Skip to main content

Home/ Bobcat Research Institute 2025/ Group items tagged environmental

Rss Feed Group items tagged

Sean Nash

Airplane Noise Exposure May Increase Risk of Chronic Disease | SPH - 0 views

  • people who were exposed to higher levels of noise from aircraft were more likely to have a higher body mass index, an indicator for obesity that can lead to stroke or hypertension. The findings highlight how the environment—and environmental injustices—can shape health outcomes
  • self-reported body mass index (BMI)
  • The study is the first to explore a connection between aircraft noise exposure and obesity nationwide in the United States; past studies on this subject have focused on European populations, and results have varied
    • Sean Nash
       
      It would be interesting to see how these studied varied. I would bet that there are other, stronger factors overlying this effect, and it would be challenging to tease out this signal from other socioeconomic factors, but I very much like this concept.
  • ...8 more annotations...
  • “Prior research has shown that aircraft noise can elevate stress responses and disturb sleep, but there has been mixed evidence of any links with body mass index,” says study lead and corresponding author Matthew Bozigar, assistant professor of epidemiology at OSU and a former postdoctoral associate at SPH. “We were surprised to see a fairly robust link between aircraft noise and higher body mass index among women across the US.”
  • These new findings underscore the role of the environment on one’s risk of chronic disease.
  • Junenette Peters, associate professor of environmental health, and colleagues examined airplane noise exposure and self-reported BMI and other individual characteristics among nearly 75,000 participants living around 90 of the major US airports
  • The team examined aircraft noise levels every five years from 1995 to 2010, using a day-night estimate (DNL) that captures the average noise level over a 24-hour period and applies a 10 dB adjustment for aircraft noise occurring at night, when background noise is low.
    • Sean Nash
       
      I'm sure there are low-powered data loggers that measure dB that we could plant in various places (varying distances from airports (or other things... even just distances from population centers in general). This would allow us to not only work with and search for correlations between data points already collected, but also to generate more specific data on our own. The human data might not necessarily have to be collected by us. The challenge might be just to find databases that have already been collected for various reasons. Much science is done in this way, where instead of generating a ton of data to analyze, the researcher used previously collected data to ask new and interesting questions of.
  • Although the team acknowledges that BMI is a suboptimal metric, the independent and strong association between more aircraft noise exposure and higher BMI that they observed is notable.
  • “We can only hypothesize about why we saw these regional variations, but one reason may relate to the era of regional development, building characteristics, and climate which may affect factors such as housing age, design, and level of insulation,” says Peters. “Regional differences in temperature and humidity may influence behaviors such as window opening, so perhaps study participants living in the West were more exposed to aircraft noise due to open windows or housing type, which allowed more noise to penetrate.”
    • Sean Nash
       
      The really interesting work here would be teasing interesting patterns out of really complex data sets. For example, people living near airports typically live in housing that is less expensive due to the lesser desirability of living in that area. That tends to correlate with lower socio-economic status found near airports. However, this is interesting because the major flightpaths to the KCI airport do not exactly line up in this way. For example, three of the school districts in Missouri that line up with KCI runways (Park Hill Schools - where we live, Platte County Schools, Kearney Schools, Smithville Schools, and the northern part of North Kansas City Schools) are all of a higher than average socioeconomic status than outlying areas closer to the city. This is unusual in major metropolitan areas.
  • Previous data suggest that Black, Hispanic, and low-income populations are disproportionately exposed to aircraft noise. The participants in the NHS study groups were primarily White and of mid-level socioeconomic status. 
    • Sean Nash
       
      Again, this is a bit different than around most airports. The area immediately surrounding KCI is rather white and mid-to-upper SES.
  • “We need to study the potential health impacts of environmental injustices in transportation noise exposures alongside other environmental drivers of poor health outcomes” Bozigar says. “There is a lot more to figure out, but this study adds evidence to a growing body of literature that noise negatively impacts health.”
    • Sean Nash
       
