Skip to main content

Home/ Advanced Concepts Team/ Group items tagged Universe

Rss Feed Group items tagged

LeopoldS

Ministry of Science and Technology of the People's Republic of China - 0 views

  •  
    University Alliance for Low Carbon Energy   Three universities, including Tsinghua University, University of Cambridge, and the Massachusetts Institute of Technology, have fostered up an alliance on November 15, 2009 to advocate low carbon energy and climate change adaptation The alliance will mainly work on 6 major areas: clean coal technology and CCS, homebuilding energy efficiency, industrial energy efficiency and sustainable transport, biomass energy and other renewable energy, advanced nuclear energy, intelligent power grid, and energy policies/planning. A steering panel made up of the senior experts from the three universities (two from each) will be established to review, evaluate, and endorse the goals, projects, fund raising activities, and collaborations under the alliance. With the Headquarters at the campus of Tsinghua University and branch offices at other two universities, the alliance will be chaired by a scientist selected from Tsinghua University.   According to a briefing, the alliance will need a budget of USD 3-5 million, mainly from the donations of government, industry, and all walks of life. In this context, the R&D findings derived from the alliance will find its applications in improving people's life.
LeopoldS

NIAC 2014 Phase I Selections | NASA - 4 views

  •  
    12 new NIAC 1 studies - many topics familiar to us ... please have a look at those closest to your expertise to see if there is anything new/worth investigating (and in general to be knowledgeable on them since we will get questions sooner or later on them)
    Principal Investigator Proposal Title Organization City, State, Zip Code
    Atchison, Justin Swarm Flyby Gravimetry Johns Hopkins University Baltimore, MD 21218-2680
    Boland, Eugene Mars Ecopoiesis Test Bed Techshot, Inc. Greenville, IN 47124-9515
    Cash, Webster The Aragoscope: Ultra-High Resolution Optics at Low Cost University of Colorado Boulder, CO 80309-0389
    Chen, Bin 3D Photocatalytic Air Processor for Dramatic Reduction of Life Support Mass & Complexity NASA ARC Moffett Field, CA 94035-0000
    Hoyt, Robert WRANGLER: Capture and De-Spin of Asteroids and Space Debris Tethers Unlimited Bothel, WA 98011-8808
    Matthies, Larry Titan Aerial Daughtercraft NASA JPL Pasadena, CA 91109-8001
    Miller, Timothy Using the Hottest Particles in the Universe to Probe Icy Solar System Worlds John Hopkins University Laurel, MD 20723-6005
    Nosanov, Jeffrey PERISCOPE: PERIapsis Subsurface Cave OPtical Explorer NASA JPL Pasadena, CA 91109-8001
    Oleson, Steven Titan Submarine: Exploring the Depths of Kraken NASA GRC Cleveland, OH 44135-3127
    Ono, Masahiro Comet Hitchhiker: Harvesting Kinetic Energy from Small Bodies to Enable Fast and Low-Cost Deep Space Exploration NASA JPL Pasadena, CA 91109-8001
    Streetman, Brett Exploration Architecture with Quantum Inertial Gravimetry and In Situ ChipSat Sensors Draper Laboratory Cambridge, MA 02139-3539
    Wiegmann, Bruce Heliopause Electrostatic Rapid Transit System (HERTS) NASA MSFC Huntsville, AL 35812-0000
  •  
    Eh, the swarm flyby gravimetry is very similar to the "measuring gravitational fields" project I proposed in the brewery
santecarloni

Was a metamaterial lurking in the primordial universe? - physicsworld.com - 1 views

  •  
    A scientist in the US is arguing that the vacuum should behave as a metamaterial at high magnetic fields. Such magnetic fields were probably present in the early universe, and therefore he suggests that it may be possible to test the prediction by observing the cosmic microwave background (CMB) radiation - a relic of the early universe that can be observed today.
santecarloni

