Skip to main content

Home/ Advanced Concepts Team/ Group items tagged adaptive

Rss Feed Group items tagged

Tom Gheysens

Chernobyl's birds adapting to ionizing radiation -- ScienceDaily - 0 views

  •  
    birds in the exclusion zone around Chernobyl are adapting to -- and may even be benefiting from -- long-term exposure to radiation, ecologists have found. The study, published in the British Ecological Society's journal Functional Ecology, is the first evidence that wild animals adapt to ionizing radiation, and the first to show that birds which produce most pheomelanin, a pigment in feathers, have greatest problems coping with radiation exposure.
LeopoldS

Rapid adaptation to microgravity in mammalian macrophage cells - 72510785c9ca9518b647f9... - 1 views

  •  
    very nice paper on adaptation of cells to microgravity
  •  
    You need to avoid posting these types of links in the title as it is not managed well by plugins connected to our diigo account. Try to go to the source next time, and get rid of useless url codes.
jcunha

Accelerated search for materials with targeted properties by adaptive design - 0 views

  •  
    There has been much recent interest in accelerating materials discovery. High-throughput calculations and combinatorial experiments have been the approaches of choice to narrow the search space. The emphasis has largely been on feature or descriptor selection or the use of regression tools, such as least squares, to predict properties. The regression studies have been hampered by small data sets, large model or prediction uncertainties and extrapolation to a vast unexplored chemical space with little or no experimental feedback to validate the predictions. Thus, they are prone to be suboptimal. Here an adaptive design approach is used that provides a robust, guided basis for the selection of the next material for experimental measurements by using uncertainties and maximizing the 'expected improvement' from the best-so-far material in an iterative loop with feedback from experiments. It balances the goal of searching materials likely to have the best property (exploitation) with the need to explore parts of the search space with fewer sampling points and greater uncertainty.
Ma Ru

IEEE Xplore - An Adaptive Differential Evolution Algorithm With Novel Mutation and Cros... - 1 views

  •  
    For Dario, as they quote him heavily...
  •  
    Yep, I was told already a few months ago from Storn that this is indeed the best adaptive DE ever made. It is already in the road map for pagmo 1.2. According to pagmo it humiliates CMAES !!!
  •  
    And in case you didn't notice, the first author is an undergraduate student.
santecarloni

Tilting 'nanocups' double optical frequencies - physicsworld.com - 0 views

  •  
    A new type of structure for converting red light into blue has been unveiled by researchers in the US. Known as frequency doubling or second-harmonic generation (SHG), the conversion involves "nanocups", which are tiny, artificially designed 3D structures. SHG is used in light sources and in metrology applications - and the researchers believe that the new structures could be adapted to achieve frequency doubling in parts of the electromagnetic spectrum where it is currently not possible.
LeopoldS

Sex differences in the structural connectome of the human brain - 0 views

  •  
    it seems that there are indications that we are differently wired .... Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes.
  •  
    I like this abstract: sex, sex, sex, sex, SEX, SEX, SEX, SEX...!!! I wonder if the "sex differences" are related to gender-specific differences...
Joris _

Is It Time To Revamp Systems Engineering? | AVIATION WEEK - 1 views

  • They both believe the systems engineering processes that have served the aerospace and defense community since pre-Apollo days are no longer adequate for the large and complex systems ­industry is now developing.
  •  
    1) it has to actively work and produce a result that's what you intended 2) the design must be robust. 3) it should be efficient 4) it should minimize unintended consequences. "But we have to establish a formal, mathematically precise mechanism to measure complexity and adaptability . . . [where] adaptability means the system elements have sufficient margin, and can serve multiple purposes." "We need to break the paradigm of long cycles from design to product" some interesting questions....
  • ...1 more comment...
  •  
    indeed ... already hotly debated in CDF ... any suggestions in addition to what we already contributed to this (e.g. system level optimisation)
  •  
    what is the outcome of the CDF study ? I think actually that optimisation is not at all the key point. As it is stressed in this news, it is robustness (points 2 and 4). This is something we should think about ...
  •  
    SYSTEM OF SYSTEMS, SYSTEM OF SYSTEMS!!! :-D
Luís F. Simões

