Skip to main content

Home/ Groups/ Chem 109H Fall08
ChemPaths UW-Madison

Electron Configurations - 6 views

  •  
    This site is very helpful for problem 43.
A A

ASPIRE - Waves - 0 views

shared by A A on 15 Sep 08 - Cached
Justin Shorb liked it
    • A A
       
      Interesting way to understand wave mechanics.
    • Justin Shorb
       
      This reminds me of the video in lecture. However, I really like the way the applet shows how waves work in what looks like a crystal lattice.
Becky Kriger

Is Glass a Polymer? - 0 views

  • The highest quality glass has the chemical formula SiO2. But this is misleading. That formula conjures up ideas of little silicon dioxide molecules, analogous to carbon dioxide molecules. But little silicon dioxide molecules don't exist.
  • Instead, in nature SiO2 is often found as a crystalline solid, with a structure like you see on your right. Every silicon atom is bonded four oxygen atoms, tetrahedrally, of course; and every oxygen atom is bonded to two silicon atoms. When SiO2 is in this crystalline form we call it silica.
  • But this silica isn't glass. We have to do something to it first to make it into glass. We have to heat it up until it melts, and then cool it down really fast. When it melts, the silicon and oxygen atoms break out of their crystal structure. If we cooled it down slowly, the atoms would slowly line back up into their crystalline arrangement as they slowed down.
  • ...3 more annotations...
  • As you can see, there is no order to the arrangement of the atoms. We call materials like this amorphous. This is the glass that is used for telescope lenses and such things. It has very good optical properties, but it's brittle. For everyday uses, we need something tougher. Most glass is made from sand, and when we melt down the sand, we usually add some sodium carbonate. This gives us a tougher glass with a structure that looks like this:
  • So is this a polymer or not? Usually it isn't considered as such. Why? Some may say it's inorganic, and polymers are usually organic. But there are many inorganic polymers out there. For example, what about polysiloxanes? These linear, and yes, inorganic materials have a structure very similar to glass, and they're considered polymers. Take a look at a polysiloxane:
  • So glass could be considered a highly crosslinked polysiloxane. But we usually don't think of it that way. Why not? Probably because even in a highly crosslinked system, you could still trace a polymer chain and see where the crosslinks are. But with glass, it'd be tough to do that.
Becky Kriger

How Plastics Are Made - 0 views

  • The term "plastics" encompasses organic materials, such as the elements carbon (C), hydrogen (H), nitrogen (N), chlorine (Cl) and sulfur (S), which have properties similar to those naturally grown in organic materials such as wood, horn and rosin.
  • The plastic production process begins by heating the hydrocarbons in a "cracking process." Here, in the presence of a catalyst, larger molecules are broken down into smaller ones such as ethylene (ethene) C2H4, propylene (propene) C3H6, and butene C4H8 and other hydrocarbons.
  • Other examples of thermoset plastics and their product applications are: Polyurethanes: mattresses, cushions, insulation, ski boots, toys Unsaturated Polyesters: lacquers, varnishes, boat hulls, furniture,  Epoxies: glues, coating electrical circuits, helicopter blades
  • ...13 more annotations...
  • Other examples of thermoplastics are: Polyethylene: packaging, electrical insulation, milk and water bottles, packaging film, house wrap, agricultural film Polypropylene: carpet fibers, automotive bumpers, microwave containers, external prostheses Polyvinyl chloride (PVC): sheathing for electrical cables, floor and wall coverings, siding, credit cards, automobile instrument panels
  • These monomers are then chemically bonded into chains called polymers.
  • The resulting resins may be molded or formed to produce several different kinds of plastic products with application in many major markets. The variability of resin permits a compound to be tailored to a specific design or performance requirement.
  • Polymers are created by the chemical bonding of many identical or related basic units and those produced from a single monomer type are called homopolymers. These polymers are specifically made of small units bonded into long chains. Carbon makes up the backbone of the molecule and hydrogen atoms are bonded along the carbon backbone.
  • In order to achieve a commercial product, the plastic is subject to further treatment and the inclusion of additives which are selected to give it specified properties
  • Additives are incorporated into polymers to alter and improve their basic mechanical, physical or chemical properties. Additives are also used to protect the polymer from the degrading effects of light, heat, or bacteria; to change such polymer properties as flow; to provide product color; and to provide special characteristics such as improved surface appearance or reduced friction.
  • Types of Additives:     antioxidants: for outside application,      colorants: for colored plastic parts, foaming agents: for Styrofoam cups,      plasticizers: used in toys and food processing equipment
  • A Thermoset is a polymer that solidifies or "sets" irreversibly when heated. Similar to the relationship between a raw and a cooked egg, once heated, a thermoset polymer can't be softened again and once cooked, the egg cannot revert back to its original form.
  • A Thermoplastic is a polymer in which the molecules are held together by weak secondary bonding forces that soften when exposed to heat and return to its original condition when cooled back down to room temperature. When a thermoplastic is softened by heat, it can then be shaped by extrusion, molding or pressing. Ice cubes are a common household item which exemplify the thermoplastic principle. Ice will melt when heated but readily solidifies when cooled.
  • In this method, a separate molding and cooling station on the equipment allows the parison to be continuously formed.  This technique is used mainly for small thin-walled parts ranging up to containers with five gallon capacities.  Parison programming can be used to vary the wall thickness.  Continuous extrusion also allows the use of heat-sensitive materials due to streamlined flow areas and die designs.
  • This technique is performed in three basic ways --reciprocating, ram accumulator, and accumulator head systems.  All three vary in machine design and the flow of molten resin through the die for parison forming.  However, each system is designed to produce larger, heavier, and thicker parts than continuous extrusion.
  • Blow moldable grades of material are initially injection molded into preform shapes.  These preforms are then thermally conditioned and then stretched (utilizing pneumatically operated stretch rods) low pressure air, followed by high pressure air up to 40 bar to form axially oriented parts with molded in necks.  The process is used to manufacture PET bottles.
  • This process utilizes various thermoplastic materials in a solid pelletized state and converts these materials by way of heat, pressure and compressed air into a finished good stat.The pellitized raw material is conveyed to the feed section of a plasticating extruder by way of a vacuum loader or auger screw.  The raw material is then conveyed forward through the extruder and is plastisized to a molten state of between 350 degrees and 500 degrees F. by way of a feed screw and external heating elements.The material in a melt state is then reshaped into a round hollow geometry termed a parison.  This parison is then extruded vertically from the head section of the machine through a round die at various outside and inside diameters.After extrusion of the parison between the two halves of a mold the press section closes encapsulating the parison inside the mold halves.  Upon mold close compressed air is entered into the parison by way of a centrally located air pipe or by piercing air needles.The molds are chilled with cooled water which transfers the hear form the now formed part inside the mold.  Upon complete part cooling the press section opens and the finished product is removed.  The material which is pinched off outside the mold cavity, or the flash, is then fed into a granulator which cops the flash into a granule size which can be fed back to the feed section of the extruder.
Becky Kriger

