Skip to main content

Home/ About The Indian Ocean/ Group items tagged latitude

Rss Feed Group items tagged

Jérôme OLLIER

Millennial-scale surface hydrological variability in the tropical eastern Indian Ocean ... - 0 views

  •  
    Surface hydrology in the tropical eastern Indian Ocean significantly impacts low-latitude climate processes including the Indonesian-Australian Monsoon and the Indian Ocean Dipole. Deciphering the evolution of surface hydrology and driving mechanisms is thus important to better understand low-latitude and global climate change. Here, we present ~206 yr-resolved temperature and salinity records of surface waters spanning the past ~31 kyr, based on δ18O and Mg/Ca ratio of Globigerinoides ruber from Core SO18567 retrieved offshore northwestern Australia in the tropical eastern Indian Ocean. By integrating new records with published paleo-oceanographic and -climatological records, we found that increasing sea surface temperature and decreasing salinity in the tropical eastern Indian Ocean during the Heinrich stadial 1 and the Younger Dryas could be attributed to collapse of the Atlantic Meridional Overturning Circulation (AMOC). Melting of Northern Hemisphere ice sheets would have led to a southward shift of the Intertropical Convergence Zone (ITCZ) and reduced transport of warm surface waters from the low latitudes to the Northern Hemisphere high latitudes. In addition, our results indicate that the onset of the last deglacial warming in low latitudes was linked to weakening of the Hadley circulation and AMOC due to warming of Northern Hemisphere high latitudes, rather than raised global atmospheric CO2 concentration.
Jérôme OLLIER

Diversity and community structure of microzooplankton in the eastern Indian Ocean durin... - 0 views

  •  
    Microzooplankton (MZP) are an important part of the microbial food web and play a pivotal role in connecting the classic food chain with the microbial loop in the marine ecosystem. They may play a more important role than mesozooplankton in the lower latitudes and oligotrophic oceans. In this article, we studied the species composition, dominant species, abundance, and carbon biomass of MZP, including the relationship between biological variables and environmental factors in the eastern equatorial Indian Ocean during the spring intermonsoon. We found that the MZP community in this ocean showed a high species diversity, with a total of 340 species. Among these, the heterotrophic dinoflagellates (HDS) (205 species) and ciliates (CTS) (126 species) were found to occupy the most significant advantageous position. In addition, CTS (45.3%) and HDS (39.7%) accounted for a larger proportion of the population abundance, while HDS (47.1%) and copepod nauplii (CNP) (46.4%) made a larger contribution to the carbon biomass. There are significant differences in the ability of different groups of MZP to assimilate organic carbon. In this sea area, MZP are affected by periodic currents, and temperature is the main factor affecting the distribution of the community. The MZP community is dominated by eurytopic species and CNP. CTS are more sensitive to environmental changes than HDS, among which Ascampbelliella armilla may be a better habitat indicator species. In low-latitude and oligotrophic ocean areas, phytoplankton with smaller cell diameters were found to occupy a higher proportion, while there was no significant correlation between the total concentration of integrated chlorophyll a and the biological variables of MZP. Therefore, we propose that the relationship between size-fractionated phytoplankton and MZP deserves further study. In addition, the estimation of the carbon biomass of MZP requires the establishment of more detailed experimental methods to reflect the real situ
Jérôme OLLIER

Surface Inorganic Iodine Speciation in the Indian and Southern Oceans From 12... - 0 views

