds between the carbon atoms. The remaining electron from the broken bond shifts to the carbon atom on the far side of the molecule, away from the newly formed bond, forming a new free radical. Each half-headed arrow indicates the shift of one electron.
  • The chain begins to grow--propagate, stage two--when the new free radical formed in the initiation stage reacts with another monomer to add two more carbon atoms. This process repeats over and over again
  • ...3 more annotations...
  • It can be terminated--stage three--when any two free radicals combine, thus pairing their unpaired electrons and forming a covalent bond that links two chains together.
  • Polyethylene molecules made with the free radical initiation process tend to form branches that keep the molecules from fitting closely together. Techniques have been developed that use catalysts, like Cr2O3, to make polyethylene molecules with very few branches.
  • yielding a high-density polyethylene, HDPE, that is more opaque, harder, and stronger than the low-density polyethylene, LDPE, made with free radical initiation.
Becky Kriger

Recycling Plastic - 0 views

  • PET  Polyethylene Terephthalate Two-liter beverage bottles, mouthwash bottles, boil-in-bag pouches. HDPE  High Density Polyethylene Milk jugs, trash bags, detergent bottles. PVC Polyvinyl Chloride Cooking oil bottles, packaging around meat. LDPE  Low Density Polyethylene Grocery bags, produce bags, food wrap, bread bags. PP  Polypropylene Yogurt containers, shampoo bottles, straws, margarine tubs, diapers. PS  Polystyrene  Hot beverage cups, take-home boxes, egg cartons, meat trays, cd cases. OTHER All other types of plastics or packaging made from more than one type of plastic.
  • Plastics are not the waste and energy culprits that some people think they are. Plastics are really very energy efficient. It takes 20-40 percent less energy to manufacture plastic grocery bags than paper ones. And, since plastics are lightweight and take up so little space, it is much more efficient to transport them. It takes seven trucks to deliver the same number of paper bags as can be carried in one truckload of plastic bags.
  • Is plastic trash choking the Earth with Styrofoam® cups and fast-food plates? Not really. That’s just another misconception. By weight, plastics make up about 11 percent of America’s municipal solid waste. In comparison, paper makes up about 35 percent.
  • ...8 more annotations...
  • These methods recover some of the value from the plastic. Recycling recovers the raw material, which can then be used to make new plastic products. Incineration recovers the chemical energy, which can be used to produce steam and electricity. Landfilling plastics does neither of these things. The value of landfilled plastic is buried forever.
  • A recycling plant uses seven steps to turn plastic trash into recycled plastic:
  • 1. Inspection  Workers inspect the plastic trash for contaminants like rock and glass, and for plastics that the plant cannot recycle.  2. Chopping and Washing  The plastic is washed and chopped into flakes. 3. Flotation Tank  If mixed plastics are being recycled, they are sorted in a flotation tank, where some types of plastic sink and others float. 4. Drying  The plastic flakes are dried in a tumble dryer. 5. Melting  The dried flakes are fed into an extruder, where heat and pressure melt the plastic. Different types of plastics melt at different temperatures. 6. Filtering  The molten plastic is forced through a fine screen to remove any contaminants that slipped through the washing process. The molten plastic is then formed into strands. 7. Pelletizing  The strands are cooled in water, then chopped into uniform pellets. Manufacturing companies buy the plastic pellets from recyclers to make new products. Recycled plastics also can be made into flowerpots, lumber, and carpeting.  
  • Because plastics are made from fossil fuels, you can think of them as another form of stored energy. Pound for pound, plastics contain as much energy as petroleum or natural gas, and much more energy than other types of garbage. This makes plastic an ideal fuel for waste-to-energy plants.
  • So, should we burn plastics or recycle them? It depends. Sometimes it takes more energy to make a product from recycled plastics than it does to make it from all-new materials. If that’s the case, it makes more sense to burn the plastics at a waste-to-energy plant than to recycle them. Burning plastics can supply an abundant amount of energy, while reducing the cost of waste disposal and saving landfill space.  
  • A study by Canadian scientist Martin Hocking shows that making a paper cup uses as much petroleum or natural gas as a polystyrene cup. Plus, the paper cup uses wood pulp. The Canadian study said, “The paper cup consumes 12 times as much steam, 36 times as much electricity, and twice as much cooling water as the plastic cup.” And because the paper cup uses more raw materials and energy, it also costs 2.5 times more than the plastic cup.
  • scientists have figured out two ways to make plastics degrade: biodegradation and photodegradation.
  • Photodegradable plastics are a different matter. They use no organic additives. They are made with a special type of plastic that breaks down and becomes brittle in the presence of sunlight. Of course, that means photodegradable plastics do not break down when they are covered by leaves or snow, or when they are buried in a landfill. 
Becky Kriger