Biodegradable plastics made from corn - 0 views

  • Biodegradable plastics have already been created by using proteins from plants such as corn or soy. But they were not strong enough to be used by the industry. Now, researchers at Iowa State University have found a way to reinforce these biorenewable plastics. They are using high-powered ultrasonics to reinforce the plastics with nanoclays.
  • But how biodegradable plastics can be made with corn proteins? Grewell keeps a plastic model of a molecule looking like a ball. That's about the shape of a soy or corn protein […] Then he unfolded the model into a long, straight loop. That's what happens when researchers add some glycerin — a byproduct of biodiesel production – and some water to the molecule.
  • Nanoclays are clays from the smectite family which have a unique morphology: they form platelets about 1 nanometer thick and 100 nanometers in diameter. Below is an example of the structure of one nanoclay raw material named montmorillonite.
  • ...1 more annotation...
  • Apparently, it's difficult to use these nanoclays. So the researchers turned to "high-powered ultrasonics — high-frequency sound waves too high for human hearing – to separate and disperse the platelets."
Becky Kriger

Recycling Plastics - How to Recycle Different Types of Plastic - 0 views

  • The easiest and most common plastics to recycle are made of polyethylene terephthalate (PETE) and are assigned the number 1. Examples include soda and water bottles, medicine containers, and many other common consumer product containers. Once it has been processed by a recycling facility, PETE can become fiberfill for winter coats, sleeping bags and life jackets. It can also be used to make bean bags, rope, car bumpers, tennis ball felt, combs, cassette tapes, sails for boats, furniture and, of course, other plastic bottles.
  • Number 2 is reserved for high-density polyethylene plastics. These include heavier containers that hold laundry detergents and bleaches as well as milk, shampoo and motor oil. Plastic labeled with the number 2 is often recycled into toys, piping, plastic lumber and rope.
  • Polyvinyl chloride, commonly used in plastic pipes, shower curtains, medical tubing, vinyl dashboards, and even some baby bottle nipples, gets number 3. Like numbers 4 (wrapping films, grocery and sandwich bags, and other containers made of low-density polyethylene) and 5 (polypropylene containers used in Tupperware, among other products), few municipal recycling centers will accept it due to its very low rate of recyclability.
  • ...2 more annotations...
  • Number 6 goes on polystyrene (Styrofoam) items such as coffee cups, disposable cutlery, meat trays, packing “peanuts” and insulation. It is widely accepted because it can be reprocessed into many items, including cassette tapes and rigid foam insulation.
  • Usually imprinted with a number 7 or nothing at all, these plastics are the most difficult to recycle and, as such, are seldom collected or recycled.
Becky Kriger

