Skip to main content

Home/ Chem 109H Fall08/ Group items tagged Polysaccharides

Rss Feed Group items tagged

Becky Kriger

Polysaccharides: Their Structure and Function - 0 views

  • Polysaccharides are the complex carbohydrates. They are made up of chains of monosaccharides (the sugars) which are linked together by glycosidic bonds, which are formed by the condensation reaction
  • Cellulose is a major component of plant cell walls. It is an unbranched polymer with about ten thousand glucose units per chain. Hydroxyl groups (-OH) project out from each chain, forming hydrogen bonds with neighbouring chains which creates a rigid cross-linking between the chains, making cellulose the strong support material that it is.
  • Chitin is closely related in structure to cellulose, also being an unbranched polysaccharide. However, instead of the hydroxyl groups (-OH), the chains have the following structure –NH.CO.CH3 replacing it. Large amounts of chitin is found in the cuticles of arthropods, with smaller amounts being found in sponges, molluscs and annelids.
  • ...6 more annotations...
  • Polysaccharides make ideal storage molecules for energy for a number of reasons; a) they are large, this makes them insoluble in water and therefore they exert no osmotic or chemical effect on the cell; b) they fold into compact shapes; c) they are easily converted into the required sugars when needed.
  • Glycogen is a branched polysaccharide found in nearly all animal cells and in certain protozoa and algae.
  • In humans and other vertebrates it is principally stored in the liver and muscles and is the main form of stored carbohydrate in the body, acting as a reservoir of glucose
  • Starch is similar to glycogen, however it is found in plant cells, protists and certain bacteria.
  • The starch granules are made up of two polysaccharides, amylose and amylopectin. Amylose is an unbranched molecule made up of several thousand glucose units, coiled helically into a more compact shape. Amylopectin is also compact but has a branched structure and is made up of twice as many glucose units as amylose.
  • For example, peptidoglycans, which are a combination of protein and polysaccharide and are found in the cell wall of certain bacteria. Glycolipids, a combination of polysaccharides and lipids are found in the cell membrane.
Becky Kriger

Carbohydrates and Polysaccharides - 0 views

  • Disaccharide Monosaccharides sucrose from α-glucose + α-fructose maltose from α-glucose + α-glucose α-lactose * from α-glucose + β-galactose * Lactose also exists in a beta form, which is made from β-galactose and β-glucose
  • A condensation reaction takes place releasing water. This process requires energy. A glycosidic bond forms and holds the two monosaccharide units together.
  • Carbohydrates (also called saccharides) are molecular compounds made from just three elements: carbon, hydrogen and oxygen. Monosaccharides (e.g. glucose) and disaccharides (e.g. sucrose) are relatively small molecules.
  • ...28 more annotations...
  • a source of energy
  • building blocks for polysaccharides (giant carbohydrates
  • components of other molecules eg DNA, RNA, glycolipids, glycoproteins, ATP
  • Monosaccharides are the simplest carbohydrates and are often called single sugars.
  • Monosaccharides have the general molecular formula (CH2O)n, where n can be 3, 5 or 6.
  • n = 3 trioses, e.g. glyceraldehyde n = 5 pentoses, e.g. ribose and deoxyribose ('pent' indicates 5) n = 6 hexoses, e.g. fructose, glucose and galactose ('hex' indicates 6)
  • Molecules that have the same molecular formula but different structural formulae are called structural isomers.
  • Monosaccharides containing the aldehyde group are classified as aldoses, and those with a ketone group are classified as ketoses. Aldoses are reducing sugars; ketoses are non-reducing sugars.
  • in water pentoses and hexoses exist mainly in the cyclic form, and it is in this form that they combine to form larger saccharide molecules.
  • There are two forms of the cyclic glucose molecule: α-glucose and β-glucose.
  • Two glucose molecules react to form the dissacharide maltose. Starch and cellulose are polysaccharides made up of glucose units.
  • Galactose molecules look very similar to glucose molecules. They can also exist in α and β forms. Galactose reacts with glucose to make the dissacharide lactose.
  • However, glucose and galactose cannot be easily converted into one another. Galactose cannot play the same part in respiration as glucose.
  • Fructose reacts with glucose to make the dissacharide sucrose.
  • Ribose and deoxyribose are pentoses. The ribose unit forms part of a nucleotide of RNA. The deoxyribose unit forms part of the nucleotide of DNA.
  • Monosaccharides are rare in nature. Most sugars found in nature are disaccharides. These form when two monosaccharides react.
  • The three most important disaccharides are sucrose, lactose and maltose.
  • Disaccharides are soluble in water, but they are too big to pass through the cell membrane by diffusion.
  • This is a hydrolysis reaction and is the reverse of a condensation reaction. It releases energy.
  • Monosaccharides are converted into disaccharides in the cell by condensation reactions. Further condensation reactions result in the formation of polysaccharides. These are giant molecules which, importantly, are too big to escape from the cell. These are broken down by hydrolysis into monosaccharides when energy is needed by the cell.
  • Monosaccharides can undergo a series of condensation reactions, adding one unit after another to the chain until very large molecules (polysaccharides) are formed. This is called condensation polymerisation, and the building blocks are called monomers. The properties of a polysaccharide molecule depend on: its length (though they are usually very long) the extent of any branching (addition of units to the side of the chain rather than one of its ends) any folding which results in a more compact molecule whether the chain is 'straight' or 'coiled'
  • Starch is often produced in plants as a way of storing energy. It exists in two forms: amylose and amylopectin
  • Amylose is an unbranched polymer of α-glucose. The molecules coil into a helical structure. It forms a colloidal suspension in hot water. Amylopectin is a branched polymer of α-glucose. It is completely insoluble in water.
  • Glycogen is amylopectin with very short distances between the branching side-chains.
  • Inside the cell, glucose can be polymerised to make glycogen which acts as a carbohydrate energy store.
  • Cellulose is a third polymer made from glucose. But this time it's made from β-glucose molecules and the polymer molecules are 'straight'.
  • Cellulose serves a very different purpose in nature to starch and glycogen. It makes up the cell walls in plant cells. These are much tougher than cell membranes. This toughness is due to the arrangement of glucose units in the polymer chain and the hydrogen-bonding between neighbouring chains.
  • Cellulose is not hydrolysed easily and, therefore, cannot be digested so it is not a source of energy for humans.
Becky Kriger