      What other environmental factors can be studied either by direct measurement, or by querying previously-collected data to ask/answer questions about environmental health?
Kylie John

The Impossible Goal of a Disease-Free World - 1 views

  • The environmental impacts of such actions were potentially devastating in retrospect. And ultimately, they had little influence on the long-term prevalence of plague.
  •  
    "The environmental impacts of such actions were potentially devastating in retrospect. And ultimately, they had little influence on the long-term prevalence of plague. "
katherine-medina

Frontiers | Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and S... - 1 views

  • The impending danger of climate change and pollution can now be seen on the world panorama. The concentration of CO2, the most important Green House Gas (GHG), has reached to formidable levels.
    • Sean Nash
       
      OK: Is it an important field of study? Check. Is it timely? Check. Is it feasible? Let's see...
  • (iii) microalgae cultivation
    • Sean Nash
       
      You can instantly tell that there would be a strong math component to this work. You would need to show how your finding scale up to total carbon sequestered via whatever method? Biofuel production perhaps?
  • Furthermore, microalgae can be fed with notorious waste gasses such as CO2 and NOx, SOx from flue gas, inorganic and organic carbon, N, P and other pollutants from agricultural, industrial and sewage wastewater sources so as to provide us with opportunities to transform them into bioenergy, valuable products and forms that cause least harm to the environment
    • Sean Nash
       
      OK, so... you could likely create a biofuel from algae produced via the insertion of CO2 into a bioreactor system (perhaps even test the one you have vs. a creation fo your own to maximize growth with a more powerful set of lights and extensive tubing). Right off the top of my head, I know we can easily access commercial CO2 canisters that are used in aquarium setups to boost plant growth. Fluval makes such canisters. You would have to find out the volume/mass of CO2 contained in one. You'd have to be less concerned with toxins of you are able to choose a different algae for this capture vs. the rather toxic species you worked with last year.
  • ...30 more annotations...
  • The uncomplicated cellular structures and rapid growth of microalgae endow them with CO2 fixation efficiency as higher as 10–50 folds than terrestrial plants
  • Recently, many research studies have come up showing the positive impact of growing microalgae under high concentrations of Ci in the form of pure gaseous CO2, real or simulated flue gas, or soluble carbonate (bicarbonate), reporting increased carbon bio-fixation and biomass productivity
    • Sean Nash
       
      How does the carbon concentration of such things as flue gas (from industry) compare to the levels in a commercially-available CO2 canister? I'm assuming those are lower, but that's OK. You would just need to be able to do the math to compare the ratios. Also, there is nothing that says you couldn't perhaps use multiple canisters to boost the CO2 levels assuming they could survive in whatever concentration you're feeding them with. It does acidify water.
  • Despite such remarkable potential, the production of microalgae for low-value bulk products, such as proteins for food/feed applications, fatty acids for nutraceuticals or bulk products such as biofuels, is heretofore, not economically feasible
    • Sean Nash
       
      So... this asserts that biofuel production (which would already be better than using human food crops such as corn) is not economically feasible. Let's find out WHY it isn't. What do the numbers look like? What is missing? Is there a way to engineer a process that boosts economic feasibility through some innovation?
  • The microalgal biomass majorly constituted of lipids (7–23%), proteins (6–71%) and carbohydrates (5–64%), depending upon the microalgal specie and culture conditions
    • Sean Nash
       
      Start searching for data on the differences of these compounds in algal cultures of various species. Finding the right species in terms of the components produced (though perhaps your process will boost these numbers in some way- verified by testing at a local lab). I would query perplexity to find papers that outline what components are produced by what species.... then you can compare that to the ease of culture of different species.
  • Biofuels from microalgae, production system, conversion technologies, life cycle analyses have been extensively reviewed, hence detailed description is not presented in this review.
    • Sean Nash
       