7 Misconceptions About Plastic and Plastic Recycling - 0 views

  • Plastics that go into a curbside recycling bin get recycled. Not necessarily.
  • In fact, none of the recovered plastic containers from Berkeley are being made into containers again but into new secondary products such as textiles, parking lot bumpers, or plastic lumber – all unrecyclable products. This does not reduce the use of virgin materials in plastic packaging.
  • Curbside collection will reduce the amount of plastic landfilled. Not necessarily. If establishing collection makes plastic packages seem more environmentally friendly, people may feel comfortable buying more.
  • ...14 more annotations...
  • Since only a fraction of certain types of plastic could realistically be captured by a curbside program, the net impact of initiating curbside collection could be an increase in the amount of plastic landfilled. The Berkeley pilot program showed no reduction of plastic being sent to the landfill in the areas where the curbside collection was in operation.
  • A chasing arrows symbol means a plastic container is recyclable. The arrows are meaningless. Every plastic container is marked with the chasing arrows symbol. The only information in the symbol is the number inside the arrows, which indicates the general class of resin used to make the container.
  • Packaging resins are made from petroleum refineries’ waste. Plastic resins are made from non-renewable natural resources that could be used for a variety of other applications or conserved. Most packaging plastics are made from the same natural gas used in homes to heat water and cook.
  • Using plastic containers conserves energy. When the equation includes the energy used to synthesize the plastic resin, making plastic containers uses as much energy as making glass containers from virgin materials, and much more than making glass containers from recycled materials. Using refillables is the most energy conservative.
  • Our choice is limited to recycling or wasting. Source reduction is preferable for many types of plastic and isn’t difficult. Opportunities include using refillable containers, buying in bulk, buying things that don’t need much packaging, and buying things in recyclable and recycled packages
  • Plastic packaging has economic, health, and environmental costs and benefits.
  • Plastic container producers do not use any recycled plastic in their packaging. Recycled content laws could reduce the use of virgin resin for packaging. Unfortunately, the virgin&endash;plastics industry has resisted such cooperation by strongly opposing recycled -content legislation, and has defeated or weakened consumer efforts to institute stronger laws.
  • Processing used plastics often costs more than virgin plastic. As plastic producers increase production and reduce prices on virgin plastics, the markets for used plastic are diminishing. PET recyclers cannot compete with the virgin resin flooding the market.
  • 1. Reduce the useSource reduction Retailers and consumers can select products that use little or no packaging. Select packaging materials that are recycled into new packaging - such as glass and paper.
  • 2. Reuse containersSince refillable plastic containers can be reused about 25 times, container reuse can lead to a substantial reduction in the demand for disposable plastic, and reduced use of materials and energy
  • 3. Require producers to take back resins
  • Make reprocessing easier by limiting the number of container types and shapes, using only one type of resin in each container, making collapsible containers, eliminating pigments, using water-dispersible adhesives for labels, and phasing out associated metals such as aluminum seals.
  • 4. Legislatively require recycled content Requiring that all containers be composed of a percentage of post-consumer material reduces the amount of virgin material consumed.
  • 5. Standardize labeling and inform the public The chasing arrows symbol on plastics is an example of an ambiguous and misleading label. Significantly different standardized labels for "recycled," "recyclable," and "made of plastic type X" must be developed.
Becky Kriger

