Skip to main content

Home/ Advanced Concepts Team/ Group items tagged applied science

Rss Feed Group items tagged

LeopoldS

An optical lattice clock with accuracy and stability at the 10-18 level : Nature : Natu... - 0 views

  •  
    Progress in atomic, optical and quantum science1, 2 has led to rapid improvements in atomic clocks. At the same time, atomic clock research has helped to advance the frontiers of science, affecting both fundamental and applied research. The ability to control quantum states of individual atoms and photons is central to quantum information science and precision measurement, and optical clocks based on single ions have achieved the lowest systematic uncertainty of any frequency standard3, 4, 5. Although many-atom lattice clocks have shown advantages in measurement precision over trapped-ion clocks6, 7, their accuracy has remained 16 times worse8, 9, 10. Here we demonstrate a many-atom system that achieves an accuracy of 6.4 × 10−18, which is not only better than a single-ion-based clock, but also reduces the required measurement time by two orders of magnitude. By systematically evaluating all known sources of uncertainty, including in situ monitoring of the blackbody radiation environment, we improve the accuracy of optical lattice clocks by a factor of 22. This single clock has simultaneously achieved the best known performance in the key characteristics necessary for consideration as a primary standard-stability and accuracy. More stable and accurate atomic clocks will benefit a wide range of fields, such as the realization and distribution of SI units11, the search for time variation of fundamental constants12, clock-based geodesy13 and other precision tests of the fundamental laws of nature. This work also connects to the development of quantum sensors and many-body quantum state engineering14 (such as spin squeezing) to advance measurement precision beyond the standard quantum limit.
Ma Ru

Scientists solve the mystery of how beer goggles work - 1 views

  •  
    From my favourite, "applied science" series... "If you've ever had one too many and tumbled into bed with a vision, only to be greeted in the morning by a sight you'd gnaw off your own arm to escape, take heart". [Edit] Ah, and before you suggest this is AFD hoax, here's the ref: http://www.ncbi.nlm.nih.gov/pubmed/22260359
tvinko