MoNETA: A Mind Made from Memristors (IEEE Spectrum) - 0 views

  •  
    (don't forget to turn your hype-filters on...) MoNETA (http://cns.bu.edu/nl/moneta.html) stands for "MOdular Neural Exploring Traveling Agent". It is one of projects participating in the DARPA-funded SyNAPSE project ("Systems of Neuromorphic Adaptive Plastic Scalable Electronics"): http://www.darpa.mil/dso/thrusts/bio/biologically/synapse/index.htm http://www.darpa.mil/dso/solicitations/baa08-28.html
LeopoldS

Ministry of Science and Technology of the People's Republic of China - 0 views

  •  
    University Alliance for Low Carbon Energy   Three universities, including Tsinghua University, University of Cambridge, and the Massachusetts Institute of Technology, have fostered up an alliance on November 15, 2009 to advocate low carbon energy and climate change adaptation The alliance will mainly work on 6 major areas: clean coal technology and CCS, homebuilding energy efficiency, industrial energy efficiency and sustainable transport, biomass energy and other renewable energy, advanced nuclear energy, intelligent power grid, and energy policies/planning. A steering panel made up of the senior experts from the three universities (two from each) will be established to review, evaluate, and endorse the goals, projects, fund raising activities, and collaborations under the alliance. With the Headquarters at the campus of Tsinghua University and branch offices at other two universities, the alliance will be chaired by a scientist selected from Tsinghua University.   According to a briefing, the alliance will need a budget of USD 3-5 million, mainly from the donations of government, industry, and all walks of life. In this context, the R&D findings derived from the alliance will find its applications in improving people's life.
Luís F. Simões

Evolving software inspired by natural selection | Santa Fe Institute - 3 views

  •  
    Stephanie Forrest awarded $3.2 million by DARPA to further develop her work on automated software repair through evolutionary computing (papers)
ESA ACT

INTERNET AND SOCIETY: Growing Up Connected -- Preece 324 (5925): 338a -- Science - 0 views

  •  
    Apparently, the generation growing up with internet (native digital) will be living and working in a completely different way. ESA might have to adapt.
htoftevaag

Deep-learning-enabled self-adaptive microwave cloak without human intervention | Nature... - 0 views

  •  
    An intelligent (that is, self-adaptive) cloak driven by deep learning. Quite cool, eh? Something we can get inspired by?
Luís F. Simões

Emergent Criticality through Adaptive Information Processing in Boolean Networks -- Phy... - 0 views

LeopoldS

Mitigation and Adaptation Strategies for Global Change, Online First™ - Sprin... - 0 views

  •  
    fail safe is is probably a bit exaggerated ...
Tom Gheysens

Biomimicr-E: Nature-Inspired Energy Systems | AAAS - 4 views

  •  
    some biomimicry used in energy systems... maybe it sparks some ideas
  •  
    not much new that has not been shared here before ... BUT: we have done relativley little on any of them. for good reasons?? don't know - maybe time to look into some of these again more closely Energy Efficiency( Termite mounds inspired regulated airflow for temperature control of large structures, preventing wasteful air conditioning and saving 10% energy.[1] Whale fins shapes informed the design of new-age wind turbine blades, with bumps/tubercles reducing drag by 30% and boosting power by 20%.[2][3][4] Stingray motion has motivated studies on this type of low-effort flapping glide, which takes advantage of the leading edge vortex, for new-age underwater robots and submarines.[5][6] Studies of microstructures found on shark skin that decrease drag and prevent accumulation of algae, barnacles, and mussels attached to their body have led to "anti-biofouling" technologies meant to address the 15% of marine vessel fuel use due to drag.[7][8][9][10] Energy Generation( Passive heliotropism exhibited by sunflowers has inspired research on a liquid crystalline elastomer and carbon nanotube system that improves the efficiency of solar panels by 10%, without using GPS and active repositioning panels to track the sun.[11][12][13] Mimicking the fluid dynamics principles utilized by schools of fish could help to optimize the arrangement of individual wind turbines in wind farms.[14] The nanoscale anti-reflection structures found on certain butterfly wings has led to a model to effectively harness solar energy.[15][16][17] Energy Storage( Inspired by the sunlight-to-energy conversion in plants, researchers are utilizing a protein in spinach to create a sort of photovoltaic cell that generates hydrogen from water (i.e. hydrogen fuel cell).[18][19] Utilizing a property of genetically-engineered viruses, specifically their ability to recognize and bind to certain materials (carbon nanotubes in this case), researchers have developed virus-based "scaffolds" that
Thijs Versloot