Recycling Plastic - 0 views

  • PET  Polyethylene Terephthalate Two-liter beverage bottles, mouthwash bottles, boil-in-bag pouches. HDPE  High Density Polyethylene Milk jugs, trash bags, detergent bottles. PVC Polyvinyl Chloride Cooking oil bottles, packaging around meat. LDPE  Low Density Polyethylene Grocery bags, produce bags, food wrap, bread bags. PP  Polypropylene Yogurt containers, shampoo bottles, straws, margarine tubs, diapers. PS  Polystyrene  Hot beverage cups, take-home boxes, egg cartons, meat trays, cd cases. OTHER All other types of plastics or packaging made from more than one type of plastic.
  • Plastics are not the waste and energy culprits that some people think they are. Plastics are really very energy efficient. It takes 20-40 percent less energy to manufacture plastic grocery bags than paper ones. And, since plastics are lightweight and take up so little space, it is much more efficient to transport them. It takes seven trucks to deliver the same number of paper bags as can be carried in one truckload of plastic bags.
  • Is plastic trash choking the Earth with Styrofoam® cups and fast-food plates? Not really. That’s just another misconception. By weight, plastics make up about 11 percent of America’s municipal solid waste. In comparison, paper makes up about 35 percent.
  • ...8 more annotations...
  • These methods recover some of the value from the plastic. Recycling recovers the raw material, which can then be used to make new plastic products. Incineration recovers the chemical energy, which can be used to produce steam and electricity. Landfilling plastics does neither of these things. The value of landfilled plastic is buried forever.
  • A recycling plant uses seven steps to turn plastic trash into recycled plastic:
  • 1. Inspection  Workers inspect the plastic trash for contaminants like rock and glass, and for plastics that the plant cannot recycle.  2. Chopping and Washing  The plastic is washed and chopped into flakes. 3. Flotation Tank  If mixed plastics are being recycled, they are sorted in a flotation tank, where some types of plastic sink and others float. 4. Drying  The plastic flakes are dried in a tumble dryer. 5. Melting  The dried flakes are fed into an extruder, where heat and pressure melt the plastic. Different types of plastics melt at different temperatures. 6. Filtering  The molten plastic is forced through a fine screen to remove any contaminants that slipped through the washing process. The molten plastic is then formed into strands. 7. Pelletizing  The strands are cooled in water, then chopped into uniform pellets. Manufacturing companies buy the plastic pellets from recyclers to make new products. Recycled plastics also can be made into flowerpots, lumber, and carpeting.  
  • Because plastics are made from fossil fuels, you can think of them as another form of stored energy. Pound for pound, plastics contain as much energy as petroleum or natural gas, and much more energy than other types of garbage. This makes plastic an ideal fuel for waste-to-energy plants.
  • So, should we burn plastics or recycle them? It depends. Sometimes it takes more energy to make a product from recycled plastics than it does to make it from all-new materials. If that’s the case, it makes more sense to burn the plastics at a waste-to-energy plant than to recycle them. Burning plastics can supply an abundant amount of energy, while reducing the cost of waste disposal and saving landfill space.  
  • A study by Canadian scientist Martin Hocking shows that making a paper cup uses as much petroleum or natural gas as a polystyrene cup. Plus, the paper cup uses wood pulp. The Canadian study said, “The paper cup consumes 12 times as much steam, 36 times as much electricity, and twice as much cooling water as the plastic cup.” And because the paper cup uses more raw materials and energy, it also costs 2.5 times more than the plastic cup.
  • scientists have figured out two ways to make plastics degrade: biodegradation and photodegradation.
  • Photodegradable plastics are a different matter. They use no organic additives. They are made with a special type of plastic that breaks down and becomes brittle in the presence of sunlight. Of course, that means photodegradable plastics do not break down when they are covered by leaves or snow, or when they are buried in a landfill. 
Becky Kriger

Condensation Polymerization - 0 views

  • The monomers that are involved in condensation polymerization are not the same as those in addition polymerization. The monomers for condensation polymerization have two main characteristics:. Instead of double bonds, these monomers have functional groups (like alcohol, amine, or carboxylic acid groups). Each monomer has at least two reactive sites, which usually means two functional groups. Some monomers have more than two reactive sites, allowing for branching between chains, as well as increasing the molecular mass of the polymer.
  • Let's look again at the functional groups on these monomers. We've seen three: The carboxylic acid group The amino group The alcohol group
  • You might have learned in chemistry or biology class that these groups can combine in such a way that a small molecule (often H2O) is given off. The Amide Linkage:When a carboxylic acid and an amine react, a water molecule is removed, and an amide molecule is formed. Because of this amide formation, this bond is known as an amide linkage. The Ester Linkage:When a carboxylic acid and an alcohol react, a water molecule is removed, and an ester molecule is formed. Because of this ester formation, this bond is known as an ester linkage.
  • ...3 more annotations...
  • Example 1:A carboxylic acid monomer and an amine monomer can join in an amide linkage. As before, a water molecule is removed, and an amide linkage is formed. Notice that an acid group remains on one end of the chain, which can react with another amine monomer. Similarly, an amine group remains on the other end of the chain, which can react with another acid monomer. Thus, monomers can continue to join by amide linkages to form a long chain. Because of the type of bond that links the monomers, this polymer is called a polyamide.
  • Example 2:A carboxylic acid monomer and an alcohol monomer can join in an ester linkage. A water molecule is removed as the ester linkage is formed. Notice the acid and the alcohol groups that are still available for bonding.
  • Because the monomers above are all joined by ester linkages, the polymer chain is a polyester. This one is called PET, which stands for poly(ethylene terephthalate). (PET is used to make soft-drink bottles, magnetic tape, and many other plastic products.)
Becky Kriger