Recycling Plastics - How to Recycle Different Types of Plastic - 0 views

  • The easiest and most common plastics to recycle are made of polyethylene terephthalate (PETE) and are assigned the number 1. Examples include soda and water bottles, medicine containers, and many other common consumer product containers. Once it has been processed by a recycling facility, PETE can become fiberfill for winter coats, sleeping bags and life jackets. It can also be used to make bean bags, rope, car bumpers, tennis ball felt, combs, cassette tapes, sails for boats, furniture and, of course, other plastic bottles.
  • Number 2 is reserved for high-density polyethylene plastics. These include heavier containers that hold laundry detergents and bleaches as well as milk, shampoo and motor oil. Plastic labeled with the number 2 is often recycled into toys, piping, plastic lumber and rope.
  • Polyvinyl chloride, commonly used in plastic pipes, shower curtains, medical tubing, vinyl dashboards, and even some baby bottle nipples, gets number 3. Like numbers 4 (wrapping films, grocery and sandwich bags, and other containers made of low-density polyethylene) and 5 (polypropylene containers used in Tupperware, among other products), few municipal recycling centers will accept it due to its very low rate of recyclability.
  • ...2 more annotations...
  • Number 6 goes on polystyrene (Styrofoam) items such as coffee cups, disposable cutlery, meat trays, packing “peanuts” and insulation. It is widely accepted because it can be reprocessed into many items, including cassette tapes and rigid foam insulation.
  • Usually imprinted with a number 7 or nothing at all, these plastics are the most difficult to recycle and, as such, are seldom collected or recycled.
Justin Shorb

Chemistry: The Molecular Science - Google Book Search - 0 views

  • Chemistry : the molecular science
  • 8.8 Formal Charge
  •  
    Helps to answer Exam I #4
  •  
    Page in Moore et al. text about Unit cells.
Becky Kriger

Thermosetting plastic - Plastics Wiki - 0 views

  • Thermosetting plastics (thermosets) refer to a variety of polymer materials that cure, through the addition of energy, to a stronger form.
  • Thermoset materials are usually liquid, powder, or malleable prior to curing, and designed to be molded into their final form, or used as adhesives.
  • The curing process transforms the resin into a plastic or rubber by cross-linking. Energy and catalysts are added that cause the molecular chains to link into a rigid, 3-D structure.
  • ...2 more annotations...
  • Thermoset materials are generally stronger than thermoplastic materials, and are also better suited to high-temperature applications. They do not lend themselves to recycling like thermoplastics, which can be melted and re-molded.
  • Examples Natural Rubber Bakelite, a Phenol Formaldehyde Resin (used in electrical insulators and plastic wear) Duroplast Urea-Formaldehyde Foam (used in plywood, particleboard and medium-density fibreboard) Melamine (used on worktop surfaces) Polyester Resin (used in glass-reinforced plastics/Fibreglass (GRP)) Epoxy Resin (used as an adhesive and in fibre reinforced plastics such as glass reinforced plastic and graphite-reinforced plastic)
Becky Kriger