Artificial Braneworlds Made to Collide In Lab - Technology Review - 4 views

  •  
    Physicists have simulated two universes colliding inside a metamaterial--  Now, this is cool (if it is true...)
  • ...1 more comment...
  •  
    we... the article is a bit overblown in my view ... except maybe the last paragraphs: "The collision between universe's is a variation on this theme. "The "colliding universe" scenario can be realized as a simple extension of our earlier experiments simulating the spacetime geometry in the vicinity of big bang," he says. He simulates an expanding universe using concetric rings of gold separated by a dielectric. "When the two concentric ring ("universe") patterns touch each other ("collide"), a Minkowski domain wall is created, in which the metallic stripes touch each other at a small angle," he says. Being able to recreate these exotic events in the lab is certainly interesting but it is beginning to lose its novelty. The problem is that this work is not telling us anything we didn't know--the universe behaves the same way inside a metamaterial as it does outside. What Smolyaninov needs is a way of using his exotic materials to do something interesting. In other words, he needs a killer app. Any ideas? "
  •  
    Hm, they use more or less everything I don't especially like. They are nonmagnetic, so the relation materialGR is already rather weak. Usually, experimentalists prefer nonmagnetic media, since they are cheaper and broadband. At least the broadband is no argument here, since the frequency defines the "mass", which I find a rather strange point of view. And finally, they use strong anisotropy as a model of "time", which is rather problematic. Of course, the spatial direction with eps<0 appears in the wave equation with the same sign as time. But this does not mean that it behaves like time. But to teach material physicists that time is more than just a different sign in the wave equation seems to be as hopeless as to teach them that a black hole is more than something that absorbs all light... SIGHHH
  •  
    Luzi I miss you ...
santecarloni

Revealing the Universe: the Hubble Extreme Deep Field | Bad Astronomy | Discover Magazine - 1 views

  •  
    Astronomers using the Hubble Space Telescope have created the deepest multi-color* image of the Universe ever taken: the Hubble Extreme Deep Field, a mind-blowing glimpse into the vast stretches of our cosmos.
pacome delva

A New Way to Map the Universe - 0 views

  • A new technique might soon enable cosmologists to map the universe even when they can't pick out individual galaxies. If it works, researchers would be able to probe the structure of 500 times as much of the universe as they have studied so far.
  • With a purpose-built radio telescope, the approach could map as much as 50% of the observable universe far faster and cheaper than galaxy surveys can, Loeb says.
  •  
    impressive
Thijs Versloot

Properties of galaxies reproduced by hydrodynamic simulation (VIDEO) - 3 views

  •  
    Scientists at MIT have traced 13 billion years of galaxy evolution, from shortly after the Big Bang to the present day. Their simulation, named Illustris, captures both the massive scale of the Universe and the intriguing variety of galaxies - something previous modelers have struggled to do. It produces a Universe that looks remarkably similar to what we see through our telescopes, giving us greater confidence in our understanding of the Universe, from the laws of physics to our theories about galaxy formation. "Simulation is the future of innovation"
jaihobah

Supermassive black holes may be lurking everywhere in the universe | University of Cali... - 1 views

  •  
    "A near-record supermassive black hole discovered in a sparse area of the local universe indicate that these monster objects - this one equal to 17 billion suns - may be more common than once thought, according to UC Berkeley astronomers."
jcunha

Corporate culture spreads to Scandinavian universities - 1 views

  •  
    "University of Copenhagen fired seismologist Hans Thybo, president of the European Geosciences Union. The official explanation for Thybo's dismissal - his alleged use of private e-mail for work, and telling a postdoc that it is legitimate to openly criticize university management - seems petty in the extreme."
jaihobah

The Network Behind the Cosmic Web - 1 views

shared by jaihobah on 18 Apr 16 - No Cached
  •  
    "The concept of the cosmic web-viewing the universe as a set of discrete galaxies held together by gravity-is deeply ingrained in cosmology. Yet, little is known about architecture of this network or its characteristics. Our research used data from 24,000 galaxies to construct multiple models of the cosmic web, offering complex blueprints for how galaxies fit together. These three interactive visualizations help us imagine the cosmic web, show us differences between the models, and give us insight into the fundamental structure of the universe."
pandomilla

Top 400 - The Times Higher Education World University Rankings 2011-2012 - 3 views

  •  
    The Top 400 World University Rankings published by Times Higher Education. Official 2011-2012 results.
Tom Gheysens

Fur and feathers keep animals warm by scattering light - 1 views

  •  
    In work that has major implications for improving the performance of building insulation, scientists at the University of Namur in Belgium and the University of Hassan I in Morocco have calculated that hairs that reflect infrared light may contribute significant insulating power to the exceptionally warm winter coats of polar bears and other animals.
  •  
    That's quite interesting. Maybe the future of buildings and spacecraft is furry?
LeopoldS

Peter Higgs: I wouldn't be productive enough for today's academic system | Science | Th... - 1 views

  •  
    what an interesting personality ... very symathetic Peter Higgs, the British physicist who gave his name to the Higgs boson, believes no university would employ him in today's academic system because he would not be considered "productive" enough.

