Skip to main content

Home/ Advanced Concepts Team/ Group items tagged pure

Rss Feed Group items tagged

santecarloni

[1111.3328] The quantum state cannot be interpreted statistically - 1 views

  •  
    Quantum states are the key mathematical objects in quantum theory. It is therefore surprising that physicists have been unable to agree on what a quantum state represents. There are at least two opposing schools of thought, each almost as old as quantum theory itself. One is that a pure state is a physical property of system, much like position and momentum in classical mechanics. Another is that even a pure state has only a statistical significance, akin to a probability distribution in statistical mechanics. Here we show that, given only very mild assumptions, the statistical interpretation of the quantum state is inconsistent with the predictions of quantum theory....
Guido de Croon

Will robots be smarter than humans by 2029? - 2 views

  •  
    Nice discussion about the singularity. Made me think of drinking coffee with Luis... It raises some issues such as the necessity of embodiment, etc.
  • ...9 more comments...
  •  
    "Kurzweilians"... LOL. Still not sold on embodiment, btw.
  •  
    The biggest problem with embodiment is that, since the passive walkers (with which it all started), it hasn't delivered anything really interesting...
  •  
    The problem with embodiment is that it's done wrong. Embodiment needs to be treated like big data. More sensors, more data, more processing. Just putting a computer in a robot with a camera and microphone is not embodiment.
  •  
    I like how he attacks Moore's Law. It always looks a bit naive to me if people start to (ab)use it to make their point. No strong opinion about embodiment.
  •  
    @Paul: How would embodiment be done RIGHT?
  •  
    Embodiment has some obvious advantages. For example, in the vision domain many hard problems become easy when you have a body with which you can take actions (like looking at an object you don't immediately recognize from a different angle) - a point already made by researchers such as Aloimonos.and Ballard in the end 80s / beginning 90s. However, embodiment goes further than gathering information and "mental" recognition. In this respect, the evolutionary robotics work by for example Beer is interesting, where an agent discriminates between diamonds and circles by avoiding one and catching the other, without there being a clear "moment" in which the recognition takes place. "Recognition" is a behavioral property there, for which embodiment is obviously important. With embodiment the effort for recognizing an object behaviorally can be divided between the brain and the body, resulting in less computation for the brain. Also the article "Behavioural Categorisation: Behaviour makes up for bad vision" is interesting in this respect. In the field of embodied cognitive science, some say that recognition is constituted by the activation of sensorimotor correlations. I wonder to which extent this is true, and if it is valid for extremely simple creatures to more advanced ones, but it is an interesting idea nonetheless. This being said, if "embodiment" implies having a physical body, then I would argue that it is not a necessary requirement for intelligence. "Situatedness", being able to take (virtual or real) "actions" that influence the "inputs", may be.
  •  
    @Paul While I completely agree about the "embodiment done wrong" (or at least "not exactly correct") part, what you say goes exactly against one of the major claims which are connected with the notion of embodiment (google for "representational bottleneck"). The fact is your brain does *not* have resources to deal with big data. The idea therefore is that it is the body what helps to deal with what to a computer scientist appears like "big data". Understanding how this happens is key. Whether it is the problem of scale or of actually understanding what happens should be quite conclusively shown by the outcomes of the Blue Brain project.
  •  
    Wouldn't one expect that to produce consciousness (even in a lower form) an approach resembling that of nature would be essential? All animals grow from a very simple initial state (just a few cells) and have only a very limited number of sensors AND processing units. This would allow for a fairly simple way to create simple neural networks and to start up stable neural excitation patterns. Over time as complexity of the body (sensors, processors, actuators) increases the system should be able to adapt in a continuous manner and increase its degree of self-awareness and consciousness. On the other hand, building a simulated brain that resembles (parts of) the human one in its final state seems to me like taking a person who is just dead and trying to restart the brain by means of electric shocks.
  •  
    Actually on a neuronal level all information gets processed. Not all of it makes it into "conscious" processing or attention. Whatever makes it into conscious processing is a highly reduced representation of the data you get. However that doesn't get lost. Basic, low processed data forms the basis of proprioception and reflexes. Every step you take is a macro command your brain issues to the intricate sensory-motor system that puts your legs in motion by actuating every muscle and correcting every step deviation from its desired trajectory using the complicated system of nerve endings and motor commands. Reflexes which were build over the years, as those massive amounts of data slowly get integrated into the nervous system and the the incipient parts of the brain. But without all those sensors scattered throughout the body, all the little inputs in massive amounts that slowly get filtered through, you would not be able to experience your body, and experience the world. Every concept that you conjure up from your mind is a sort of loose association of your sensorimotor input. How can a robot understand the concept of a strawberry if all it can perceive of it is its shape and color and maybe the sound that it makes as it gets squished? How can you understand the "abstract" notion of strawberry without the incredibly sensible tactile feel, without the act of ripping off the stem, without the motor action of taking it to our mouths, without its texture and taste? When we as humans summon the strawberry thought, all of these concepts and ideas converge (distributed throughout the neurons in our minds) to form this abstract concept formed out of all of these many many correlations. A robot with no touch, no taste, no delicate articulate motions, no "serious" way to interact with and perceive its environment, no massive flow of information from which to chose and and reduce, will never attain human level intelligence. That's point 1. Point 2 is that mere pattern recogn
  •  
    All information *that gets processed* gets processed but now we arrived at a tautology. The whole problem is ultimately nobody knows what gets processed (not to mention how). In fact an absolute statement "all information" gets processed is very easy to dismiss because the characteristics of our sensors are such that a lot of information is filtered out already at the input level (e.g. eyes). I'm not saying it's not a valid and even interesting assumption, but it's still just an assumption and the next step is to explore scientifically where it leads you. And until you show its superiority experimentally it's as good as all other alternative assumptions you can make. I only wanted to point out is that "more processing" is not exactly compatible with some of the fundamental assumptions of the embodiment. I recommend Wilson, 2002 as a crash course.
  •  
    These deal with different things in human intelligence. One is the depth of the intelligence (how much of the bigger picture can you see, how abstract can you form concept and ideas), another is the breadth of the intelligence (how well can you actually generalize, how encompassing those concepts are and what is the level of detail in which you perceive all the information you have) and another is the relevance of the information (this is where the embodiment comes in. What you do is to a purpose, tied into the environment and ultimately linked to survival). As far as I see it, these form the pillars of human intelligence, and of the intelligence of biological beings. They are quite contradictory to each other mainly due to physical constraints (such as for example energy usage, and training time). "More processing" is not exactly compatible with some aspects of embodiment, but it is important for human level intelligence. Embodiment is necessary for establishing an environmental context of actions, a constraint space if you will, failure of human minds (i.e. schizophrenia) is ultimately a failure of perceived embodiment. What we do know is that we perform a lot of compression and a lot of integration on a lot of data in an environmental coupling. Imo, take any of these parts out, and you cannot attain human+ intelligence. Vary the quantities and you'll obtain different manifestations of intelligence, from cockroach to cat to google to random quake bot. Increase them all beyond human levels and you're on your way towards the singularity.
santecarloni