Chemical of the Week -- Polymers - 0 views

  •  Polymers are substances whose molecules have high molar masses and are composed of a large number of repeating units. There are both naturally occurring and synthetic polymers. Among naturally occurring polymers are proteins, starches, cellulose, and latex. Synthetic polymers are produced commercially on a very large scale and have a wide range of properties and uses. The materials commonly called plastics are all synthetic polymers.
  •    Polymers are formed by chemical reactions in which a large number of molecules called monomers are joined sequentially, forming a chain.
  • If all atoms in the monomers are incorporated into the polymer, the polymer is called an addition polymer. If some of the atoms of the monomers are released into small molecules, such as water, the polymer is called a condensation polymer.
  • ...27 more annotations...
  • Polyethylene terephthalate (PET), or polyethylene terephthalic ester (PETE), is a condensation polymer produced from the monomers ethylene glycol, HOCH2CH2OH, a dialcohol, and dimethyl terephthalate, CH3O2C–C6H4–CO2CH3, a diester. By the process of transesterification, these monomers form ester linkages between them, yielding a polyester
  • PETE fibers are manufactured under the trade names of Dacron and Fortrel.
  • Pleats and creases can be permanently heat set in fabrics containing polyester fibers, so-called permanent press fabrics. PETE can also be formed into transparent sheets and castings.
  • Transparent 2-liter carbonated beverage bottles are made from PETE.
  • ne form of PETE is the hardest known polymer and is used in eyeglass lenses.
  •      Polyethylene is perhaps the simplest polymer, composed of chains of repeating –CH2– units. It is produced by the addition polymerization of ethylene, CH2=CH2 (ethene)
  • HDPE is hard, tough, and resilient. Most HDPE is used in the manufacture of containers, such as milk bottles and laundry detergent jugs.
  • LDPE is relatively soft, and most of it is used in the production of plastic films, such as those used in sandwich bags.
  • Polymerization of vinyl chloride, CH2=CHCl (chloroethene), produces a polymer similar to polyethylene, but having chlorine atoms at alternate carbon atoms on the chain.
  • About two-thirds of the PVC produced annually is used in the manufacture of pipe. It is also used in the production of “vinyl” siding for houses and clear plastic bottles.
  • is used to form flexible articles such as raincoats and shower curtains.
  • This polymer is produced by the addition polymerization of propylene, CH2=CHCH3 (propene). Its molecular structure is similar to that of polyethylene, but has a methyl group (–CH3) on alternate carbon atoms of the chain.
  • olypropylene is used extensively in the automotive industry for interior trim, such as instrument panels, and in food packaging, such as yogurt containers. It is formed into fibers of very low absorbance and high stain resistance, used in clothing and home furnishings, especially carpeting.
  • Styrene, CH2=CH–C6H5, polymerizes readily to form polystyrene (PS), a hard, highly transparent polymer.
  • A large portion of production goes into packaging. The thin, rigid, transparent containers in which fresh foods, such as salads, are packaged are made from polystyrene. Polystyrene is readily foamed or formed into beads. These foams and beads are excellent thermal insulators and are used to produce home insulation and containers for hot foods. Styrofoam is a trade name for foamed polystyrene.
  • eflon is a trade name of polytetrafluoroethylene, PTFE. It is formed by the addition polymerization of tetrafluoroethylene, CF2=CF2 (tetrafluoroethene). PTFE is distinguished by its complete resistance to attack by virtually all chemicals and by its slippery surface. It maintains its physical properties over a large temperature range, -270° to 385°C. These properties make it especially useful for components that must operate under harsh chemical conditions and at temperature extremes. Its most familiar household use is as a coating on cooking utensils.
  • his important class of polymers is formed by the addition polymerization of an diisocyanate (whose molecules contain two –NCO groups) and a dialcohol (two –OH groups).
  • Polyurethane is spun into elastic fibers, called spandex, and sold under the trade name Lycra. Polyurethane can also be foamed. Soft polyurethane foams are used in upholstery, and hard foams are used structurally in light aircraft wings and sail boards.
  • Polyamides are a group of condensation polymers commonly known as nylon. Nylon is made from two monomers, one a dichloride and the other a diamine.
  • Nylon can be readily formed into fibers that are strong and long wearing, making them well suited for use in carpeting, upholstery fabric, tire cords, brushes, and turf for athletic fields. Nylon is also formed into rods, bars, and sheets that are easily formed and machined.
  • Polyacrylamide is a condensation polymer with an unusual and useful property.
  • This produces a network of polymer chains, rather like a tiny sponge. The free, unlinked amide groups, because they contain –NH2 groups, can form hydrogen bonds with water. This gives the tiny cross linked sponges a great affinity for water. Polyacrylamide can absorb many times its mass in water. T
  • his property is useful in a variety of applications, such as in diapers and in potting soil. The polyacrylamide will release the absorbed water if a substance that interferes with hydrogen bonding is added. Ionic substances, such as salt, cause polyacrylamide to release its absorbed water.
  • Over the past few decades, the use of polymers in disposable consumer goods has grown tremendously. This growth is proving to be taxing on the waste disposal system, consuming a large fraction of available landfill space.
  • To help sort wastes by type of polymer, most disposable polymeric goods are labeled with a recycling code: three arrows around a number above the polymer's acronym. These are intended to help consumers separate the waste polymers according to type before disposing of them. In the city of Madison, currently only type 1 (PETE) and type 2 (HDPE) polymers are being recycled – see below. The recycling of polymers is not a closed loop, where a material is reformed into new products repeatedly, such as in the case with aluminum. Most polymeric materials are recycled only once, and the product made of recycled polymer is discarded after use
  • General Rules Remove and discard all lids or caps. Rinse all containers. Remove and discard sprayer tops. CRUSH all plastic bottles to save space. No 5 gallon pails. No containers with metal handles.
  • What can be Recycled?Plastic Code Number Recyclable Containers Soda Bottles Water Bottles Juice Bottles Cooking Oil Bottles Soap/Detergent Bottles Shampoo Bottles Clear Liquor Bottles Food Jars (Peanut Butter etc.) Plastic Code Number Recyclable Containers Milk Bottles Water Bottles Juice Bottles Cooking Oil Containers Windshield Washer Fluid Bottles Shampoo Bottles Butter/Margarine Tubs Cottage Cheese Containers Ice Cream Containers Without Metal Handles Baby Wipe Containers Do NOT Recycle This Plastic 1. Automotive Product Containers Including: Motor Oil Bottles Anti-Freeze Containers Gasoline and Oil Additive Bottles 2. Brown Liquor Bottles 3. All Containers Marked With The Following Codes:            
1 - 10 of 10
Showing 20 items per page