    The emeritus professor at Edinburgh University, who says he has never sent an email, browsed the internet or even made a mobile phone call, published fewer than 10 papers after his groundbreaking work, which identified the mechanism by which subatomic material acquires mass, was published in 1964.

    He doubts a similar breakthrough could be achieved in today's academic culture, because of the expectations on academics to collaborate and keep churning out papers. He said: "It's difficult to imagine how I would ever have enough peace and quiet in the present sort of climate to do what I did in 1964."

    Speaking to the Guardian en route to Stockholm to receive the 2013 Nobel prize for science, Higgs, 84, said he would almost certainly have been sacked had he not been nominated for the Nobel in 1980.

    Edinburgh University's authorities then took the view, he later learned, that he "might get a Nobel prize - and if he doesn't we can always get rid of him".

    Higgs said he became "an embarrassment to the department when they did research assessment exercises". A message would go around the department saying: "Please give a list of your recent publications." Higgs said: "I would send back a statement: 'None.' "

    By the time he retired in 1996, he was uncomfortable with the new academic culture. "After I retired it was quite a long time before I went back to my department. I thought I was well out of it. It wasn't my way of doing things any more. Today I wouldn't get an academic job. It's as simple as that. I don't think I would be regarded as productive enough."

    Higgs revealed that his career had also been jeopardised by his disagreements in the 1960s and 7
  •  
  •  
    interesting one - Luzi will like it :-)
Thijs Versloot

Time 'Emerges' from #Quantum Entanglement #arXiv - 1 views

  •  
    Time is an emergent phenomenon that is a side effect of quantum entanglement, say physicists. And they have the first exprimental results to prove it
  • ...5 more comments...
  •  
    I always feel like people make too big a deal out of entanglement. In my opinion it is just a combination of a conserved quantity and an initial lack of knowledge. Imagine that I had a machine that always creates one blue and one red ping-pong ball at the same time (|b > and |r > respectively). The machine now puts both balls into identical packages (so I cannot observe them) and one of the packages is sent to Tokio. I did not know which ball was sent to Tokio and which stayed with me - they are in a superposition (|br >+|rb >), meaning that either the blue ball is with me and the red one in Tokio or vice versa - they are entangled. So far no magic has happened. Now I call my friend in Tokio who got the ball: "What color was the ball you received in that package?" He replies: "The ball that I got was blue. Why did you send me ball in the first place?" Now, the fact that he told me makes the superpositon wavefunction collapse (yes, that is what the Copenhagen interpretation would tell us). As a result I know without opening my box that it contains a red ball. But this is really because there is an underlying conservation law and because now I know the other state. I don't see how just looking at the conserved quantity I am in a timeless state outside of the 'universe' - this is just one way of interpreting it. By the way, the wave function for my box with the undetermined ball does not collapse when the other ball is observed by my friend in Tokio. Only when he tells me does the wavefunction collapse - he did not even know that I had a complementary ball. On the other hand if he knew about the way the experiment was conducted then he would have known that I had to have a red ball - the wavefunction collapses as soon as he observed his ball. For him it is determined that my ball must be red. For me however the superposition is intact until he tells me. ;-)
  •  
    Sorry, Johannes, you just develop a simple hidden-parameters theory and it's experimentally proven that these don't work. Entangeled states are neither the blue nor the red ball they are really bluered (or redblue) till the point the measurement is done.
  •  
    Hm, to me this looks like a bad joke... The "emergent time" concept used is still the old proposal by Page and Whotters where time emerges from something fundamentally unobservable (the wave function of the Universe). That's as good as claiming that time emerges from God. If I understand correctly, the paper now deals with the situation where a finite system is taken as "Mini-Universe" and the experimentalist in the lab can play "God of the Mini-Universe". This works, of course, but it doesn't really tell us anything about emergent time, does it?
  •  
    Actually, it has not been proven conclusively that hidden variable theories don' work - although this is the opinion of most physicists these days. But a non-local hidden variable would still be allowed - I don't see why that could not be equivalent to a conserved quantity within the system. As far as the two balls go it is fine to say they are undetermined instead of saying they are in bluered or redblue state - for all intents and purposes it does not affect us (because if it would the wavefunction would have collapsed) so we can't say anything about it in the first place.
  •  
    Non-local hidden variables may work, but in my opinion they don't add anything to the picture. The (at least to non-physicists) contraintuitive fact that there cannot be a variable that determines ab initio the color of the ball going to Tokio will remain (in your example this may not even be true since the example is too simple...).
  •  
    I guess I tentatively agree with you on both points. In the end there might anyway be surprisingly little overlap between the way that we describe what nature does and HOW it does it... :-D
  •  
    Congratulations! 100% agree.
Juxi Leitner