Polymer Structures - 0 views

    • Becky Kriger
       
      To view the annotated contents of this page, click on the highlighted links to the left.
  • Although the fundamental property of bulk polymers is the degree of polymerization, the physical structure of the chain is also an important factor that determines the macroscopic properties.
  • Configuration refers to the order that is determined by chemical bonds. The configuration of a polymer cannot be altered unless chemical bonds are broken and reformed. Conformation refers to order that arises from the rotation of molecules about the single bonds. These two structures are studied below.
  • ...12 more annotations...
  • The two types of polymer configurations are cis and trans. These structures can not be changed by physical means (e.g. rotation). The cis configuration arises when substituent groups are on the same side of a carbon-carbon double bond. Trans refers to the substituents on opposite sides of the double bond.
  • Three distinct structures can be obtained. Isotactic is an arrangement where all substituents are on the same side of the polymer chain. A syndiotactic polymer chain is composed of alternating groups and atactic is a random combination of the groups. The following diagram shows two of the three stereoisomers of polymer chain.
  • The ability of an atom to rotate this way relative to the atoms which it joins is known as an adjustment of the torsional angle. If the two atoms have other atoms or groups attached to them then configurations which vary in torsional angle are known as conformations.
  • different conformation may represent different potential energies of the molecule. There several possible generalized conformations: Anti (Trans), Eclipsed (Cis), and Gauche (+ or -). The following animation illustrates the differences between them.
  • The geometric arrangement of the bonds is not the only way the structure of a polymer can vary. A branched polymer is formed when there are "side chains" attached to a main chain. A simple example of a branched polymer is shown in the following diagram.
  • One of these types is called "star-branching". Star branching results when a polymerization starts with a single monomer and has branches radially outward from this point. Polymers with a high degree of branching are called dendrimers Often in these molecules, branches themselves have branches.
  • A separate kind of chain structure arises when more that one type of monomer is involved in the synthesis reaction. These polymers that incorporate more than one kind of monomer into their chain are called copolymers. There are three important types of copolymers. A random copolymer contains a random arrangement of the multiple monomers. A block copolymer contains blocks of monomers of the same type. Finally, a graft copolymer contains a main chain polymer consisting of one type of monomer with branches made up of other monomers. The following diagram displays the different types of copolymers.
  • In addition to the bonds which hold monomers together in a polymer chain, many polymers form bonds between neighboring chains. These bonds can be formed directly between the neighboring chains, or two chains may bond to a third common molecule.
  • Polymers with a high enough degree of cross-linking have "memory." When the polymer is stretched, the cross-links prevent the individual chains from sliding past each other. The chains may straighten out, but once the stress is removed they return to their original position and the object returns to its original shape.
  • In vulcanization, a series of cross-links are introduced into an elastomer to give it strength. This technique is commonly used to strengthen rubber.
  • Elastomers,or rubbery materials, have a loose cross-linked structure. This type of chain structure causes elastomers to possess memory. Typically, about 1 in 100 molecules are cross-linked
  • Natural and synthetic rubbers are both common examples of elastomers. Plastics are polymers which, under appropriate conditions of temperature and pressure, can be molded or shaped (such as blowing to form a film). In contrast to elastomers, plastics have a greater stiffness and lack reversible elasticity.
Becky Kriger

Thermosetting plastic - Plastics Wiki - 0 views

  • Thermosetting plastics (thermosets) refer to a variety of polymer materials that cure, through the addition of energy, to a stronger form.
  • Thermoset materials are usually liquid, powder, or malleable prior to curing, and designed to be molded into their final form, or used as adhesives.
  • The curing process transforms the resin into a plastic or rubber by cross-linking. Energy and catalysts are added that cause the molecular chains to link into a rigid, 3-D structure.
  • ...2 more annotations...
  • Thermoset materials are generally stronger than thermoplastic materials, and are also better suited to high-temperature applications. They do not lend themselves to recycling like thermoplastics, which can be melted and re-molded.
  • Examples Natural Rubber Bakelite, a Phenol Formaldehyde Resin (used in electrical insulators and plastic wear) Duroplast Urea-Formaldehyde Foam (used in plywood, particleboard and medium-density fibreboard) Melamine (used on worktop surfaces) Polyester Resin (used in glass-reinforced plastics/Fibreglass (GRP)) Epoxy Resin (used as an adhesive and in fibre reinforced plastics such as glass reinforced plastic and graphite-reinforced plastic)
Becky Kriger

Effects of Temperature on Polymers - 0 views

  • Many polymers have a mixture of ordered (crystalline) regions and random (amorphous) regions.  In the glassy state the tangled chains in the amorphous region are frozen so movement of chains is not possible.  The polymer is brittle.
  • If the glassy material is heated, the chains reach a temperature at which they can move.  This temperature is called the glass transition temperature Tg.  Above this temperature the polymer is flexible. 
  • The glass transition temperature of a polymer can be changed by two different ways: Copolymerisation.  Ethene can be polymerised with propene to give a new polymer with different properties. Plasticisers.  PVC is quite brittle.  Its Tg can be lowered, making it less brittle, by introducing a substance between the polymer chains, allowing the chains to slide over each other more easily.  Such a substance is called a plasticiser.
Becky Kriger