  •  
    Marine iodine speciation has emerged as a potential tracer of primary productivity, sedimentary inputs, and ocean oxygenation. The reaction of iodide with ozone at the sea surface has also been identified as the largest deposition sink for tropospheric ozone and the dominant source of iodine to the atmosphere. Accurate incorporation of these processes into atmospheric models requires improved understanding of iodide concentrations at the air-sea interface. Observations of sea surface iodide are relatively sparse and are particularly lacking in the Indian Ocean basin. Here we examine 127 new sea surface (≤10 m depth) iodide and iodate observations made during three cruises in the Indian Ocean and the Indian sector of the Southern Ocean. The observations span latitudes from ∼12°N to ∼70°S, and include three distinct hydrographic regimes: the South Indian subtropical gyre, the Southern Ocean and the northern Indian Ocean including the southern Bay of Bengal. Concentrations and spatial distribution of sea surface iodide follow the same general trends as in other ocean basins, with iodide concentrations tending to decrease with increasing latitude (and decreasing sea surface temperature). However, the gradient of this relationship was steeper in subtropical waters of the Indian Ocean than in the Atlantic or Pacific, suggesting that it might not be accurately represented by widely used parameterizations based on sea surface temperature. This difference in gradients between basins may arise from differences in phytoplankton community composition and/or iodide production rates. Iodide concentrations in the tropical northern Indian Ocean were higher and more variable than elsewhere. Two extremely high iodide concentrations (1241 and 949 nM) were encountered in the Bay of Bengal and are thought to be associated with sedimentary inputs under low oxygen conditions. Excluding these outliers, sea surface iodide concentrations ranged from 20 to 250 nM, with a median of 61
Jérôme OLLIER

Via @aims_gov_au @arneadam1- Population connectivity and genetic offset in the spawning... - 0 views

  •  
    Anthropogenic climate change has caused widespread loss of species biodiversity and ecosystem productivity across the globe, particularly on tropical coral reefs. Predicting the future vulnerability of reef-building corals, the foundation species of coral reef ecosystems, is crucial for cost-effective conservation planning in the Anthropocene. In this study, we combine regional population genetic connectivity and seascape analyses to explore patterns of genetic offset (the mismatch of gene-environmental associations under future climate conditions) in Acropora digitifera across 12 degrees of latitude in Western Australia. Our data revealed a pattern of restricted gene flow and limited genetic connectivity among geographically distant reef systems. Environmental association analyses identified a suite of loci strongly associated with the regional temperature variation. These loci helped forecast future genetic offset in gradient forest and generalized dissimilarity models. These analyses predicted pronounced differences in the response of different reef systems in Western Australia to rising temperatures. Under the most optimistic future warming scenario (RCP 2.6), we predicted a general pattern of increasing genetic offset with latitude. Under the extreme climate scenario (RCP 8.5 in 2090-2100), coral populations at the Ningaloo World Heritage Area were predicted to experience a higher mismatch between current allele frequencies and those required to cope with local environmental change, compared to populations in the inshore Kimberley region. The study suggests complex and spatially heterogeneous patterns of climate-change vulnerability in coral populations across Western Australia, reinforcing the notion that regionally tailored conservation efforts will be most effective at managing coral reef resilience into the future.
Jérôme OLLIER

A Sustained Ocean Observing System in the Indian Ocean for Climate Related Scientific K... - 0 views

  •  
    The Indian Ocean is warming faster than any of the global oceans and its climate is uniquely driven by the presence of a landmass at low latitudes, which causes monsoonal winds and reversing currents. The food, water, and energy security in the Indian Ocean rim countries and islands are intrinsically tied to its climate, with marine environmental goods and services, as well as trade within the basin, underpinning their economies. Hence, there are a range of societal needs for Indian Ocean observation arising from the influence of regional phenomena and climate change on, for instance, marine ecosystems, monsoon rains, and sea-level. The Indian Ocean Observing System (IndOOS), is a sustained observing system that monitors basin-scale ocean-atmosphere conditions, while providing flexibility in terms of emerging technologies and scientificand societal needs, and a framework for more regional and coastal monitoring. This paper reviews the societal and scientific motivations, current status, and future directions of IndOOS, while also discussing the need for enhanced coastal, shelf, and regional observations. The challenges of sustainability and implementation are also addressed, including capacity building, best practices, and integration of resources. The utility of IndOOS ultimately depends on the identification of, and engagement with, end-users and decision-makers and on the practical accessibility and transparency of data for a range of products and for decision-making processes. Therefore we highlight current progress, issues and challenges related to end user engagement with IndOOS, as well as the needs of the data assimilation and modeling communities. Knowledge of the status of the Indian Ocean climate and ecosystems and predictability of its future, depends on a wide range of socio-economic and environmental data, a significant part of which is provided by IndOOS.
Jérôme OLLIER

Changes in Panulirus cygnus Settlement Along Western Australia Using a Long Time Series... - 0 views

