Skip to main content

Home/ Chem 109H Fall08/ Group items tagged unit cell

Rss Feed Group items tagged

Becky Kriger

Carbohydrates and Polysaccharides - 0 views

  • Disaccharide Monosaccharides sucrose from α-glucose + α-fructose maltose from α-glucose + α-glucose α-lactose * from α-glucose + β-galactose * Lactose also exists in a beta form, which is made from β-galactose and β-glucose
  • A condensation reaction takes place releasing water. This process requires energy. A glycosidic bond forms and holds the two monosaccharide units together.
  • Carbohydrates (also called saccharides) are molecular compounds made from just three elements: carbon, hydrogen and oxygen. Monosaccharides (e.g. glucose) and disaccharides (e.g. sucrose) are relatively small molecules.
  • ...28 more annotations...
  • a source of energy
  • building blocks for polysaccharides (giant carbohydrates
  • components of other molecules eg DNA, RNA, glycolipids, glycoproteins, ATP
  • Monosaccharides are the simplest carbohydrates and are often called single sugars.
  • Monosaccharides have the general molecular formula (CH2O)n, where n can be 3, 5 or 6.
  • n = 3 trioses, e.g. glyceraldehyde n = 5 pentoses, e.g. ribose and deoxyribose ('pent' indicates 5) n = 6 hexoses, e.g. fructose, glucose and galactose ('hex' indicates 6)
  • Molecules that have the same molecular formula but different structural formulae are called structural isomers.
  • Monosaccharides containing the aldehyde group are classified as aldoses, and those with a ketone group are classified as ketoses. Aldoses are reducing sugars; ketoses are non-reducing sugars.
  • in water pentoses and hexoses exist mainly in the cyclic form, and it is in this form that they combine to form larger saccharide molecules.
  • There are two forms of the cyclic glucose molecule: α-glucose and β-glucose.
  • Two glucose molecules react to form the dissacharide maltose. Starch and cellulose are polysaccharides made up of glucose units.
  • Galactose molecules look very similar to glucose molecules. They can also exist in α and β forms. Galactose reacts with glucose to make the dissacharide lactose.
  • However, glucose and galactose cannot be easily converted into one another. Galactose cannot play the same part in respiration as glucose.
  • Fructose reacts with glucose to make the dissacharide sucrose.
  • Ribose and deoxyribose are pentoses. The ribose unit forms part of a nucleotide of RNA. The deoxyribose unit forms part of the nucleotide of DNA.
  • Monosaccharides are rare in nature. Most sugars found in nature are disaccharides. These form when two monosaccharides react.
  • The three most important disaccharides are sucrose, lactose and maltose.
  • Disaccharides are soluble in water, but they are too big to pass through the cell membrane by diffusion.
  • This is a hydrolysis reaction and is the reverse of a condensation reaction. It releases energy.
  • Monosaccharides are converted into disaccharides in the cell by condensation reactions. Further condensation reactions result in the formation of polysaccharides. These are giant molecules which, importantly, are too big to escape from the cell. These are broken down by hydrolysis into monosaccharides when energy is needed by the cell.
  • Monosaccharides can undergo a series of condensation reactions, adding one unit after another to the chain until very large molecules (polysaccharides) are formed. This is called condensation polymerisation, and the building blocks are called monomers. The properties of a polysaccharide molecule depend on: its length (though they are usually very long) the extent of any branching (addition of units to the side of the chain rather than one of its ends) any folding which results in a more compact molecule whether the chain is 'straight' or 'coiled'
  • Starch is often produced in plants as a way of storing energy. It exists in two forms: amylose and amylopectin
  • Amylose is an unbranched polymer of α-glucose. The molecules coil into a helical structure. It forms a colloidal suspension in hot water. Amylopectin is a branched polymer of α-glucose. It is completely insoluble in water.
  • Glycogen is amylopectin with very short distances between the branching side-chains.
  • Inside the cell, glucose can be polymerised to make glycogen which acts as a carbohydrate energy store.
  • Cellulose is a third polymer made from glucose. But this time it's made from β-glucose molecules and the polymer molecules are 'straight'.
  • Cellulose serves a very different purpose in nature to starch and glycogen. It makes up the cell walls in plant cells. These are much tougher than cell membranes. This toughness is due to the arrangement of glucose units in the polymer chain and the hydrogen-bonding between neighbouring chains.
  • Cellulose is not hydrolysed easily and, therefore, cannot be digested so it is not a source of energy for humans.
Justin Shorb

Window on the Solid State - Unit Cell - 0 views

  • Note that the edges of these cells all connect lattice points in the structure, points with the same environments.
    • Justin Shorb
       
      Be sure that when you draw a unit cell, if you place the 'left' edge against the 'right' edge, they have the same lattice points touching!
  •  
    Helpful for Exam I #3
  •  
    Useful for understanding how Unit Cells work
Becky Kriger