Turning Plastics Back to Oil - 0 views

  • Key to GRC's process is a machine that uses 1200 different frequencies within the microwave range, which act on specific hydrocarbon materials. As the material is zapped at the appropriate wavelength, part of the hydrocarbons that make up the plastic and rubber in the material are broken down into diesel oil and combustible gas.
  • "Anything that has a hydrocarbon base will be affected by our process," says Jerry Meddick, director of business development at GRC, based in New Jersey. "We release those hydrocarbon molecules from the material and it then becomes gas and oil."
  • Whatever does not have a hydrocarbon base is left behind, minus any water it contained as this gets evaporated in the microwave.
  • ...3 more annotations...
  • Take a piece of copper wiring," says Meddick. "It is encased in plastic - a kind of hydrocarbon material. We release all the hydrocarbons, which strips the casing off the wire." Not only does the process produce fuel in the form of oil and gas, it also makes it easier to extract the copper wire for recycling.
  • Autofluff is the stuff that is left over after a car has been shredded and the steel extracted. It contains plastics, rubber, wood, paper, fabrics, glass, sand, dirt, and various bits of metal. GRC says its Hawk-10 can extract enough oil and gas from the left-over fluff to run the Hawk-10 itself and a number of other machines used by Gershow.
  • Because it makes extracting reusable metal more efficient and evaporates water from autofluff, the Hawk-10 should also reduce the amount of end material that needs to be deposited in landfill sites.
Becky Kriger

Plastics - 0 views

  • lastics are synthetic materials, which means that they are artificial, or manufactured.
  • he building blocks for making plastics are small organic molecules - molecules that contain carbon along with other substances. They generally come from oil (petroleum) or natural gas, but they can also come from other organic materials such as wood fibers, corn, or banana peels! Each of these small molecules is known as a monomer ("one part") because it's capable of joining with other monomers to form very long molecule chains called polymers ("many parts")
  • 1. Crude oil, the unprocessed oil that comes out of the ground, contains hundreds of different hydrocarbons, as well as small amounts of other materials. The job of an oil refinery is to separate these materials and also to break down (or "crack) large hydrocarbons into smaller ones. 2. A petrochemical plant receives refined oil containing the small monomers they need and creates polymers through chemical reactions. 3. A plastics factory buys the end products of a petrochemical plant - polymers in the form of resins - introduces additives to modify or obtain desirable properties, then molds or otherwise forms the final plastic products.
  • ...13 more annotations...
  • One such molecule is the ethylene monomer, the starting point for a variety of plastics. Ethylene is a small hydrocarbon consisting of four hydrogen atoms and two carbon atoms.
  • Polymerization is often started by combining the monomers through the use of a catalyst - a substance that aids a chemical reaction without undergoing any permanent chemical change itself. During the chemical reaction, hundreds or thousands of monomers combine to form a polymer chain, and millions of polymer chains are formed at the same time. The mass of polymers that results is known as a resin.
  • Polyethylene is made from just ethylene monomers - but it's also possible to create polymers from two or more different monomers. You can make hundreds of different polymers depending on which monomers and catalysts you use.
  • Cellulose, the basic component of plant cell walls is a polymer, and so are all the proteins produced in your body and the proteins you eat. Another famous example of a polymer is DNA - the long molecule in the nuclei of your cells that carries all the genetic information about you.
  • lastics are classified into two categories according to what happens to them when they're heated to high temperatures. Thermoplastics keep their plastic properties: They melt when heated, then harden again when cooled. Thermosets, on the other hand, are permanently "set" once they're initially formed and can't be melted. If they're exposed to enough heat, they'll crack or become charred.
  • Thermoplastics have long, linear polymer chains that are only weakly chemically bonded, or connected, to each other. When a thermoplastic object is heated, these bonds are easily broken, which makes the polymers able to glide past each other like strands of freshly cooked spaghetti. That's why thermoplastics can readily be remolded. The weak bonds between the polymers reform when the plastic object is cooled, which enable it to keep its new shape.
  • The linear chains are crosslinked - strongly chemically bonded. This prevents a thermoplastic object from being melted and reformed.
  • The most common method for making plastics is molding. To make a thermoplastic object, plastic granules known as resin are forced into a mold under high heat and pressure. When the material has cooled down, the mold is opened and the plastic object is complete. When making plastic fibers, the molten resin is sprayed through a strainer with tiny holes.
  • Thermosets are produced in two steps: 1. Linear polymers are formed. 2. The linear polymers are forced into a mold where "curing" takes place. This may involve heating, pressure, and the addition of catalysts. During this process, a cross-linked or networked structure forms, creating a permanently hard object that is no longer meltable or moldable.
  • For most applications, the ideal polymer is a long, straight chain with a highly regular molecular structure. Early synthetic polymers, however, often exhibited odd little branches and other irregularities. In the 1950s, German chemist Karl Ziegler (1898–1973) discovered that an entirely different type of catalyst - a combination of aluminum compounds with other metallic compounds - could solve some of these annoying problems and increase the length of a polymer chain, producing superior plastics.
  • olymers often have short side chains, which can occur on either side of the main chain. If side branches occur randomly to the left or right, the polymer has an irregular structure. Italian chemist Giulio Natta (1903–1979) discovered that some Ziegler catalysts led to a uniform structure in which all the side branches are on the same side.
  • Firstly, there is an environmental impact from plastics production; however the plastics industry has worked hard to reduce energy and water use, as well as waste generation during the manufacturing processes.
  • Secondly, during their lives, plastic products can save energy and reduce carbon dioxide emissions in a variety of ways. For example, they're lightweight, so transporting them is energy efficient. And plastic parts in cars and airplanes reduce the weight of those vehicles and therefore less energy is needed to operate them and lower emissions are created.
Becky Kriger