  •  
    The pelagic development stages of many marine invertebrate species dictates their spatial and temporal distribution once reaching their benthic second phase of life. This life cycle is associated with the Western Rock Lobster (Panulirus cygnus) along the coast of Western Australia. Over the past 50 years, the number of puerulus reaching the nearshore reefs after their first 9 to 11 months of pelagic life in Western Australia has been monitored. These numbers, collected now at eight sites over the latitudes of the fishery, are indicative of the catchable stock 3-4 years into the future. In 2008, the fishery experienced a recruitment failure which lasted for several years before recovering to mean numbers pre-2008. This was associated with spatial and temporal shifts in the patterns of puerulus settlement. Previous research has hypothesized that physical and biological conditions in the south-east Indian Ocean no longer favored their survival. However, this decline has not been attributed to a single process. As the recovery is ongoing, contrasts in the settlement data before and after the decline are not completed. Here we characterize the data using ANOVA and pairwise comparisons to gain a better understanding of the typical patterns after the decline. Our results demonstrate that there has been a significant reduction in puerulus numbers over the first half of the season at all sites post decline. For the sites south of Lancelin there has been a significant reduction in puerulus numbers over the whole season. In addition, sites that show signs of recovery indicate that the majority of settlement occurred in the second half of the season. We anticipate these results to be the starting point for focused research into the environmental changes which may have occurred to generate these shifts in settlement numbers both from a timing and spatial perspective.
Jérôme OLLIER

Monsoon Influence on the Island Mass Effect Around the Maldives and Sri Lanka - @FrontM... - 0 views

  •  
    The monsoon circulation in the Northern Indian Ocean (NIO) is unique since it develops in response to the bi-annual reversing monsoonal winds, with the ocean currents mirroring this change through directionality and intensity. The interaction between the reversing currents and topographic features have implications for the development of the Island Mass Effect (IME) in the NIO. The IME in the NIO is characterized by areas of high chlorophyll concentrations identified through remote sensing to be located around the Maldives and Sri Lanka in the NIO. The IME around the Maldives was observed to reverse between the monsoons to downstream of the incoming monsoonal current whilst a recirculation feature known as the Sri Lanka Dome (SLD) developed off the east coast of Sri Lanka during the Southwest Monsoon (SWM). To understand the physical mechanisms underlying this monsoonal variability of the IME, a numerical model based on the Regional Ocean Modeling System (ROMS) was implemented and validated. The model was able to simulate the regional circulation and was used to investigate the three-dimensional structure of the IME around the Maldives and Sri Lanka in terms of its temperature and velocity. Results revealed that downwelling processes were prevalent along the Maldives for both monsoon periods but was applicable only to latitudes above 4°N since that was the extent of the monsoon current influence. For the Maldives, atolls located south of 4°N, were influenced by the equatorial currents. Around Sri Lanka, upwelling processes were responsible for the IME during the SWM but with strong downwelling during the NEM. In addition, there were also regional differences in intra-seasonal variability for these processes. Overall, the strength of the IME processes was closely tied to the monsoon current intensity and was found to reach its peak when the monsoon currents were at the maximum.
Jérôme OLLIER

Estimating thermohaline structures in the tropical Indian Ocean from surface parameters... - 0 views

  •  
    Accurately estimating the ocean's subsurface thermohaline structure is essential for advancing our understanding of regional and global ocean dynamics. In this study, we propose a novel neural network model based on Convolutional Block Attention Module-Convolutional Neural Network (CBAM-CNN) to simultaneously estimate the ocean subsurface thermal structure (OSTS) and ocean subsurface salinity structure (OSSS) in the tropical Indian Ocean using satellite observations. The input variables include sea surface temperature (SST), sea surface salinity (SSS), sea surface height anomaly (SSHA), eastward component of sea surface wind (ESSW), northward component of sea surface wind (NSSW), longitude (LON), and latitude (LAT). We train and validate the model using Argo data, and compare its accuracy with that of the original Convolutional Neural Network (CNN) model using root mean square error (RMSE), normalized root mean square error (NRMSE), and determination coefficient (R²). Our results show that the CBAM-CNN model outperforms the CNN model, exhibiting superior performance in estimating thermohaline structures in the tropical Indian Ocean. Furthermore, we evaluate the model's accuracy by comparing its estimated OSTS and OSSS at different depths with Argo-derived data, demonstrating that the model effectively captures most observed features using sea surface data. Additionally, the CBAM-CNN model demonstrates good seasonal applicability for OSTS and OSSS estimation. Our study highlights the benefits of using CBAM-CNN for estimating thermohaline structure and offers an efficient and effective method for estimating thermohaline structure in the tropical Indian Ocean.
Jérôme OLLIER