[1101.6015] Radio beam vorticity and orbital angular momentum - 1 views

  • It has been known for a century that electromagnetic fields can transport not only energy and linear momentum but also angular momentum. However, it was not until twenty years ago, with the discovery in laser optics of experimental techniques for the generation, detection and manipulation of photons in well-defined, pure orbital angular momentum (OAM) states, that twisted light and its pertinent optical vorticity and phase singularities began to come into widespread use in science and technology. We have now shown experimentally how OAM and vorticity can be readily imparted onto radio beams. Our results extend those of earlier experiments on angular momentum and vorticity in radio in that we used a single antenna and reflector to directly generate twisted radio beams and verified that their topological properties agree with theoretical predictions. This opens the possibility to work with photon OAM at frequencies low enough to allow the use of antennas and digital signal processing, thus enabling software controlled experimentation also with first-order quantities, and not only second (and higher) order quantities as in optics-type experiments. Since the OAM state space is infinite, our findings provide new tools for achieving high efficiency in radio communications and radar technology.
  •  
    It has been known for a century that electromagnetic fields can transport not only energy and linear momentum but also angular momentum. However, it was not until twenty years ago, with the discovery in laser optics of experimental techniques for the generation, detection and manipulation of photons in well-defined, pure orbital angular momentum (OAM) states, that twisted light and its pertinent optical vorticity and phase singularities began to come into widespread use in science and technology. We have now shown experimentally how OAM and vorticity can be readily imparted onto radio beams. Our results extend those of earlier experiments on angular momentum and vorticity in radio in that we used a single antenna and reflector to directly generate twisted radio beams and verified that their topological properties agree with theoretical predictions. This opens the possibility to work with photon OAM at frequencies low enough to allow the use of antennas and digital signal processing, thus enabling software controlled experimentation also with first-order quantities, and not only second (and higher) order quantities as in optics-type experiments. Since the OAM state space is infinite, our findings provide new tools for achieving high efficiency in radio communications and radar technology.
  •  
    and how can we use this?
santecarloni