Biopolymers and Bioplastics - 0 views

  • Biopolymers are polymers which are present in, or created by, living organisms. These include polymers from renewable resources that can be polymerized to create bioplastics. Bioplastics are plastics manufactured using biopolymers, and are biodegradable.
  • There are two main types of biopolymers: those that come from living organisms; and, those which need to be polymerized but come from renewable resources. Both types are used in the production of bioplastics
  • Biopolymer Natural Source What is it? Cellulose Wood, cotton, corn, wheat, and others This polymer is made up of glucose. It is the main component of plant cell walls. Soy protein Soybeans Protein which naturally occurs in the soy plant. Starch Corn, potatoes, wheat, tapioca, and others This polymer is one way carbohydrates are stored in plant tissue. It is a polymer made up of glucose. It is not found in animal tissues. Polyesters Bacteria These polyesters are created through naturally occurring chemical reactions that are carried out by certain types of bacteria.
  • ...9 more annotations...
  • Biopolymer Natural Source What is it? Lactic Acid Beets, corn, potatoes, and others Produced through fermentation of sugar feedstocks, such as beets, and by converting starch in corn, potatoes, or other starch sources. It is polymerized to produce polylactic acid -- a polymer that is used to produce plastic. Triglycerides Vegetable oils These form a large part of the storage lipids found in plant and animal cells. Vegetable oils are one possible source of triglycerides that can be polymerized into plastics.
  • Using Fermentation to Produce Plastics Fermentation, used for hundreds of years by humans, is even more powerful when coupled with new biotechnology techniques.
  • Today, fermentation can be carried out with genetically engineered microorganisms, specially designed for the conditions under which fermentation takes place,
  • Fermentation, in fact, is the process by which bacteria can be used to create polyesters. Bacteria called Ralstonia eutropha are used to do this. The bacteria use the sugar of harvested plants, such as corn, to fuel their cellular processes. The by-product of these cellular processes is the polymer.
  • Lactic acid is fermented from sugar, much like the process used to directly manufacture polymers by bacteria. However, in this fermentation process, the final product of fermentation is lactic acid, rather than a polymer. After the lactic acid is produced, it is converted to polylactic acid using traditional polymerization processes.
  • Plants are becoming factories for the production of plastics. Researchers created a Arabidopis thaliana plant through genetic engineering. The plant contains the enzymes used by bacteria to create plastics. Bacteria create the plastic through the conversion of sunlight into energy. The researchers have transferred the gene that codes for this enzyme into the plant, as a result the plant produces plastic through its cellular processes. The plant is harvested and the plastic is extracted from it using a solvent. The liquid resulting from this process is distilled to separate the solvent from the plastic.
  • Currently, fossil fuel is still used as an energy source during the production process. This has raised questions by some regarding how much fossil fuel is actually saved by manufacturing bioplastics. Only a few processes have emerged that actually use less energy in the production process.
  • Energy use is not the only concern when it comes to biopolymers and bioplastics. There are also concerns about how to balance the need to grow plants for food, and the need to grow plants for use as raw materials. Agricultural space needs to be shared. Researchers are looking into creating a plant that can be used for food, but also as feedstock for plastic production.
  • Biopolymers and bioplastics are the main components in creating a sustainable plastics industry. These products reduce the dependence on non-renewable fossil fuels, and are easily biodegradable. Together, this greatly limits the environmental impacts of plastic use and manufacture. Also, characteristics such as being biodegradable make plastics more acceptable for long term use by society. It is likely that in the long term, these products will mean plastics will remain affordable, even as fossil fuel reserves diminish.
Becky Kriger

Chemistry - Condensation polymer - 0 views

  • Condensation polymers are any class of polymer formed through a condensation reaction, as opposed to addition polymers which involve the reaction of unsaturated monomers. Types of condensation polymer include polyamides and polyesters.
  • The carboxylic acids and amines link to form peptide bonds, also known as amide groups. Proteins are condensation polymers made from amino acid monomers. Carbohydrates are also condensation polymers made from sugar monomers such as glucose and galactose.
  • Condensation Polymers, unlike Addition polymers are bio-degradable. The peptide or ester bonds between monomers can be hydrolysed by acid catalysts or bacterial enzymes breaking the polymer chain into smaller pieces.
Becky Kriger