Acasa - Media - 1 views

  •  
    Acasa was born out of Singularity University, a unique, world-changing institution founded in 2008 by Ray Kurzweil and Peter Diamandis. After nine weeks at NASA Ames, the home of Singularity University, four teams emerged with projects focused on one common goal-to positively affect the lives of one billion people over ten years. Our team has designed a business plan to leverage advances in rapid 3D additive manufacturing technologies in order to construct affordable, customizable housing for the developing world. This environmentally sustainable solution has the potential to create a powerful new paradigm for improving housing construction using local resources.
  •  
    cool video, i'd like to see that in reality... Though i'm not sure it would be less expansive than the very cheap workers you can get on site ! You need to build the robot, to bring it on-site, highly specialised enginneers to supervize the project, etc...
  •  
    yeah I am not sure about that either but the idea seems nice though
ESA ACT

List of universities in the world. Africa - 0 views

  •  
    Universities with separate url domains
ESA ACT

Data and links to all African Universities - 0 views

  •  
    General information of Africa countries. List of African Universities
ESA ACT

The Digital Footprint - 1 views

  •  
    How fast is your personal digital universe expanding?
johannessimon81

Bacteria grow electric wire in their natural environment - 1 views

  •  
    Bacterial wires explain enigmatic electric currents in the seabed: Each one of these 'cable bacteria' contains a bundle of insulated wires that conduct an electric current from one end to the other. Cable bacteria explain electric currents in the seabed Electricity and seawater are usually a bad mix.
  •  
    WOW!!!! don't want to even imagine what we do to these with the trailing fishing boats that sweep through sea beds with large masses .... "Our experiments showed that the electric connections in the seabed must be solid structures built by bacteria," says PhD student Christian Pfeffer, Aarhus University. He could interrupt the electric currents by pulling a thin wire horizontally through the seafloor. Just as when an excavator cuts our electric cables. In microscopes, scientists found a hitherto unknown type of long, multi-cellular bacteria that was always present when scientists measured the electric currents. "The incredible idea that these bacteria should be electric cables really fell into place when, inside the bacteria, we saw wire-like strings enclosed by a membrane," says Nils Risgaard-Petersen, Aarhus University. Kilometers of living cables The bacterium is one hundred times thinner than a hair and the whole bacterium functions as an electric cable with a number of insulated wires within it. Quite similar to the electric cables we know from our daily lives. "Such unique insulated biological wires seem simple but with incredible complexity at nanoscale," says PhD student Jie Song, Aarhus University, who used nanotools to map the electrical properties of the cable bacteria. In an undisturbed seabed more than tens of thousands kilometers cable bacteria live under a single square meter seabed. The ability to conduct an electric current gives cable bacteria such large benefits that it conquers much of the energy from decomposition processes in the seabed. Unlike all other known forms of life, cable bacteria maintain an efficient combustion down in the oxygen-free part of the seabed. It only requires that one end of the individual reaches the oxygen which the seawater provides to the top millimeters of the seabed. The combustion is a transfer of the electrons of the food to oxygen which the bacterial inner wires manage over centimeter-long distances. However, s
Aurelie Heritier

Rice University researchers create spray-on battery, powered bathroom tiles - 1 views

  •  
    Liquid solar cells are pretty neat, to be sure, but current-generating paint can be a hard color to match. Good thing, then, that researchers at Rice university have developed the perfect complement: a spray-on battery.
1 - 20 of 254 Next › Last »
Showing 20 items per page