Pristine relics of the Big Bang spotted - physicsworld.com - 1 views

  •  
    For the first time, astronomers have discovered two distant clouds of gas that seem to be pure relics from the Big Bang.
  •  
    and one of them is in "leo" .... "This gas is of primordial composition, as it was produced during the first few minutes after the Big Bang." One gas cloud resides in the constellation Leo"
jmlloren

Why starting from differential equations for computational physics? - 1 views

  •  
    "The computational methods currently used in physics are based on the discretization of differential equations. This is because the computer can only perform algebraic operations. The purpose of this paper is to critically review this practice, showing how to obtain a purely algebraic formulation of physical laws starting directly from experimental measurements."
Thijs Versloot

New Quantum Theory to explain flow of time - 2 views

  •  
    Basically quantum entanglement, or more accurately the dispersal and expansion of mixed quantum states, results in an apparent flow of time. Quantum information leaks out and the result is the move from a pure state (hot coffee) to a mixed state (cooled down) in which equilibrium is reached. Theoretically it is possible to get back to a pure state (coffee spontaneously heating up) but this statistical unlikelihood gives the appereance of irreversibility and hence a flow o time. I think an interesting question is then: how much useful work can you extract from this system? (http://arxiv.org/abs/1302.2811) It should for macroscopic thermodynamic systems lead to the Carnot cycle, but on smaller scales it might be possible to formulate a more general expression. Anybody interested to look into it? Anna, Jo? :)
  •  
    What you propose is called Maxwell's demon: http://en.wikipedia.org/wiki/Maxwell%27s_demon Unfortunately (or maybe fortunately) thermodynamics is VERY robust. I guess if you really only want to harness AND USE the energy in a microscopic system you might have some chance of beating Carnot. But any way of transferring harvested energy to a macroscopic system seems to be limited by it (AFAIK).
jcunha

Where Life Meets Light: Bio-Inspired Photonics - 0 views

  •  
    Octopus and optoelectronics camouflage, light bugs and LEDs, or spider webs and touch screens, ... a whole cool bunch of biomimetic stuff
  •  
    See also the referred work "Light-extraction enhancement for light-emitting diodes: a firefly-inspired structure refined by the genetic algorithm" - quite cool! https://pure.fundp.ac.be/portal/files/11946897/paper89.pdf
jmlloren