Massively collaborative mathematics : Article : Nature - 28 views

  •  
    peer-to-peer theorem-proving
  • ...14 more comments...
  •  
    Or: mathematicians catch up with open-source software developers :)
  •  
    "Similar open-source techniques could be applied in fields such as [...] computer science, where the raw materials are informational and can be freely shared online." ... or we could reach the point, unthinkable only few years ago, of being able to exchange text messages in almost real time! OMG, think of the possibilities! Seriously, does the author even browse the internet?
  •  
    I do not agree with you F., you are citing out of context! Sharing messages does not make a collaboration, nor does a forum, .... You need a set of rules and a common objective. This is clearly observable in "some team", where these rules are lacking, making team work inexistent. The additional difficulties here are that it involves people that are almost strangers to each other, and the immateriality of the project. The support they are using (web, wiki) is only secondary. What they achieved is remarkable, disregarding the subject!
  •  
    I think we will just have to agree to disagree then :) Open source developers have been organizing themselves with emails since the early '90s, and most projects (e.g., the Linux kernel) still do not use anything else today. The Linux kernel mailing list gets around 400 messages per day, and they are managing just fine to scale as the number of contributors increases. I agree that what they achieved is remarkable, but it is more for "what" they achieved than "how". What they did does not remotely qualify as "massively" collaborative: again, many open source projects are managed collaboratively by thousands of people, and many of them are in the multi-million lines of code range. My personal opinion of why in the scientific world these open models are having so many difficulties is that the scientific community today is (globally, of course there are many exceptions) a closed, mostly conservative circle of people who are scared of changes. There is also the fact that the barrier of entry in a scientific community is very high, but I think that this should merely scale down the number of people involved and not change the community "qualitatively". I do not think that many research activities are so much more difficult than, e.g., writing an O(1) scheduler for an Operating System or writing a new balancing tree algorithm for efficiently storing files on a filesystem. Then there is the whole issue of scientific publishing, which, in its current form, is nothing more than a racket. No wonder traditional journals are scared to death by these open-science movements.
  •  
    here we go ... nice controversy! but maybe too many things mixed up together - open science journals vs traditional journals, conservatism of science community wrt programmers (to me one of the reasons for this might be the average age of both groups, which is probably more than 10 years apart ...) and then using emailing wrt other collaboration tools .... .... will have to look at the paper now more carefully ... (I am surprised to see no comment from José or Marek here :-)
  •  
    My point about your initial comment is that it is simplistic to infer that emails imply collaborative work. You actually use the word "organize", what does it mean indeed. In the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review). Mailing is just a coordination mean. In collaborations and team work, it is about rules, not only about the technology you use to potentially collaborate. Otherwise, all projects would be successful, and we would noy learn management at school! They did not write they managed the colloboration exclusively because of wikipedia and emails (or other 2.0 technology)! You are missing the part that makes it successful and remarkable as a project. On his blog the guy put a list of 12 rules for this project. None are related to emails, wikipedia, forums ... because that would be lame and your comment would make sense. Following your argumentation, the tools would be sufficient for collaboration. In the ACT, we have plenty of tools, but no team work. QED
  •  
    the question on the ACT team work is one that is coming back continuously and it always so far has boiled down to the question of how much there need and should be a team project to which everybody inthe team contributes in his / her way or how much we should leave smaller, flexible teams within the team form and progress, more following a bottom-up initiative than imposing one from top-down. At this very moment, there are at least 4 to 5 teams with their own tools and mechanisms which are active and operating within the team. - but hey, if there is a real will for one larger project of the team to which all or most members want to contribute, lets go for it .... but in my view, it should be on a convince rather than oblige basis ...
  •  
    It is, though, indicative that some of the team member do not see all the collaboration and team work happening around them. We always leave the small and agile sub-teams to form and organize themselves spontaneously, but clearly this method leaves out some people (be it for their own personal attitude or be it for pure chance) For those cases which we could think to provide the possibility to participate in an alternative, more structured, team work where we actually manage the hierachy, meritocracy and perform the project review (to use Joris words).
  •  
    I am, and was, involved in "collaboration" but I can say from experience that we are mostly a sum of individuals. In the end, it is always one or two individuals doing the job, and other waiting. Sometimes even, some people don't do what they are supposed to do, so nothing happens ... this could not be defined as team work. Don't get me wrong, this is the dynamic of the team and I am OK with it ... in the end it is less work for me :) team = 3 members or more. I am personally not looking for a 15 member team work, and it is not what I meant. Anyway, this is not exactly the subject of the paper.
  •  
    My opinion about this is that a research team, like the ACT, is a group of _people_ and not only brains. What I mean is that people have feelings, hate, anger, envy, sympathy, love, etc about the others. Unfortunately(?), this could lead to situations, where, in theory, a group of brains could work together, but not the same group of people. As far as I am concerned, this happened many times during my ACT period. And this is happening now with me in Delft, where I have the chance to be in an even more international group than the ACT. I do efficient collaborations with those people who are "close" to me not only in scientific interest, but also in some private sense. And I have people around me who have interesting topics and they might need my help and knowledge, but somehow, it just does not work. Simply lack of sympathy. You know what I mean, don't you? About the article: there is nothing new, indeed. However, why it worked: only brains and not the people worked together on a very specific problem. Plus maybe they were motivated by the idea of e-collaboration. No revolution.
  •  
    Joris, maybe I made myself not clear enough, but my point was only tangentially related to the tools. Indeed, it is the original article mention of "development of new online tools" which prompted my reply about emails. Let me try to say it more clearly: my point is that what they accomplished is nothing new methodologically (i.e., online collaboration of a loosely knit group of people), it is something that has been done countless times before. Do you think that now that it is mathematicians who are doing it makes it somehow special or different? Personally, I don't. You should come over to some mailing lists of mathematical open-source software (e.g., SAGE, Pari, ...), there's plenty of online collaborative research going on there :) I also disagree that, as you say, "in the case of Linux, what makes the project work is the rules they set and the management style (hierachy, meritocracy, review)". First of all I think the main engine of any collaboration like this is the objective, i.e., wanting to get something done. Rules emerge from self-organization later on, and they may be completely different from project to project, ranging from almost anarchy to BDFL (benevolent dictator for life) style. Given this kind of variety that can be observed in open-source projects today, I am very skeptical that any kind of management rule can be said to be universal (and I am pretty sure that the overwhelming majority of project organizers never went to any "management school"). Then there is the social aspect that Tamas mentions above. From my personal experience, communities that put technical merit above everything else tend to remain very small and generally become irrelevant. The ability to work and collaborate with others is the main asset the a participant of a community can bring. I've seen many times on the Linux kernel mailing list contributions deemed "technically superior" being disregarded and not considered for inclusion in the kernel because it was clear that
  •  
    hey, just catched up the discussion. For me what is very new is mainly the framework where this collaborative (open) work is applied. I haven't seen this kind of working openly in any other field of academic research (except for the Boinc type project which are very different, because relying on non specialists for the work to be done). This raise several problems, and mainly the one of the credit, which has not really been solved as I read in the wiki (is an article is written, who writes it, what are the names on the paper). They chose to refer to the project, and not to the individual researchers, as a temporary solution... It is not so surprising for me that this type of work has been first done in the domain of mathematics. Perhaps I have an ideal view of this community but it seems that the result obtained is more important than who obtained it... In many areas of research this is not the case, and one reason is how the research is financed. To obtain money you need to have (scientific) credit, and to have credit you need to have papers with your name on it... so this model of research does not fit in my opinion with the way research is governed. Anyway we had a discussion on the Ariadnet on how to use it, and one idea was to do this kind of collaborative research; idea that was quickly abandoned...
  •  
    I don't really see much the problem with giving credit. It is not the first time a group of researchers collectively take credit for a result under a group umbrella, e.g., see Nicolas Bourbaki: http://en.wikipedia.org/wiki/Bourbaki Again, if the research process is completely transparent and publicly accessible there's no way to fake contributions or to give undue credit, and one could cite without problems a group paper in his/her CV, research grant application, etc.
  •  
    Well my point was more that it could be a problem with how the actual system works. Let say you want a grant or a position, then the jury will count the number of papers with you as a first author, and the other papers (at least in France)... and look at the impact factor of these journals. Then you would have to set up a rule for classifying the authors (endless and pointless discussions), and give an impact factor to the group...?
  •  
    it seems that i should visit you guys at estec... :-)
  •  
    urgently!! btw: we will have the ACT christmas dinner on the 9th in the evening ... are you coming?
Ma Ru