Survival without oxygen, some animals needs surprisingly little - 2 views

  •  
    :-D Tom and me had just exchanged emails about this last night. Fascinating how adaptive organisms can be!
Guido de Croon

Will robots be smarter than humans by 2029? - 2 views

  •  
    Nice discussion about the singularity. Made me think of drinking coffee with Luis... It raises some issues such as the necessity of embodiment, etc.
  • ...9 more comments...
  •  
    "Kurzweilians"... LOL. Still not sold on embodiment, btw.
  •  
    The biggest problem with embodiment is that, since the passive walkers (with which it all started), it hasn't delivered anything really interesting...
  •  
    The problem with embodiment is that it's done wrong. Embodiment needs to be treated like big data. More sensors, more data, more processing. Just putting a computer in a robot with a camera and microphone is not embodiment.
  •  
    I like how he attacks Moore's Law. It always looks a bit naive to me if people start to (ab)use it to make their point. No strong opinion about embodiment.
  •  
    @Paul: How would embodiment be done RIGHT?
  •  
    Embodiment has some obvious advantages. For example, in the vision domain many hard problems become easy when you have a body with which you can take actions (like looking at an object you don't immediately recognize from a different angle) - a point already made by researchers such as Aloimonos.and Ballard in the end 80s / beginning 90s. However, embodiment goes further than gathering information and "mental" recognition. In this respect, the evolutionary robotics work by for example Beer is interesting, where an agent discriminates between diamonds and circles by avoiding one and catching the other, without there being a clear "moment" in which the recognition takes place. "Recognition" is a behavioral property there, for which embodiment is obviously important. With embodiment the effort for recognizing an object behaviorally can be divided between the brain and the body, resulting in less computation for the brain. Also the article "Behavioural Categorisation: Behaviour makes up for bad vision" is interesting in this respect. In the field of embodied cognitive science, some say that recognition is constituted by the activation of sensorimotor correlations. I wonder to which extent this is true, and if it is valid for extremely simple creatures to more advanced ones, but it is an interesting idea nonetheless. This being said, if "embodiment" implies having a physical body, then I would argue that it is not a necessary requirement for intelligence. "Situatedness", being able to take (virtual or real) "actions" that influence the "inputs", may be.
  •  
    @Paul While I completely agree about the "embodiment done wrong" (or at least "not exactly correct") part, what you say goes exactly against one of the major claims which are connected with the notion of embodiment (google for "representational bottleneck"). The fact is your brain does *not* have resources to deal with big data. The idea therefore is that it is the body what helps to deal with what to a computer scientist appears like "big data". Understanding how this happens is key. Whether it is the problem of scale or of actually understanding what happens should be quite conclusively shown by the outcomes of the Blue Brain project.
  •  
    Wouldn't one expect that to produce consciousness (even in a lower form) an approach resembling that of nature would be essential? All animals grow from a very simple initial state (just a few cells) and have only a very limited number of sensors AND processing units. This would allow for a fairly simple way to create simple neural networks and to start up stable neural excitation patterns. Over time as complexity of the body (sensors, processors, actuators) increases the system should be able to adapt in a continuous manner and increase its degree of self-awareness and consciousness. On the other hand, building a simulated brain that resembles (parts of) the human one in its final state seems to me like taking a person who is just dead and trying to restart the brain by means of electric shocks.
  •  