Exotic matter : Insight : Nature - 5 views

shared by jmlloren on 03 Aug 10 - Cached
LeopoldS liked it
  •  
    Trends in materials and condensed matter. Check out the topological insulators. amazing field.
  • ...12 more comments...
  •  
    Aparently very interesting, will it survive the short hype? Relevant work describing mirror charges of topological insulators and the classical boundary conditions were done by Ismo and Ari. But the two communities don't know each other and so they are never cited. Also a way to produce new things...
  •  
    Thanks for noticing! Indeed, I had no idea that Ari (don't know Ismo) was involved in the field. Was it before Kane's proposal or more recently? What I mostly like is that semiconductors are good candidates for 3D TI, however I got lost in the quantum field jargon. Yesterday, I got a headache trying to follow the Majorana fermions, the merons, skyrnions, axions, and so on. Luzi, are all these things familiar to you?
  •  
    Ismo Lindell described in the early 90's the mirror charge of what is now called topological insulator. He says that similar results were obtained already at the beginning of the 20th century... Ismo Lindell and Ari Sihvola in the recent years discussed engineering aspects of PEMCs (perfect electro-megnetic conductors,) which are more or less classical analogues of topological insulators. Fundamental aspects of PEMCs are well knwon in high-energy physics for a long time, recent works are mainly due to Friedrich Hehl and Yuri Obukhov. All these works are purely classical, so there is no charge quantisation, no considerations of electron spin etc. About Majorana fermions: yes, I spent several years of research on that topic. Axions: a topological state, of course, trivial :-) Also merons and skyrnions are topological states, but I'm less familiar with them.
  •  
    "Non-Abelian systems1, 2 contain composite particles that are neither fermions nor bosons and have a quantum statistics that is far richer than that offered by the fermion-boson dichotomy. The presence of such quasiparticles manifests itself in two remarkable ways. First, it leads to a degeneracy of the ground state that is not based on simple symmetry considerations and is robust against perturbations and interactions with the environment. Second, an interchange of two quasiparticles does not merely multiply the wavefunction by a sign, as is the case for fermions and bosons. Rather, it takes the system from one ground state to another. If a series of interchanges is made, the final state of the system will depend on the order in which these interchanges are being carried out, in sharp contrast to what happens when similar operations are performed on identical fermions or bosons." wow, this paper by Stern reads really weired ... any of you ever looked into this?
  •  
    C'mon Leopold, it's as trivial as the topological states, AKA axions! Regarding the question, not me!
  •  
    just looked up the wikipedia entry on axions .... at least they have some creativity in names giving: "In supersymmetric theories the axion has both a scalar and a fermionic superpartner. The fermionic superpartner of the axion is called the axino, the scalar superpartner is called the saxion. In some models, the saxion is the dilaton. They are all bundled up in a chiral superfield. The axino has been predicted to be the lightest supersymmetric particle in such a model.[24] In part due to this property, it is considered a candidate for the composition of dark matter.[25]"
  •  
    Thank's Leopold. Sorry Luzi for being ironic concerning the triviality of the axions. Now, Leo confirmed me that indeed is a trivial matter. I have problems with models where EVERYTHING is involved.
  •  
    Well, that's the theory of everything, isn't it?? Seriously: I don't think that theoretically there is a lot of new stuff here. Topological aspects of (non-Abelian) theories became extremely popular in the context of string theory. The reason is very simple: topological theories are much simpler than "normal" and since string theory anyway is far too complicated to be solved, people just consider purely topological theories, then claiming that this has something to do with the real world, which of course is plainly wrong. So what I think is new about these topological insulators are the claims that one can actually fabricate a material which more or less accurately mimics a topological theory and that these materials are of practical use. Still, they are a little bit the poor man's version of the topological theories fundamental physicists like to look at since electrdynamics is an Abelian theory.
  •  
    I have the feeling, not the knowledge, that you are right. However, I think that the implications of this light quantum field effects are great. The fact of being able to sustain two currents polarized in spin is a technological breakthrough.
  •  
    not sure how much I can contribute to your apparently educated debate here but if I remember well from my work for the master, these non-Abelian theories were all but "simple" as Luzi puts it ... and from a different perspective: to me the whole thing of being able to describe such non-Abelian systems nicely indicates that they should in one way or another also have some appearance in Nature (would be very surprised if not) - though this is of course no argument that makes string theory any better or closer to what Luzi called reality ....
  •  
    Well, electrodynamics remains an Abelian theory. From the theoretical point of view this is less interesting than non-Abelian ones, since in 4D the fibre bundle of a U(1) theory is trivial (great buzz words, eh!) But in topological insulators the point of view is slightly different since one always has the insulator (topological theory), its surrounding (propagating theory) and most importantly the interface between the two. This is a new situation that people from field and string theory were not really interested in.
  •  
    guys... how would you explain this to your gran mothers?
  •  
    *you* tried *your* best .... ??
Dario Izzo

Cybraphon | Autonomous Emotional Robot Band - 0 views

shared by Dario Izzo on 03 Aug 09 - Cached
  •  
    Autonomous Emotional Robot Band. Pure Scottish genius
Thijs Versloot

Meet the electric life forms that live on pure energy - 3 views

  •  
    Unlike any other living thing on Earth, electric bacteria use energy in its purest form - naked electricity in the shape of electrons harvested from rocks and metals. We already knew about two types, Shewanella and Geobacter. Now, biologists are showing that they can entice many more out of rocks and marine mud by tempting them with a bit of electrical juice. Experiments growing bacteria on battery electrodes demonstrate that these novel, mind-boggling forms of life are essentially eating and excreting electricity.
Dario Izzo

Righting a wrong: Retaliation on a voodoo doll symbolizing an abusive supervisor restor... - 3 views

  •  
    And this is pure genius. We should encourage the practice in the ACT. IgNobel 2018 on Economy. Essentially, if your supervisor is not of you liking, building and using a vodoo doll of him is highly suggested to restore the Universe Karma.
Dario Izzo