Trends in Cognitive Sciences - Syncing your brain: electric currents to enhance cognition - 0 views

  •  
    Yes, you read correctly. Apply current to your brain to get smarter. Ariadna anyone?
Francesco Biscani

What Should We Teach New Software Developers? Why? | January 2010 | Communications of t... - 3 views

shared by Francesco Biscani on 15 Jan 10 - Cached
Dario Izzo liked it
  • Industry wants to rely on tried-and-true tools and techniques, but is also addicted to dreams of "silver bullets," "transformative breakthroughs," "killer apps," and so forth.
  • This leads to immense conservatism in the choice of basic tools (such as programming languages and operating systems) and a desire for monocultures (to minimize training and deployment costs).
  • The idea of software development as an assembly line manned by semi-skilled interchangeable workers is fundamentally flawed and wasteful.
  •  
    Nice opinion piece by the creator of C++ Bjarne Stroustrup. Substitute "industry" with "science" and many considerations still apply :)
  •  
    "for many, "programming" has become a strange combination of unprincipled hacking and invoking other people's libraries (with only the vaguest idea of what's going on). The notions of "maintenance" and "code quality" are typically forgotten or poorly understood. " ... seen so many of those students :( and ad "My suggestion is to define a structure of CS education based on a core plus specializations and application areas", I am not saying the austrian university system is good, but e.g. the CS degrees in Vienna are done like this, there is a core which is the same for everybody 4-5 semester, and then you specialise in e.g. software engineering or computational mgmt and so forth, and then after 2 semester you specialize again into one of I think 7 or 8 master degrees ... It does not make it easy for industry to hire people, as I have noticed, they sometimes really have no clue what the difference between Software Engineering is compared to Computational Intelligence, at least in HR :/
Luís F. Simões

New algorithm offers ability to influence systems such as living cells or social networks - 3 views