    Actually on a neuronal level all information gets processed. Not all of it makes it into "conscious" processing or attention. Whatever makes it into conscious processing is a highly reduced representation of the data you get. However that doesn't get lost. Basic, low processed data forms the basis of proprioception and reflexes. Every step you take is a macro command your brain issues to the intricate sensory-motor system that puts your legs in motion by actuating every muscle and correcting every step deviation from its desired trajectory using the complicated system of nerve endings and motor commands. Reflexes which were build over the years, as those massive amounts of data slowly get integrated into the nervous system and the the incipient parts of the brain. But without all those sensors scattered throughout the body, all the little inputs in massive amounts that slowly get filtered through, you would not be able to experience your body, and experience the world. Every concept that you conjure up from your mind is a sort of loose association of your sensorimotor input. How can a robot understand the concept of a strawberry if all it can perceive of it is its shape and color and maybe the sound that it makes as it gets squished? How can you understand the "abstract" notion of strawberry without the incredibly sensible tactile feel, without the act of ripping off the stem, without the motor action of taking it to our mouths, without its texture and taste? When we as humans summon the strawberry thought, all of these concepts and ideas converge (distributed throughout the neurons in our minds) to form this abstract concept formed out of all of these many many correlations. A robot with no touch, no taste, no delicate articulate motions, no "serious" way to interact with and perceive its environment, no massive flow of information from which to chose and and reduce, will never attain human level intelligence. That's point 1. Point 2 is that mere pattern recogn
  •  
    All information *that gets processed* gets processed but now we arrived at a tautology. The whole problem is ultimately nobody knows what gets processed (not to mention how). In fact an absolute statement "all information" gets processed is very easy to dismiss because the characteristics of our sensors are such that a lot of information is filtered out already at the input level (e.g. eyes). I'm not saying it's not a valid and even interesting assumption, but it's still just an assumption and the next step is to explore scientifically where it leads you. And until you show its superiority experimentally it's as good as all other alternative assumptions you can make. I only wanted to point out is that "more processing" is not exactly compatible with some of the fundamental assumptions of the embodiment. I recommend Wilson, 2002 as a crash course.
  •  
    These deal with different things in human intelligence. One is the depth of the intelligence (how much of the bigger picture can you see, how abstract can you form concept and ideas), another is the breadth of the intelligence (how well can you actually generalize, how encompassing those concepts are and what is the level of detail in which you perceive all the information you have) and another is the relevance of the information (this is where the embodiment comes in. What you do is to a purpose, tied into the environment and ultimately linked to survival). As far as I see it, these form the pillars of human intelligence, and of the intelligence of biological beings. They are quite contradictory to each other mainly due to physical constraints (such as for example energy usage, and training time). "More processing" is not exactly compatible with some aspects of embodiment, but it is important for human level intelligence. Embodiment is necessary for establishing an environmental context of actions, a constraint space if you will, failure of human minds (i.e. schizophrenia) is ultimately a failure of perceived embodiment. What we do know is that we perform a lot of compression and a lot of integration on a lot of data in an environmental coupling. Imo, take any of these parts out, and you cannot attain human+ intelligence. Vary the quantities and you'll obtain different manifestations of intelligence, from cockroach to cat to google to random quake bot. Increase them all beyond human levels and you're on your way towards the singularity.
Dario Izzo