Bold title ..... - 3 views

  •  
    I got a fever. And the only prescription is more cat faces! ...../\_/\ ...(=^_^) ..\\(___) The article sounds quite interesting, though. I think the idea of a "fake" agent that tries to trick the classifier while both co-evolve is nice as it allows the classifier to first cope with the lower order complexity of the problem. As the fake agent mimics the real agent better and better the classifier has time to add complexity to itself instead of trying to do it all at once. It would be interesting if this is later reflected in the neural nets structure, i.e. having core regions that deal with lower order approximation / classification and peripheral regions (added at a later stage) that deal with nuances as they become apparent. Also this approach will develop not just a classifier for agent behavior but at the same time a model of the same. The later may be useful in itself and might in same cases be the actual goal of the "researcher". I suspect, however, that the problem of producing / evolving the "fake agent" model might in most case be at least as hard as producing a working classifier...
  •  
    This paper from 2014 seems discribe something pretty similar (except for not using physical robots, etc...): https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
  •  
    Yes, this IS basically adversarial learning. Except the generator part instead of being a neural net is some kind of swarm parametrization. I just love how they rebranded it, though. :))
jcunha

Quantizer - 1 views

  •  
    A sonification experiment taking data from ATLAS and translating it into music. The outcome was played at Montreux jazz fest, listen to the results in soundcloud https://soundcloud.com/sonification-quantizer. The way it works is "A tiny subset of collision data from the ATLAS Detector (in CERN, Switzerland) is being generated and streamed in real-time into a sonification engine built atop Python, Pure Data, Ableton, and IceCast." Code's in github https://github.com/cherston/Quantizer_public
fichbio

[1610.08323] Evidence for vacuum birefringence from the first optical polarimetry measu... - 3 views

shared by fichbio on 02 Dec 16 - No Cached
  •  
    Abstract: The "Magnificent Seven" (M7) are a group of radio-quiet Isolated Neutron Stars (INSs) discovered in the soft X-rays through their purely thermal surface emission. Owing to the large inferred magnetic fields ($B\approx 10^{13}$ G), radiation from these sources is expected to be substantially polarised, independently on the mechanism actually responsible for the thermal emission.
Alexander Wittig

Proof of the Riemann Hypothesis utilizing the theory of Alternative Facts - 0 views

  •  
    An excellent science coffee topic! This is a true breakthrough in pure mathematics with plentiful applications in the lesser sciences (such as theoretical physics). People tell me quantum gravity is already practically solved by this. Conway's powerful theory of Alternative Facts can render many difficult problems tractable. Here we demonstrate the power of AF to prove the Riemann Hypothesis, one of the most important unsolved problems in mathematics. We further suggest applications of AF to other challenging unsolved problems such as the zero-equals-one conjecture (which is also true) and the side-counting problem of the circle.
Athanasia Nikolaou

Water in the supercritical region of the P-T phase diagram (ISS experiment) - 1 views

  •  
    Bringing water to that supercritical phase (high pressurization and temperature) renders it into an oxidation agent of organic material with pure CO_2 and H2O as products. Less waste volume in the ISS. Also, all contained salts precipitate out at that phase.
Thijs Versloot

Black metals - 3 views

  •  
    Using random nanostructuring highly absorptive materials were made which are of interest for photovoltaic or thermovoltaic applications
  • ...1 more comment...
  •  
    Yes, Black Metal is very good - pure hate! \m/
  •  
    Yes! Black Metal... definitely something the ACT should look into
  •  
    Black Metal...sounds like something for the ACT Magic Cards. But apart from that - is it possible to shift the PV type of absorption into gamma ray spectrum?
tvinko

