Skip to main content

Home/ About The Indian Ocean/ Group items matching "fer" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Jérôme OLLIER

Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic sediments - @sciencedirect - 0 views

  •  
    Recent studies suggest that pelagic sediments can enrich rare-earth elements (REE) acting as a significant reservoir for the global REE budget as well as a potential resource for future exploitation. Although Ca-phosphate (e.g., bioapatite fossils) and Fe-Mn (oxyhydr)oxides (e.g., micronodule) have been considered important REE carriers in deep-sea sediments, the proportion of REE held by each mineral phase remains enigmatic. Here, we have investigated the sediments from two promising REE-rich prospective areas: the Tiki Basin in the Southeast Pacific (TKB) and the Central Indian Ocean Basin (CIOB). The mineral grains including bioapatite fossils and Fe-Mn micronodules have been inspected individually by in-situ microscale analytical methods. Correspondently, the REE bound to Ca-phosphate and Fe-Mn (oxyhydr)oxides have been sequentially extracted and quantified. The crucial role of Ca-phosphate is substantiated by sequential leaching which reveals its dominance in hosting ~69.3-89.4% of total REE. The Fe-Mn (oxyhydr)oxides carry ~8.2% to 22.0% of REE in bulk sediments, but they account for ~70.0-80.5% of Ce owing to their preferential adsorption of Ce over the other REE. Surface sediment on modern seafloor can accumulate high REE contents resulting from the REE scavenging by the host phases within the range of sediment-seawater interface. Differences between TKB and CIOB samples indicate that the REE enrichment in the deep-sea environment may be controlled by multiple factors including the productivity of overlying seawater (e.g., phosphorus flux), water depth relative to carbonate compensation depth (CCD), sedimentation rate, redox condition, and hydrothermal vent input (e.g., Fe-Mn precipitations).
Jérôme OLLIER

Australia's navy told to be more visible near resource projects - Reuters - 0 views

  •  
    Australia's navy told to be more visible near resource projects.
Jérôme OLLIER

Biogeographic role of the Indonesian Seaway implicated by colonization history of purpleback flying squid, Sthenoteuthis oualaniensis (Lesson, 1830), in the Indo-Pacific Ocean - @FrontMarineSci - 0 views

  •  
    As a bio]diversity hotspot, the East Indies (Coral) Triangle possesses the highest biodiversity on the earth. However, evolutionary hypotheses around this area remain controversial; e.g., center of origin, center of accumulation, and center of overlap have been supported by different species. This study aims to answer the evolutionary influence of the Indonesian Seaway on the biodiversity of the Coral Triangle by recovering the evolutionary origins of a wide-ranging ommastrephid squid (Sthenoteuthis oualaniensis) based on integrated molecular and oceanographic clues from the Indo-Pacific. Three new clades were revealed; viz., clade I from the South China Sea, clade II from the northern East Indian Ocean, and clade III from the southern East Indian Ocean. These two Indian Ocean clades formed a monophyly closely related to clade IV from the Central-Southeast Pacific. Clade VI from the central Equatorial Pacific and clade V from the northern Eastern Pacific sit in basal positions of phylogenetic trees. Ancestral Sthenoteuthis was inferred to have originated from the Atlantic Ocean and sequentially dispersed to the northern East Pacific, central Equatorial Pacific, and West Pacific through the open Panama Seaway and being transported by westward North Equatorial Current. The East Indian Ocean was likely colonized by an ancestral population of clade IV from the Southeast Pacific. Westward South Equatorial Circulation could have promoted transoceanic migration of S. oualaniensis through the wide paleo-Indonesian Seaway. Sea level regression since the Miocene and the closure of the Indonesian Seaway at 4-3 Ma were responsible for the population genetic differentiation of S. oualaniensis in the Indo-Pacific. Therefore, the Indonesian Gateway played an important role in influencing marine organisms' migration and population differentiation through controlling and reorganizing circulations in the Indo-Pacific.
1 - 5 of 5
Showing 20 items per page