  • a new computational model that can analyze any type of complex network -- biological, social or electronic -- and reveal the critical points that can be used to control the entire system.
  • Slotine and his colleagues applied traditional control theory to these recent advances, devising a new model for controlling complex, self-assembling networks.
  • Yang-Yu Liu, Jean-Jacques Slotine, Albert-László Barabási. Controllability of complex networks. Nature, 2011; 473 (7346): 167 DOI: 10.1038/nature10011
  •  
    Sounds too super to be true, no?
  • ...3 more comments...
  •  
    cover story in the May 12 issue of Nature
  •  
    For each, they calculated the percentage of points that need to be controlled in order to gain control of the entire system.
  •  
    > Sounds too super to be true, no? Yeah, how else may it sound, being a combination of hi-quality (I assume) research targeted at attracting funding, raised to the power of Science Daily's pop-pseudo-scientific journalists' bu****it? Original article starts with a cool sentence too: > The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. ...a good starting point for a never-ending philosophers' debate... Now seriously, because of a big name behind the study, I'm very curious to read the original article. Although I expect the conclusion to be that in practical cases (i.e. the cases of "networks" you *would like to* "control"), you need to control all nodes or something equally impractical...
  •  
    then I am looking forward to reading your conclusions here after you will have actually read the paper
Ma Ru

Science behind hangovers - 3 views

  •  
    Finally some applied research, that is...
Thijs Versloot

The Port - Hackathon at CERN - apply now - 3 views

  •  
    Interdisciplinary teams of handpicked individuals chosen for their field-leading expertise and innovative mind combine humanitarian questions with state of the art science, cutting-edge technology and endless fantasy. Organised by THE Port Association, hosted by CERN (IdeaSquare tbc) and with partners from other non-governmental organisations, a three-day problem solving workshop hackathon will be devoted to humanitarian, social and public interest topics. Interdisciplinary teams of selected participants will work together in the fields of: communication - transport - health - science - learning - work - culture - data
jcunha

Interference of thermal waves - Can heat be controlled as waves? - 1 views

  •  
    Imagine a material that only admits thermal conduction for certain temperatures. Martin Maldovan from Georgia Tech holds a tiny thermoelectric device that turns cold on one side when current is applied. Recent research has focused on the possibility of using interference effects in phonon waves to control heat transport in materials. These are exciting news (see Nature Materials paper here http://www.nature.com/nmat/journal/v14/n7/full/nmat4308.html). Heterostructure research lead to outstanding new possibilities when applied to electronic transport (e.g. in quantum well and quantum dots) and to photonics (e.g. Quantum Cascade Laser tunnable lasers). Apparently the time has come to see selective thermal control in this way! Truly exciting!!
Nicholas Lan

hilarious publications list - 2 views

  •  
    his day to day research experience must be relatively unusual highlights include: - Bust size and hitchhiking: a field study. http://www.ncbi.nlm.nih.gov/pubmed/18380130 'The effect of a joke on tipping when it is delivered at the same time as the bill' http://nicolas.gueguen.free.fr/Articles/JASP2002.pdf "Love is in the air": Effects of Songs With Romantic Lyrics on Compliance to a Courtship Request. http://nicolas.gueguen.free.fr/Articles/PsyMusic2010.PDF and the mostly confusing 'Presence of Various Figurines on a Restaurant Table and Consumer Choice: Evidence for an Associative Link.'
  •  
    Now that's what I call applied science... will consider applying to his lab for a post-doc!
santecarloni

Ergodic theorem passes the test - physicsworld.com - 0 views

  •  
    For more than a century scientists have relied on the "ergodic theorem" to explain diffusive processes such as the movement of molecules in a liquid. However, they had not been able to confirm experimentally a central tenet of the theorem - that the average of repeated measurements of the random motion of an individual molecule is the same as the random motion of the entire ensemble of those molecules. Now, however, researchers in Germany have measured both parameters in the same system - making them the first to confirm experimentally that the ergodic theorem applies to diffusion.
jcunha

Achieving the ultimate optical resolution by breaking Rayleigh's criterion - 1 views

  •  
    The Rayleigh criterion specifies the minimum separation between two incoherent point sources that may be resolved into distinct objects. Here, a strategy to break the limits of this criterion for the first time, some small allusion to telescopic systems.
  •  
    Can it also be applied for infrared imagery?
LeopoldS

[1110.3763] A search for the analogue to Cherenkov radiation by high energy neutrinos a... - 1 views