Massively collaborative mathematics : Article : Nature - 28 views

  •  
    peer-to-peer theorem-proving
  • ...14 more comments...
  •  
    Or: mathematicians catch up with open-source software developers :)
  •  
    "Similar open-source techniques could be applied in fields such as [...] computer science, where the raw materials are informational and can be freely shared online." ... or we could reach the point, unthinkable only few years ago, of being able to exchange text messages in almost real time! OMG, think of the possibilities! Seriously, does the author even browse the internet?
  •  
    I do not agree with you F., you are citing out of context! Sharing messages does not make a collaboration, nor does a forum, .... You need a set of rules and a common objective. This is clearly observable in "some team", where these rules are lacking, making team work inexistent. The additional difficulties here are that it involves people that are almost strangers to each other, and the immateriality of the project. The support they are using (web, wiki) is only secondary. What they achieved is remarkable, disregarding the subject!
  •  
    I think we will just have to agree to disagree then :) Open source developers have been organizing themselves with emails since the early '90s, and most projects (e.g., the Linux kernel) still do not use anything else today. The Linux kernel mailing list gets around 400 messages per day, and they are managing just fine to scale as the number of contributors increases. I agree that what they achieved is remarkable, but it is more for "what" they achieved than "how". What they did does not remotely qualify as "massively" collaborative: again, many open source projects are managed collaboratively by thousands of people, and many of them are in the multi-million lines of code range. My personal opinion of why in the scientific world these open models are having so many difficulties is that the scientific community today is (globally, of course there are many exceptions) a closed, mostly conservative circle of people who are scared of changes. There is also the fact that the barrier of entry in a scientific community is very high, but I think that this should merely scale down the number of people involved and not change the community "qualitatively". I do not think that many research activities are so much more difficult than, e.g., writing an O(1) scheduler for an Operating System or writing a new balancing tree algorithm for efficiently storing files on a filesystem. Then there is the whole issue of scientific publishing, which, in its current form, is nothing more than a racket. No wonder traditional journals are scared to death by these open-science movements.
  •  
    here we go ... nice controversy! but maybe too many things mixed up together - open science journals vs traditional journals, conservatism of science community wrt programmers (to me one of the reasons for this might be the average age of both groups, which is probably more than 10 years apart ...) and then using emailing wrt other collaboration tools .... .... will have to look at the paper now more carefully ... (I am surprised to see no comment from José or Marek here :-)
  •  
    My point about your initial comment is that it is simplistic to infer that emails imply collaborative work. You actually use the word "organize", what does it mean indeed. In the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review). Mailing is just a coordination mean. In collaborations and team work, it is about rules, not only about the technology you use to potentially collaborate. Otherwise, all projects would be successful, and we would noy learn management at school! They did not write they managed the colloboration exclusively because of wikipedia and emails (or other 2.0 technology)! You are missing the part that makes it successful and remarkable as a project. On his blog the guy put a list of 12 rules for this project. None are related to emails, wikipedia, forums ... because that would be lame and your comment would make sense. Following your argumentation, the tools would be sufficient for collaboration. In the ACT, we have plenty of tools, but no team work. QED
  •  
    the question on the ACT team work is one that is coming back continuously and it always so far has boiled down to the question of how much there need and should be a team project to which everybody inthe team contributes in his / her way or how much we should leave smaller, flexible teams within the team form and progress, more following a bottom-up initiative than imposing one from top-down. At this very moment, there are at least 4 to 5 teams with their own tools and mechanisms which are active and operating within the team. - but hey, if there is a real will for one larger project of the team to which all or most members want to contribute, lets go for it .... but in my view, it should be on a convince rather than oblige basis ...
  •  
    It is, though, indicative that some of the team member do not see all the collaboration and team work happening around them. We always leave the small and agile sub-teams to form and organize themselves spontaneously, but clearly this method leaves out some people (be it for their own personal attitude or be it for pure chance) For those cases which we could think to provide the possibility to participate in an alternative, more structured, team work where we actually manage the hierachy, meritocracy and perform the project review (to use Joris words).
  •  
    I am, and was, involved in "collaboration" but I can say from experience that we are mostly a sum of individuals. In the end, it is always one or two individuals doing the job, and other waiting. Sometimes even, some people don't do what they are supposed to do, so nothing happens ... this could not be defined as team work. Don't get me wrong, this is the dynamic of the team and I am OK with it ... in the end it is less work for me :) team = 3 members or more. I am personally not looking for a 15 member team work, and it is not what I meant. Anyway, this is not exactly the subject of the paper.
  •  