      This clearly suggests that a TON of work has been done in these areas. The negative? -> Harder to find original work, the positive -> here is a TON of search terms to build up your background knowledge on primary research in these areas. The real creativity in science often stems from finding a unique wrinkle that is embedded in extensive work.
  • the lipid content of common microalgae such as Chlorella, Dunaliella, Isochrysis, Nannochloris, Nannochloropsis, Neochloris, Phaeodactylum, Porphyridium, and Schizochytrium, varies between 20 and 50% of cell dry weight
    • Sean Nash
       
      So, fat production is what is important in biodiesel. That is why a former student of mine utilized kitchen fry oil (used) for the production of biodiesel back in the 90s. Look up the lipid content of each of these species and check that against their toxicity and ease of growing/working with/etc.
  • can be augmented to higher levels by manipulating environmental and other growth factors, process optimization and genetic modifications of the production strain. Nitrogen starvation and salinity stress are known to induce an increase in TAG (triacylglycerol) accumulation and relative content of oleic acid in most of the microalgal species
    • Sean Nash
       
      So, this suggests already some ways in which the lipid content can be augmented via the manipulation of several variables in growth factors. There might ba an angle here.
  • C14:0, C16:0, C18:1, C18:2, and C18:3 fatty acids, yet the relative composition varies from species to species
    • Sean Nash
       
      I'm confident that we can find a local lab that can help us test the length of chain that indicates exactly which fatty acids are being produced and perhaps how that ratio changes based upon some variable in your process.
  • The lipids can be converted into FAMEs (fatty acid methyl esters) via transesterification for biodiesel production.
    • Sean Nash
       
      This is key.... can we convert algal lipids into FAMEs in the lab at school with the help of Harkleroad & Tabor? Find out what all chemical processes are involved. My initial gut feeling i that it isn't an terribly prohibitive process considering how simple biodiesel was to produce in the school lab previously.
  • Furthermore, the residual de-oiled microalgal biomass can be used for animal feed.
    • Sean Nash
       
      Also, a very cool side element to consider. This might help you decide upon an algal species considering the concentration of toxins in various species, etc.
  • The resistance of cell wall to enzyme hydrolysis is one of the prime bottleneck in the Anaerobic digestion (AD) process. The overall economic feasibility of the process depends on the factors affecting AD, microalgal strain, biomass pretreatment, and culture methods (Jankowska et al., 2017). Lately, to make the system economically viable and environmentally sustainable, a closed-loop production scheme is being adopted wherein AD effluents are recycled and used as an input in the first step of AD. Jankowska et al. (2017) have presented a detailed review microalgae’s cultivation, harvesting and pretreatment for AD for biogas production.
    • Sean Nash
       
      This is a fascinating element, and one I know less about. This might be significantly more sophisticated, but that in no way should scare you. Perhaps it isn't that difficult and it would be super fun and challenging to engineer a way to do (or improve) this. (?) However, my initial gut feeling is that working with biogas production would be more difficult than liquid forms.
  • Bioethanol The carbohydrate part (mainly glucose, starch, cellulose, and hemicellulose) of the microalgal dry biomass can be used for transforming into bioethanol via fermentation. Although, microalgae accumulate relatively low quantities of sugars, the absence of lignin from microalgal structure makes them advantageous over other feedstock such as corn, sugarcane, and lignocellulosic biomass (Odjadjare et al., 2015; Jambo et al., 2016). Isochrysis galbana, Porphyridium cruentum, Spirogyra sp., Nannochloropsis oculate, Chlorella sp., are mainly exploited microalgae for the production of carbohydrates
    • Sean Nash
       
      OK, now I'm starting to see where they're going with this specific paper.... they are asserting that you'd have to find a way to separate out all of the components of the produced algal mass to gain value for each component to make it economically feasible. Do you perhaps end up finding that one particular species has both a high lipid profile (for biodiesel) as well as a reasonable carbohydrate profile (for bioethanol)?
    • Sean Nash
       