Optimal Control Probem in the CR3BP solved!!! - 7 views

  •  
    This guy solved a problem many people are trying to solve!!! The optimal control problem for the three body problem (restricted, circular) can be solved using continuation of the secondary gravity parameter and some clever adaptation of the boundary conditions!! His presentation was an eye opener ... making the work of many pretty useless now :)
  • ...13 more comments...
  •  
    Riemann hypothesis should be next... Which paper on the linked website is this exactly?
  •  
    hmmm, last year at the AIAA conference in Toronto I presented a continuation approach to design a DRO (three-body problem). Nothing new here unfortunately. I know the work of Caillau, although interesting what is presented was solved 10 years ago by others. The interest of his work is not in the applications (CR3BP), but in the research of particular regularity conditions that unfortunately make the problem limited practically. Look also at the work of Mingotti, Russel, Topputo and other for the (C)RTBP. Smart-One inspired a bunch of researchers :)
  •  
    Topputo and some of the others 'inspired' researchers you mention are actually here at the conference and they are all quite depressed :) Caillau really solves the problem: as a one single phase transfer, no tricks, no misconvergence, in general and using none of the usual cheats. What was produced so far by other were only local solutions valid for the particular case considered. In any case I will give him your paper, so that he knows he is working on already solved stuff :)
  •  
    Answer to Marek: the paper you may look at is: Discrete and differential homotopy in circular restricted three-body control
  •  
    Ah! with one single phase and a first order method then it is amazing (but it is still just the very particular CRTBP case). The trick is however the homotopy map he selected! Why this one? Any conjugate point? Did I misunderstood the title ? I solved in one phase with second order methods for the less restrictive problem RTBP or simply 3-body... but as a strict answer to your title the problem has been solved before. Nota: In "Russell, R. P., "Primer Vector Theory Applied to Global Low-Thrust Trade Studies," JGCD, Vol. 30, No. 2", he does solve the RTBP with a first order method in one phase.
  •  
    I think what is interesting is not what he solved, but how he solved the problem. But, are means more important than end ... I dunno
  •  
    I also loved his method, and it looked to me that is far more general than the CRTBP. As for the title of this post, OK maybe it is an exageration as it suggests that no solution was ever given before, on the other end, as Marek would say "come on guys!!!!!"
  •  
    The generality has to be checked. Don't you think his choice of mapping is too specific? he doesn't really demonstrate it works better than other. In addition, the minimum time choice make the problem very regular (i guess you've experienced that solving min time is much easier than mass max, optimality-wise). There is still a long way before maximum mass+RTBP, Topputo et al should be re-assured :p Did you give him my paper, he may find it interesting since I mention the homotopy on mu but for max mass:)
  •  
    Joris, that is the point I was excited abut, at the conference HE DID present solutions to the maximum mass problem!! One phase, from LEO to an orbit around the moon .. amazing :) You will find his presentation on line.... (according to the organizers) I gave him the reference to you paper anyway, but no pdf though as you did not upload it on our web pages and I could not find it in the web. So I gave him some bibliography I had with be from the russians, and from Russell, Petropoulos and Howell, As far as I know these are the only ones that can hope to compete with this guy!!
  •  
    for info only, my phd, in one phase: http://pdf.aiaa.org/preview/CDReadyMAST08_1856/PV2008_7363.pdf I prefered Mars than the dead rock Moon though!
  •  
    If you send me the pdf I can give it to the guy .. the link you gave contains only the first page ... (I have no access till monday to the AIAA thingy)
  •  
    this is why I like this Diigo thingy so much more than delicious ...
  •  
    What do you mean by this comment, Leopold? ;-) Jokes apart: I am following the Diigo thingy with Google Reader (rss). Obviously, I am getting the new postings. But if someone later on adds a comment to a post, then I can miss it, because the rss doesn't get updated. Not that it's a big problem, but do you guys have a better solution for this? How are you following these comments? (I know that if you have commented an entry, then you get the later updates in email.) (For example, in google reader I can see only the first 5 comments in this entry.)
  •  
    I like when there are discussions evolving around entries
  •  
    and on your problem with the RSS Tamas: its the same for me, you get the comments only for entries that you have posted or that you have commented on ...
Giusi Schiavone

Why flies can drink and drink - 1 views

  •  
    Engineers could adapt the insect plumbing to create tiny drug delivery systems
1 - 20 of 40 Next ›
Showing 20 items per page