Polysaccharides: Their Structure and Function - 0 views

  • Polysaccharides are the complex carbohydrates. They are made up of chains of monosaccharides (the sugars) which are linked together by glycosidic bonds, which are formed by the condensation reaction
  • Cellulose is a major component of plant cell walls. It is an unbranched polymer with about ten thousand glucose units per chain. Hydroxyl groups (-OH) project out from each chain, forming hydrogen bonds with neighbouring chains which creates a rigid cross-linking between the chains, making cellulose the strong support material that it is.
  • Chitin is closely related in structure to cellulose, also being an unbranched polysaccharide. However, instead of the hydroxyl groups (-OH), the chains have the following structure –NH.CO.CH3 replacing it. Large amounts of chitin is found in the cuticles of arthropods, with smaller amounts being found in sponges, molluscs and annelids.
  • ...6 more annotations...
  • Polysaccharides make ideal storage molecules for energy for a number of reasons; a) they are large, this makes them insoluble in water and therefore they exert no osmotic or chemical effect on the cell; b) they fold into compact shapes; c) they are easily converted into the required sugars when needed.
  • Glycogen is a branched polysaccharide found in nearly all animal cells and in certain protozoa and algae.
  • In humans and other vertebrates it is principally stored in the liver and muscles and is the main form of stored carbohydrate in the body, acting as a reservoir of glucose
  • Starch is similar to glycogen, however it is found in plant cells, protists and certain bacteria.
  • The starch granules are made up of two polysaccharides, amylose and amylopectin. Amylose is an unbranched molecule made up of several thousand glucose units, coiled helically into a more compact shape. Amylopectin is also compact but has a branched structure and is made up of twice as many glucose units as amylose.
  • For example, peptidoglycans, which are a combination of protein and polysaccharide and are found in the cell wall of certain bacteria. Glycolipids, a combination of polysaccharides and lipids are found in the cell membrane.
Justin Shorb

Chemistry: The Molecular Science - Google Book Search - 0 views

  • Chemistry : the molecular science
  • 8.8 Formal Charge
  •  
    Helps to answer Exam I #4
  •  
    Page in Moore et al. text about Unit cells.
Becky Kriger

Biopolymers and Bioplastics - 0 views

  • Biopolymers are polymers which are present in, or created by, living organisms. These include polymers from renewable resources that can be polymerized to create bioplastics. Bioplastics are plastics manufactured using biopolymers, and are biodegradable.
  • There are two main types of biopolymers: those that come from living organisms; and, those which need to be polymerized but come from renewable resources. Both types are used in the production of bioplastics
  • Biopolymer Natural Source What is it? Cellulose Wood, cotton, corn, wheat, and others This polymer is made up of glucose. It is the main component of plant cell walls. Soy protein Soybeans Protein which naturally occurs in the soy plant. Starch Corn, potatoes, wheat, tapioca, and others This polymer is one way carbohydrates are stored in plant tissue. It is a polymer made up of glucose. It is not found in animal tissues. Polyesters Bacteria These polyesters are created through naturally occurring chemical reactions that are carried out by certain types of bacteria.
  • ...9 more annotations...
  • Biopolymer Natural Source What is it? Lactic Acid Beets, corn, potatoes, and others Produced through fermentation of sugar feedstocks, such as beets, and by converting starch in corn, potatoes, or other starch sources. It is polymerized to produce polylactic acid -- a polymer that is used to produce plastic. Triglycerides Vegetable oils These form a large part of the storage lipids found in plant and animal cells. Vegetable oils are one possible source of triglycerides that can be polymerized into plastics.
  • Using Fermentation to Produce Plastics Fermentation, used for hundreds of years by humans, is even more powerful when coupled with new biotechnology techniques.
  • Today, fermentation can be carried out with genetically engineered microorganisms, specially designed for the conditions under which fermentation takes place,
  • Fermentation, in fact, is the process by which bacteria can be used to create polyesters. Bacteria called Ralstonia eutropha are used to do this. The bacteria use the sugar of harvested plants, such as corn, to fuel their cellular processes. The by-product of these cellular processes is the polymer.
  • Lactic acid is fermented from sugar, much like the process used to directly manufacture polymers by bacteria. However, in this fermentation process, the final product of fermentation is lactic acid, rather than a polymer. After the lactic acid is produced, it is converted to polylactic acid using traditional polymerization processes.
  • Plants are becoming factories for the production of plastics. Researchers created a Arabidopis thaliana plant through genetic engineering. The plant contains the enzymes used by bacteria to create plastics. Bacteria create the plastic through the conversion of sunlight into energy. The researchers have transferred the gene that codes for this enzyme into the plant, as a result the plant produces plastic through its cellular processes. The plant is harvested and the plastic is extracted from it using a solvent. The liquid resulting from this process is distilled to separate the solvent from the plastic.
  • Currently, fossil fuel is still used as an energy source during the production process. This has raised questions by some regarding how much fossil fuel is actually saved by manufacturing bioplastics. Only a few processes have emerged that actually use less energy in the production process.
  • Energy use is not the only concern when it comes to biopolymers and bioplastics. There are also concerns about how to balance the need to grow plants for food, and the need to grow plants for use as raw materials. Agricultural space needs to be shared. Researchers are looking into creating a plant that can be used for food, but also as feedstock for plastic production.
  • Biopolymers and bioplastics are the main components in creating a sustainable plastics industry. These products reduce the dependence on non-renewable fossil fuels, and are easily biodegradable. Together, this greatly limits the environmental impacts of plastic use and manufacture. Also, characteristics such as being biodegradable make plastics more acceptable for long term use by society. It is likely that in the long term, these products will mean plastics will remain affordable, even as fossil fuel reserves diminish.
1 - 5 of 5
Showing 20 items per page