      I know less about this... is more of a fermentation process and might be a bit more dangerous that biodiesel production. Not sure, just a gut feeling when keeping in mind the safety forms. Something to bookmark.
  • Despite having notable significance, limited number of studies have reported laboratory stage work on the fermentation of microalgae biomass to butanol (Cheng et al., 2015; Gao et al., 2016; Wang et al., 2016).
    • Sean Nash
       
      A huge flag that this is an area ripe for innovation. I don't know much about the feasibility of this.... but it's interesting for sure.
  • Value-Added Products In the context of biorefinery approach, intracellular compounds and metabolites have gained immense importance owing to their high monetary value. Microalgal pigments: chlorophyll a and b, lutein, astaxanthin, β-carotene, phycobilins, C- phycocyanin have found wide application in dyes, cosmetics, food and feed additives, nutraceuticals and pharmaceuticals, as natural colors, bioactive components, anti-oxidants, nutritive and neuro-protective agents (Koller et al., 2014; Begum et al., 2016). Microalgae are also exploited as rich source of amino acids (leucine, asparagine, glutamine, cysteine, arginine, aspartate, alanine, glycine, lysine, and valine), Carbohydrates (β1–3- glucan, amylose, starch, cellulose, and alginates), Vitamins and minerals (vitamin B1, B2, B6, B12, C, and E; biotin, folic acid, magnesium, calcium, phosphate, iodine) that are widely used in Food additives, health supplements and medicine. Microalgae, such as Nannochloropsis, Tetraselmis, and Isochrysis are used for extraction of long chain fatty acids popularly known as the omega fatty acids such as DHA (Docosahexaenoic Acid) and EPA (Eicosapentaenoic Acid), have lately gained prime attention as essential for human brain development and health. Other than these, microalgae are also used for production of Extracellular Polymeric Substances (EPSs) which have many industrial applications and Polyhydroxyalkanoates (PHAs). PHAs can be used for manufacturing bioplastics that are very sought after because of their biodegradability (Markou and Nerantzis, 2013; Koller et al., 2014).
    • Sean Nash
       
      This area is more novel.... and thus, I know the least about the feasibility of this, or our ability to measure the production of such compounds. I know the capability exists in the KC area, but you'd have to establish a relationship with someone who could help with this instrumental analysis.
  • Although many have reported successful utilization of microalgal biomass for the production of bioproducts within a biorefinery framework, the economic feasibility is unrealized and the microalgae biorefinery is way much expensive (’t Lam et al., 2017; Zhou et al., 2017). To attain feasibility and sustainability, both upstream processing (USP) and downstream processing (DSP) need to be efficiently simplified and integrated. The efficiency of the USP is determined by microalgal strain selection, nutrient supply (CO2, N, and P) and culture conditions (temperature, light intensity) (Vanthoor-Koopmans et al., 2013). Whereas, the constraints at the DSP level are mainly characterized by harvesting, cell disruption, and extraction methods. DSP, specifically harvesting accounts for 20–40% of the total production costs and for a multi-product biorefinery, the cost increases to 50–60% (’t Lam et al., 2017).
    • Sean Nash
       
      Managing what is done to the algae PRE growth and POST growth. So many variables here. This is a TON of figure out, but with more variables comes more opportunity if you're willing to learn a broad new area of science (to you).
  • Bioprospecting suitable microalgae is a crucial but time intensive step
  • high throughput screening techniques like 96-well microplate swivel system (M96SS) have made processing upto 768 microalgal samples at the same time, possible
    • Sean Nash
       