    My opinion about this is that a research team, like the ACT, is a group of _people_ and not only brains. What I mean is that people have feelings, hate, anger, envy, sympathy, love, etc about the others. Unfortunately(?), this could lead to situations, where, in theory, a group of brains could work together, but not the same group of people. As far as I am concerned, this happened many times during my ACT period. And this is happening now with me in Delft, where I have the chance to be in an even more international group than the ACT. I do efficient collaborations with those people who are "close" to me not only in scientific interest, but also in some private sense. And I have people around me who have interesting topics and they might need my help and knowledge, but somehow, it just does not work. Simply lack of sympathy. You know what I mean, don't you? About the article: there is nothing new, indeed. However, why it worked: only brains and not the people worked together on a very specific problem. Plus maybe they were motivated by the idea of e-collaboration. No revolution.
  •  
    Joris, maybe I made myself not clear enough, but my point was only tangentially related to the tools. Indeed, it is the original article mention of "development of new online tools" which prompted my reply about emails. Let me try to say it more clearly: my point is that what they accomplished is nothing new methodologically (i.e., online collaboration of a loosely knit group of people), it is something that has been done countless times before. Do you think that now that it is mathematicians who are doing it makes it somehow special or different? Personally, I don't. You should come over to some mailing lists of mathematical open-source software (e.g., SAGE, Pari, ...), there's plenty of online collaborative research going on there :) I also disagree that, as you say, "in the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review)". First of all I think the main engine of any collaboration like this is the objective, i.e., wanting to get something done. Rules emerge from self-organization later on, and they may be completely different from project to project, ranging from almost anarchy to BDFL (benevolent dictator for life) style. Given this kind of variety that can be observed in open-source projects today, I am very skeptical that any kind of management rule can be said to be universal (and I am pretty sure that the overwhelming majority of project organizers never went to any "management school"). Then there is the social aspect that Tamas mentions above. From my personal experience, communities that put technical merit above everything else tend to remain very small and generally become irrelevant. The ability to work and collaborate with others is the main asset the a participant of a community can bring. I've seen many times on the Linux kernel mailing list contributions deemed "technically superior" being disregarded and not considered for inclusion in the kernel because it was clear that
  •  
    hey, just catched up the discussion. For me what is very new is mainly the framework where this collaborative (open) work is applied. I haven't seen this kind of working openly in any other field of academic research (except for the Boinc type project which are very different, because relying on non specialists for the work to be done). This raise several problems, and mainly the one of the credit, which has not really been solved as I read in the wiki (is an article is written, who writes it, what are the names on the paper). They chose to refer to the project, and not to the individual researchers, as a temporary solution... It is not so surprising for me that this type of work has been first done in the domain of mathematics. Perhaps I have an ideal view of this community but it seems that the result obtained is more important than who obtained it... In many areas of research this is not the case, and one reason is how the research is financed. To obtain money you need to have (scientific) credit, and to have credit you need to have papers with your name on it... so this model of research does not fit in my opinion with the way research is governed. Anyway we had a discussion on the Ariadnet on how to use it, and one idea was to do this kind of collaborative research; idea that was quickly abandoned...
  •  
    I don't really see much the problem with giving credit. It is not the first time a group of researchers collectively take credit for a result under a group umbrella, e.g., see Nicolas Bourbaki: http://en.wikipedia.org/wiki/Bourbaki Again, if the research process is completely transparent and publicly accessible there's no way to fake contributions or to give undue credit, and one could cite without problems a group paper in his/her CV, research grant application, etc.
  •  
    Well my point was more that it could be a problem with how the actual system works. Let say you want a grant or a position, then the jury will count the number of papers with you as a first author, and the other papers (at least in France)... and look at the impact factor of these journals. Then you would have to set up a rule for classifying the authors (endless and pointless discussions), and give an impact factor to the group...?
  •  
    it seems that i should visit you guys at estec... :-)
  •  
    urgently!! btw: we will have the ACT christmas dinner on the 9th in the evening ... are you coming?
Thijs Versloot

Sunlight to jet fuel - European collaboration SOLAR-JET produces first solar kerosene - 4 views

  •  
    With the first ever production of synthesized "solar" jet fuel, the EU-funded SOLAR-JET project has successfully demonstrated the entire production chain for renewable kerosene obtained directly from sunlight, water and carbon dioxide (CO2), therein potentially revolutionizing the future of aviation. This process has also the potential to produce any other type of fuel for transport applications, such as diesel, gasoline or pure hydrogen in a more sustainable way.
jcunha

Nature: Spawning rings of exceptional points out of Dirac cones - 3 views

  •  
    Dirac cones, a band-structure of two cones touching each other, are the key to understand graphene exceptional properties. They also appear in the theory of photon waveguides and atoms in optical lattices. In here, the study of a Dirac cone deformation in an open system (a system that is perturbed by external agents) lead to the deformation of the Dirac cone, meaning a change in the fundamental properties of the system. This change is such that strange phenomena such as unidirectional transmission or reflection or lasers with single mode (really single) operation can be achieved. Proved experimentally in photonic crystals. New way for extremely pure lasers?
1 - 20 of 29 Next ›
Showing 20 items per page