Long Distance Runners in the Marine Realm: New Insights Into Genetic Diversity, Kin Rel... - 0 views

  •  
    Adult male sperm whales (Physeter macrocephalus) are long distance runners of the marine realm, feeding in high latitudes and mating in tropical and subtropical waters where stable social groups of females and immatures live. Several areas of uncertainty still limit our understanding of their social and breeding behavior, in particular concerning the potential existence of geographical and/or social fidelities. In this study, using underwater observation and sloughed-skin sampling, we looked for male social fidelity to a specific matrilineal sperm whale group near Mauritius. In addition, we captured a wider picture of kin relationships and genetic diversity of male sperm whales in the Indian Ocean thanks to biopsies of eight individuals taken in a feeding ground near the Kerguelen and Crozet Archipelagos (Southern Indian Ocean). Twenty-six adult male sperm whales were identified when socializing with adult females and immatures off Mauritius. Sloughed-skin samples were taken from thirteen of them for genetic analysis. Long-term underwater observation recorded several noteworthy social interactions between adult males and adult females and/or immatures. We identified seven possible male recaptures over different years (three by direct observation, and four at the gametic level), which supports a certain level of male social fidelity. Two probable first- and thirty second-degree kin relationships were highlighted between members of the social unit and adult males, confirming that some of the adult males observed in Mauritian waters are reproductive. Male social philopatry to their natal group can be excluded, as none of the males sampled shared the haplotype characteristic of the matrilineal social group. Mitochondrial DNA control region haplotype and nucleotide diversities calculated over the 21 total male sperm whales sampled were similar to values found by others in the Indian Ocean. Our study strongly supports the existence of some levels of male sperm whale socia
Jérôme OLLIER

Scientists discover hidden crab diversity among coral reefs - @FloridaMuseum - 0 views

  •  
    The Indo-West Pacific is the largest, most biodiverse marine ecosystem on Earth, and many of the species it supports have comparably wide ranges. Writing in "The Origin of Species," Charles DARWIN noted that "… many fish range from the Pacific into the Indian Ocean, and many shells are common to the eastern islands of the Pacific and the eastern shores of Africa, on almost exactly opposite meridians of latitude."
Jérôme OLLIER

The impact of interactions between various systems caused by three consecutive years of... - 0 views

  •  
    In the summer of 2022, like in many other regions of the world, an unprecedented period of continuous high-temperature weather occurred in eastern China. The degree and duration of this event far exceeded normal standards. Between 2020 and 2022, the tropical Pacific experienced the most significant three-year consecutive La Nina event recorded in recent decades. We investigate linkages between these events: the high-temperature response in eastern China and Asia under the background of such La Nina events. Development of summer La Nina events contributed to a high-temperature heat wave during the summer of 2022. Rapid development of these events in the third year exacerbated negative Indian Ocean Dipole phases because of energy accumulation from abnormal easterly winds. The combined effects of the negative Indian Ocean Dipole phase and La Nina provided background field support that strengthened the West Pacific Subtropical High (WPSH) and the Iranian High, leading to high terrestrial temperature anomalies. An empirical orthogonal function (EOF) analysis of the vertical velocity in the middle and low latitudes of the tropical Indian Ocean and the Asian continent reveals the first two empirical orthogonal function modes to be conducive to the strengthening of Walker circulation in 2022. These two main modes jointly reflect the rising movement of the equatorial East Indian Ocean and South China Sea in 2022, and the sinking movement to the west of the Tibet Plateau and eastern China, which was conducive to generating high temperatures in eastern China. Finally, the South Asian High was affected by the La Nina event that lasted for three years, showing a strong trend towards the north, thus making an important contribution to this high temperature.
1 - 11 of 11
Showing 20 items per page