      This suggests to me that rather than go down this path of full discovery... can we learn from the extensive work that has already been done here? In other words, your innovation would be less about discovering the right species to use... and more about innovating around the process. (?)
  • mixed diverse community of microalgae, dominated by Desmodesmus spp., could be adapted over a time of many months to survive in 100% flue gas from an unfiltered coal-fired power plant containing 11% CO2
  • Besides stress manipulation and acclimatization, desirable traits of the microalgal strains can be effectively improved by genetic and metabolic engineering/synthetic biology. Lately, genome editing tools such as Clustered Regularly Interspaced Short Palindromic Repeats – CRISPR associated protein 9 (CRISPR-Cas9) and Transcription Activator-Like (TAL) Effector Nucleases (TALEN) are being used in microalgal gene alterations. Moreover, gene-interfering tools, such as CRISPR-dCas9, micro RNA (miRNA), and silence RNA (siRNA) are being explored to alter the gene expression unlike gene modification.
    • Sean Nash
       
      The least "immediately feasible" area of this paper.....
  • Large scale microalgal cultivation and nutrient supply pose huge economic burden. In this context emphasis is being laid on biofilm based attached cultivation rather than aqua-suspend methods that have massive water requirement, low biomass productivity, energy intensive and cannot be easily scaled up
    • Sean Nash
       
      So... the scale is the problem. Methods of growing suspended in water are all I have been thinking of.... even engineering some crazy method of networks of fine, clear tubes full of algae, etc... here they're saying this is a massive challenge and requires a big industrial output to make it economically feasible. The good and the bad? The bad is that you could do a ton fo work that in the end isn't economically feasible for real world use. The good is that optimizing some stage or element of the process could potentially change this calculaton.
  • Centrifugation is the most efficient (>95% efficiency) method for harvesting microalgae
    • Sean Nash
       
      We have a centrifuge. (about a $4000 one, in fact) but it is useful only for small amounts. That doesn't solve the "how do we centrifuge large amounts of algae/water mix to harvest it," but it does allow a scaled-down version for testing small amounts that could be mathematically scaled up.
  • Flocculation is a low-cost alternative. Cationic chemical flocculants and polymeric flocculants are generally used (Brennan and Owende, 2010), but can negatively affect the toxicity of the biomass and output water (Ryan, 2009). Zhou et al. (2012) reported a novel fungi assisted bioflocculation technique, in which a filamentous fungal spores were added to the algal culture under optimized conditions and the pellets were formed after 2 days that can be harvested by simple filtration. Attached culture can also make harvesting simple (Wang et al., 2017).
    • Sean Nash
       
      This whole topic you have stumbled upon (bioengineering of algae as ultimately a way to sequester carbon in an economically-feasible way) is massive in terms of complexity of the entire system. But, subsystems are less complex and more ripe for digging into. The key thing is that this has to be interesting enough to you.... that you are willing to understand ALL of the moving parts so that you would know how your component of the puzzle fits into the broader scope of the work. It is super interesting to me and I do think there are a million variables to choose form here.... once you decide IF this is worth pouring your heart into... it is time to read read read!
  • Microalgae based carbon capture technologies are certainly promising but their successful implementation is still to be realized.
  • But, the prospects of successful commercial deployment lie in unsophisticated innovations in DSP, particularly harvesting, cell disruption and extraction, which can actually cut down the costs at a biorefinery level, along with process integration.
    • Sean Nash
       
      THIS is the sort of thing that should be encouraging. When they say that success lies in "unsophisticated innovations," that should read like: this takes tons of hard work and perseverance, but technically it isn't all that fancy.... to you. This is a good thing.
  • on can
  • . Recent technoeconomic analyses and life-cycle assessments of microalgae-based production systems have suggested that the only possible way for scaling up the production is to completely use the biomass in an integrated biorefinery set-up wherein every valuable component is extracted, processed and valorized.
  • The temperature of the planet has risen by 0.85°C from 1880 to 2012 and it has been forecasted that by the end of this century
  • CCS operate over 3 major steps: CO2 capture, CO2 transportation and CO2 storage.
  • CO2 capture is done from large point sources such as power plants and cement manufacturing plants. The separation and capture of CO2 from other exhaust components is usually done via following methods: (i) chemical absorption; (ii) physical adsorption; (iii) membrane separation; and (iv) cryogenic distillation (Figueroa et al., 2008; Pires et al., 2011, 2012).
  • carbon capture and storage (CCS)
  •  
    I haven't fully finished reading it, but it does seem to be interesting. It may be a rabbit hole I wanna go down.
  •  
    Annotating thoughts for Katherine...
Sean Nash