Polypeptides - 0 views

  • Polypeptides are chains of amino acids. Proteins are made up of one or more polypeptide molecules.
  • One end of every polypeptide, called the amino terminal or N-terminal, has a free amino group. The other end, with its free carboxyl group, is called the carboxyl terminal or C-terminal.
  • he sequence of amino acids in a polypeptide is dictated by the codons in the messenger RNA (mRNA) molecules from which the polypeptide was translated. The sequence of codons in the mRNA was, in turn, dictated by the sequence of codons in the DNA from which the mRNA was transcribed. The schematic below shows the N-terminal at the upper left and the C-terminal at the lower right.
Becky Kriger

Polysaccharides - Chemistry Encyclopedia - 0 views

  • Polysaccharides are long polymers of monosaccharides and their derivatives. Unlike proteins or nucleic acids, these polymers can be either linear or branched, and they can contain only one type of monosaccharide (homopolysaccharides), or more than one (heteropolysaccharides)
  • Starch is a homopolysaccharide and has two forms: amylopectin and α-amylose. In nature, starch is approximately 10 to 30 percent α-amylose.
  • Starch is the main energy reserve in plants; glycogen is the main energy reserve in animals
  • ...10 more annotations...
  • In contrast to amylopectin, which comprises 70 to 90 percent of natural starch, α-amylose is a branching polysaccharide.
  • Branches occur at every twelve to thirty residues along a chain of α (1→4) linked glucoses. As a result, amylopectin has one reducing end and many nonreducing ends.
  • Amylopectin and α-amylose are broken down by the enzyme amylase. In animals, salivary α-amylase begins the digestion process in the mouth. Pancreatic α-amylase continues the process in the intestine.
  • Glycogen is the energy storage carbohydrate in animals. Glycogen is found mainly in the liver (where it is responsible for up to 10 percent of liver mass) and skeletal muscle (1 to 2 percent of skeletal muscle mass)
  • However, glycogen branches more abundantly than amylopectin, with branches at every eight to twelve residues. As a result, it has many more nonreducing ends. Glycogen is broken down at these nonreducing ends by the enzyme glycogen phosphorylase to release glucose for energy.
  • The primary structural homopolysaccharides are cellulose and chitin. Cellulose, a major component of plant cell walls, is the most abundant natural polymer on Earth.
  • Like α-amylose, cellulose is a linear polysaccharide composed entirely of glucose. However, in cellulose the glucose residues occur in β(1→4) linkage rather than α (1→4) (see Figure 1).
  • In addition, individual cellulose strands can form hydrogen bonds with one another to provide additional strength. Most animals, including humans, lack the enzymes necessary to dissolve α(1→4) linkages and so cannot digest cellulose
  • The animals that can (such as ruminants) do so via a symbiosis with bacteria that secrete cellulose-degrading enzymes.
  • The second most abundant polymer on Earth is chitin. Chitin comprises much of the exoskeletons of crustaceans, insects, and spiders, as well as the cell walls of fungi. Structurally, chitin is very similar to cellulose, except that its basic monosaccharide is N-acetylglucosamine
Becky Kriger

Polypeptides and Proteins - 0 views

  • A peptide (def) is two or more amino acids joined together by peptide bonds, and a polypeptide (def) is a chain of many amino acids. A protein contains one or more polypeptides. Therefore, proteins (def) are long chains of amino acids held together by peptide bonds.
  • The secondary structure (def) of the protein is due to hydrogen bonds that form between the oxygen atom of one amino acid and the nitrogen atom of another. This gives the protein or polypeptide the two-dimensional form of an alpha-helix or a beta-pleated sheet (see Fig. 4).
  • Amino acids (def) are the building blocks for proteins. All amino acids contain an amino or NH2 group and a carboxyl (acid) or COOH group. There are 20 different amino acids commonly found in proteins
  • ...5 more annotations...
  • To form polypeptides and proteins, amino acids are joined together by peptide bonds (def), in which the amino or NH2 of one amino acid bonds to the carboxyl (acid) or COOH group of another amino acid as shown in (see Fig. 2). Animation showing the formation of a peptide bond.
  • The actual order of the amino acids in the protein is called its primary structure (def) (see Fig. 3) and is determined by DNA.
  • it is commonly said that the order of deoxyribonucleotide bases (def) in a gene determines the amino acid sequence of a particular protein. Since certain amino acids can interact with other amino acids in the same protein, this primary structure ultimately determines the final shape and therefore the chemical and physical properties of the protein.
  • In globular proteins such as enzymes, the long chain of amino acids becomes folded into a three-dimensional functional shape or tertiary structure (def).
  • In some cases, such as with antibody molecules and hemoglobin, several polypeptides may bond together to form a quaternary structure (def) (see Fig 6).
1 - 20 Next › Last »
Showing 20 items per page