  •  
    Sante: did you see this?
  •  
    Maybe a stupid question: The authors argue with the results obtained by Cohen and Glashow [2]. In [2] ist was stated that superluminal neutrinos should lose energy by producing photons and e+e- pairs. This should be observable. These conslusions are based on known physics (I guess), i.e. on the laws valid for subluminal conditions. How reasonable is it to apply (i.e. to assume the validity of) the same laws for superluminal particles?
johannessimon81

The Universe Is Programmable. We Need an API for Everything - 3 views

  •  
    Interesting ideas - though some metaphors are a bit far fetched. Personally, I think it could be interesting if every scientific article would also have a how-to or tutorial section that gives a recipe of how to apply the newly gained knowledge. Of course, that might be tough to do... :-)
  •  
    The API of the world is already there (a bit), it is the previous knowledge developed by others. Open Source projects such as the wheel or the brick, allow everyday amazing new APPs to be build such as buildings and cars .... There still is merit, though, in learning from software developments techniques in the everyday world projects. This is indeed the motivation for the ACT to do work in open source (SOCIS, GSoC) and push its members to use stuff like wiki, svn, github, jenkins, and alike. This way we are performing and fostering (http://www.oxforddictionaries.com/definition/english/foster) research into working methods in the hope we will be able to export some of its benefit to the larger ESA.
Nina Nadine Ridder

Testing shows using microwaves to propel a craft into space might work - 4 views

  •  
    A team of researchers at Colorado based Escape Dynamics is reporting that initial tests indicate that it might really be possible to launch space-planes into space using microwaves sent from the ground, to allow for a single stage spacecraft. If the idea pans out, the cost savings for sending satellites (or perhaps humans) into orbit could be considerable.
  •  
    Not very new, but a very slick video nonetheless! Will it work? I am not so sure whether "just engineering" applies in this case. The array of antenna's required is quite significant to compensate for beam losses. Wall plug efficiency is not that high therefore, then again.. solar energy is for free almost in the future so who cares.. let's go for it! :)
LeopoldS

Regular Moderate Intake of Red Wine Is Linked to a Better Women's Sexual Health - Monda... - 1 views

  •  
    study by university of Florence ... does the quality of the wine have any influence?
  •  
    Nice to see some applied research from time to time...
pacome delva

Condensation transition in networks and other complex systems - 4 views

  •  
    I like this work... it mixes physics, networks and biology ! Anyone heard about her ? Here's an interesting paper found on this website: http://nuweb.neu.edu/gbianconi/condensation.pdf
  • ...3 more comments...
  •  
    Eh... Barabasi is really milking the golden cow :) It seems interesting, even if I don't remember enough from my statistical mechanics classes to truly understand it without a major effort. Maybe you could make a layman's science coffee about it?
  •  
    yeah i could if there's enough interest...? do u know Barabasi ?
  •  
    He's quite well known for his work on scale-free networks: http://en.wikipedia.org/wiki/Albert-L%C3%A1szl%C3%B3_Barab%C3%A1si He's applying them for everything and the kitchen sink :) We have a Barabasi-Albert network topology implemented in PaGMO...
  •  
    We worked on this with Luzi a few years back ... while the analogy is original and interesting it fails to capture the dynamics of a network, e.g. if a network has hubs that grow and shrink .... Luzi worked on an extended model to solve this issue, but, if I remember correctly, he got stuck in a computationally very hard problem .... We intended to develop and use the extended model to define relevant characteristic of the ESA network formed by mail exchanges.....
  •  
    ...but then the CMS YGT didn't really like the project
santecarloni

[1108.4767] Capturing Near Earth Objects - 3 views

  •  
    I sit really possible/desirable?
  •  
    It is possible, and NEOs may offer interesting ressources, but there is nothing in that paper. Why do they use the Sun-Earth system and not the Earth-Moon? The condition C>C1 is very weak and would have been much better had it been applied to the Earth-Moon system.
LeopoldS

Cloaking of a phase object in ghost imaging | Browse - Applied Physics Letters - 0 views

  •  
    sante can you have a look at this?
Thijs Versloot

Programmable biological circuits - 3 views

  •  
    Several new components for biological circuits have been developed by researchers. These components are key building blocks for constructing precisely functioning and programmable bio-computers. "The ability to combine biological components at will in a modular, plug-and-play fashion means that we now approach the stage when the concept of programming as we know it from software engineering can be applied to biological computers.
1 - 20 of 23 Next ›
Showing 20 items per page