Bee body mass, pathogens and local climate influence heat tolerance - 1 views

  • "But few studies have examined biotic impacts, such as pathogen infection, on thermal tolerance in natural populations in combination with abiotic factors," she explained.
  • examined bee physical traits—such as sex differences in body mass—to understand how these traits interact with environmental conditions, pathogens and other factors
  • They found that variation in heat tolerance was influenced by size, sex and infection status of the bees. "Small-bodied, ectothermic—or cold-blooded—insects are considered to be highly vulnerable to changing climate because their ability to maintain proper body temperature depends on external conditions,"
  • ...3 more annotations...
  • researchers hypothesized that the bees' heat tolerance would increase with body size; that male heat tolerance would increase with ambient temperatures above ground whereas female heat tolerance would increase with sandier soils; and that parasite infection would reduce heat tolerance
  • To test these hypotheses, the researchers collected squash bees from 14 sites across Pennsylvania that varied in mean temperature, precipitation and soil texture. They measured individuals' critical thermal maximum—the temperature above which an organism cannot function—as a proxy for heat tolerance
  • Although both sexes showed a positive correlation between heat tolerance and size, male squash bees had a greater change in their critical thermal maximum per unit body mass than females, suggesting that there may be another biological trait influencing the impact of body mass on heat tolerance that differs between the sexes
  •  
    There is a strong feasibility element to this sort of work. Being invertebrates, there would be no problem collecting large numbers of bees from the environment for testing. Now... how that is typically done in other research studies... is something to dig into. The challenge here would be the observation/measurement of parasites (like the trypanosomes mentioned here). It might be worth digging into microdissection methods and techniques that others have reported on when working with pollinators and other small insects. It might not be impossible, even in our lab, but it would definitely be a (good) challenge and perhaps something we could find an expert to help us with.
Sean Nash

Could the world famous Roman Baths help scientists counter the challenge of antibiotic ... - 0 views

  • Proteobacteria and Firmicutes
    • Sean Nash
       
      If we were able to sample various springs/baths in the midwest could we even culture strains like this, and then what would it take to identify them? You could compare that perhaps to total colony counts on Petri dishes.
  • a detailed examination of the bacterial and archaeal communities found within the waters of the popular tourist attraction in the city of Bath
    • Sean Nash
       
      The Elms is a famous springwater bath locale here in Excelsior Springs, Missouri less than an hour away. Eureka Springs, Arkansas is another area nearby off the top of my head. This also has me asking general questions about other bathing scenarios that would not likely feature ancient microbes, like hot tubs, swimming pools, etc. I wonder about ALL of the variables that go into the conditions of these baths and how that might correlate to total numbers of bacteria as well as differing types. There isn't a TON of microbiology that we can do in the high school lab without help, but I do know that we are generally permitted to work with environmentally-found bacteria (like the little lab we did in the Addie unit).
  • Scientists collected samples of water, sediment and biofilm from locations within the Roman Baths complex including the King's Spring (where the waters reach around 45°C) and the Great Bath, where the temperatures are closer to 30°C.
    • Sean Nash
       
      This means they collected from the water column itself, but also biofilms (which would be found along the edges of containments walls, etc... in addition to sediment found at the bottom of natural spring sources.
  • ...1 more annotation...
  • The samples were then analysed using cutting edge sequencing technology and traditional culturing techniques were employed to isolate bacteria with antibiotic activity.
    • Sean Nash
       