Polysaccharides - Chemistry Encyclopedia - 0 views

  • Polysaccharides are long polymers of monosaccharides and their derivatives. Unlike proteins or nucleic acids, these polymers can be either linear or branched, and they can contain only one type of monosaccharide (homopolysaccharides), or more than one (heteropolysaccharides)
  • Starch is a homopolysaccharide and has two forms: amylopectin and α-amylose. In nature, starch is approximately 10 to 30 percent α-amylose.
  • Starch is the main energy reserve in plants; glycogen is the main energy reserve in animals
  • ...10 more annotations...
  • In contrast to amylopectin, which comprises 70 to 90 percent of natural starch, α-amylose is a branching polysaccharide.
  • Branches occur at every twelve to thirty residues along a chain of α (1→4) linked glucoses. As a result, amylopectin has one reducing end and many nonreducing ends.
  • Amylopectin and α-amylose are broken down by the enzyme amylase. In animals, salivary α-amylase begins the digestion process in the mouth. Pancreatic α-amylase continues the process in the intestine.
  • Glycogen is the energy storage carbohydrate in animals. Glycogen is found mainly in the liver (where it is responsible for up to 10 percent of liver mass) and skeletal muscle (1 to 2 percent of skeletal muscle mass)
  • However, glycogen branches more abundantly than amylopectin, with branches at every eight to twelve residues. As a result, it has many more nonreducing ends. Glycogen is broken down at these nonreducing ends by the enzyme glycogen phosphorylase to release glucose for energy.
  • The primary structural homopolysaccharides are cellulose and chitin. Cellulose, a major component of plant cell walls, is the most abundant natural polymer on Earth.
  • Like α-amylose, cellulose is a linear polysaccharide composed entirely of glucose. However, in cellulose the glucose residues occur in β(1→4) linkage rather than α (1→4) (see Figure 1).
  • In addition, individual cellulose strands can form hydrogen bonds with one another to provide additional strength. Most animals, including humans, lack the enzymes necessary to dissolve α(1→4) linkages and so cannot digest cellulose
  • The animals that can (such as ruminants) do so via a symbiosis with bacteria that secrete cellulose-degrading enzymes.
  • The second most abundant polymer on Earth is chitin. Chitin comprises much of the exoskeletons of crustaceans, insects, and spiders, as well as the cell walls of fungi. Structurally, chitin is very similar to cellulose, except that its basic monosaccharide is N-acetylglucosamine
Becky Kriger

Sugars & Polysaccharides - 0 views

shared by Becky Kriger on 08 Dec 08 - Cached
  • D and L designations are based on the configuration about the single asymmetric carbon in glyceraldehyde. 
  • D & L sugars are mirror images of one another.
  • Monosaccharides - simple sugars,  with multiple hydroxyl groups. Based on the number of carbons (e.g., 3, 4, 5, or 6) a monosaccharide is a triose, tetrose, pentose, or hexose, etc. Disaccharides - two monosaccharides covalently linked Oligosaccharides - a few monosaccharides covalently linked. Polysaccharides - polymers consisting of chains of monosaccharide or disaccharide units.
  • ...1 more annotation...
  • For sugars with more than one chiral center, the D or L designation refers to the asymmetric carbon farthest from the aldehyde or keto group. Most naturally occurring sugars are D isomers.
1 - 4 of 4
Showing 20 items per page