      This obviously would require a significant bit of outside help. However, I'm still not sure we couldn't do more basic work that would be meaningful.
emmarrogers

Wooden surfaces may have natural antiviral properties | ScienceDaily - 1 views

  • yet to be explored
  •  
    Super interesting, and relatively simple topic. If this was looking at bacteria normally found environmentally in the kitchen, we could easily get approved. We could even culture those. The thing that makes this difficult to do at school is the fact that this is all about viruses. Detecting these in our lab would be super difficult. I'm also not sure if we could even get a culture of virally-infected cells to perform controlled studied. This one is a "maybe."
Sean Nash

Are plants intelligent? It depends on the definition | ScienceDaily - 1 views

  • When leaf beetle larvae eat goldenrod leaves, the plant emits a chemical that informs the insect that the plant is damaged and is a poor source of food. These airborne chemicals, called volatile organic compounds (VOCs), are also picked up by neighboring goldenrod plants, prompting them to produce their own defenses against the beetle larvae. In this way, goldenrod move herbivores on to neighbors, and distribute damage.
    • Sean Nash
       
      Are these VOCs (volatile organic compounds) detectable by us? If not detectable, they can we identify them... and then produce or purchase those chemicals to test their effects on plant responses?
  • start producing defensive compounds that help the plants fight off insect pests.
    • Sean Nash
       
      It seems to me that I remember hydrogen peroxide being one of these signaling chemicals (at least from one part of a plant to another).
  • When no neighbors are present, the plants don't resort to accelerated growth when eaten and the chemical responses to herbivores are markedly different, though they still tolerate quite high amounts of herbivory.
  • ...5 more annotations...
  • Neighboring goldenrod also exhibit intelligence when they perceive VOCs that signal the presence of a pest. "The volatile emission coming from a neighbor is predictive of future herbivory," Kessler said. "They can use an environmental cue to predict a future situation, and then act on that."
  • Applying the concept of intelligence to plants can inspire fresh hypotheses about the mechanisms and functions of plant chemical communication, while also shifting people's thinking about what intelligence really means, Kessler said.
  • "What that means is, the brain in the plant is the entire plant without the need of central coordination," Kessler said.
  • "They can smell out their environment very precisely; every single cell can do it, as far as we know,"
  • André Kessler, Michael B. Mueller. Induced resistance to herbivory and the intelligent plant. Plant Signaling & Behavior, 2024; 19 (1) DOI: 10.1080/15592324.2024.2345985
  •  
    "When goldenrod is eaten by herbivores, it adapts its response based on whether or not another plant is nearby."
Sean Nash

What the Heck Is Seaweed Mining? | Hakai Magazine - 5 views

  • “It’s pure chemistry,” Umanzor says. “Positive with negative, and then it just collects.”
    • Sean Nash
       
      For those interested in chamistry topics, this looks really interesting.
emmarrogers

Bumblebees use Lego blocks to build science and recognise the value of teamwork | Unive... - 1 views

  •  
    Interesting. The video clips are especially valuable for understanding their methods. So, these tests have been done... but what other sorts of learning tests might be possible? Are there any that might even show value in this species beyond just "what is possible for the bee nervous system to accomplish?"
Sean Nash

Model Organisms - HSR 2025 - Google Docs - 2 views

  •  
    This is a crowd-sourced document I created for a session with high school research teachers in Washington D.C. in 2022. SAVE this document and use it to explore some of the more commonly-used model organisms for all sorts of biological research. There is a TON to explore here!
Caleb Jasper

A Surprise find: Soybean waste can be fish feed - 0 views

  • fish feed. The wastewater from soybean
  • processing can be converted into a nourishing, protein-rich food for farmed Asian sea bass, a team of scientists has discovered.
  • They worked with a local food processing company to rescue hundreds of liters of soybean wastewater, which they discovered was rich in two types of protein-accumulating microbes in particular, known as Acidipropionibacterium and Propioniciclava.
  • ...3 more annotations...
  • The sea bass that were fed the alternative microbe protein diet did have significantly lower weight to begin with, but that evened out as they grew. And, notably, the group that received the traditional feed diet had greater variability in their weight gain as they grew—whereas those fed the alternative microbe protein diet showed a more even accumulation of weight over the experiment’s course.
  • Meanwhile, the wastewater from other soybean uses goes unused—but according to the recent results, could feasibly tackle both of these sustainability challenges at once. Furthermore it’s not just soybean waste water, the researchers say: several agricultural processes create wastewater side streams that are rich in the combination of carbon, nitrogen, and phosphorus that’s needed to sustain a growing population of hungry, protein-accumulating bacteria.
  • Microbial community‐based protein from soybean‐processing wastewater as a sustainable alternative fish feed ingredient.
  •  
    Possible more efficient fish feed to reduce waste and benefit the environment as well as the economy.
Kylie John

Dice snakes fake their own death, smearing themselves with blood and poop to make the p... - 1 views

  • Only one juvenile snake bled from the mouth
    • Kylie John
       
      How do they do that??
Kylie John

Dams trigger exponential population declines of migratory fish | Science Advances - 0 views

  • When the GD, the first dam across the mainstream of the Yangtze River, was built in the 1970s, the Chinese government explicitly demanded that the dam consider the conservation of fish.
  • Dams can harm migratory fish by disrupting their life cycles and then causing population extinctions.
    • Kylie John
       
      Is it possible to give the fish a different area to migrate to and from?
  • We divide the species population into spawning stock (spawners), which are sexually mature adults participating in the current year’s breeding, and recruitment stock, which includes larvae, juveniles, and subadults that have not reached the reproductive age and sexually immature adults/post-spawners that do not participate in the current year’s breeding.
  • ...2 more annotations...
  • The sixth misjudgment concerns the assertion that fishways are unnecessary in dams. The 1982 GD-FRP suggested that fishways were not needed for the Chinese sturgeon (14). The TGD, built in 1993, followed this idea and did not include fishways.
  • This study has certain limitations, such as the need for larger sample sizes of fish to improve the accuracy of the precision of fish life cycle models.
Kylie John

Source reservoir controls on the size, frequency, and composition of large-scale volcan... - 0 views

  • Fig. 1. Source reservoir processes that may supply a large volcanic eruption.
    • Kylie John
       
      How did they figure out what caused the volcanos to erupt? Can you see how a specific volcano erupted based off of that?
  • Development of buoyancy overpressure at the top of a magma layer
  • Rayleigh-Taylor instabilities develop naturally whenever buoyant magma layers form.
Sean Nash

Add to the many afterlives of coffee grounds: Toxic cleanup - 0 views

  • The experts selected onion plants to test out this idea, known for their high sensitivity to toxins in the environment. In beakers of water containing bentazone, they grew onion root tissue, called meristems, measuring its cell division and root growth as a sign of health. 
    • Sean Nash
       
      One of the things I want VERY badly for our program... is a set of equipment for histology... where we can take things like onion root tips and lock samples in wax, slice them incredibly thin (microslices), and then be able to mount them onto slides for analysis.
emmarrogers

(PDF) Assessing the effect of different light conditions on crayfish welfare using a da... - 1 views

  • (weak light: 38 lux; bright light: 761 lux) with 3 different light spectrums (cold white (CCT ≈ 5500K), warm white (CCT ≈ 2600 K) and neutral (CCT ≈ 3800 K)) over a period of six months
Sean Nash

Rocks beneath our feet could be key to carbon-neutral cement - 0 views

  •  
    This sort of thing isn't exactly my specialty, but I HAVE had a student do an award-winning project that dealt with engineered concrete...
1 - 20 of 55 Next › Last »
Showing 20 items per page