Skip to main content

Home/ Aasemoon'z Cluster/ Group items tagged chip

Rss Feed Group items tagged

Aasemoon =)

Yet another new idea for FPGAs: relays? - Practical Chip Design - Blog on EDN - 1690000169 - 0 views

  • March has seen two significant announcements from FPGA start-ups with innovative architectures: Tabula, with their time-domain-multiplexed architecture, and TierLogic, implementing their routing switches in a layer of thin-film transistors. Both approaches promise to significantly reduce the die size and cost of high-end FPGAs. But before these announcements broke, a relatively unnoticed paper at February's International Symposium on FPGAs described what may be the most radical technology of them all: FPGAs using electromechanical relays. No, this is not an early April Fool's joke, nor is it one of those "let's see if anyone will publish this one" academic exercises. The paper presented work by professors and students at the Stanford University departments of electrical engineering and computer science, and researchers at Altera Corp. The work was supported in part by DARPA funding.
Aasemoon =)

IEEE Spectrum: Spinning Out New Circuits - 0 views

  • Tiny semiconductor dots could lead to a new type of circuit based on magnetism rather than current flow. At least that’s the hope of researchers who’ve made the dots and are hoping to build them into a workable device. ”We want to make it into a so-called nonvolatile transistor,” says Kang Wang, head of the Device Research Laboratory at the University of California, Los Angeles. Such a ”spintronic” transistor would retain its logic state in the absence of current and require less power to switch a bit, reducing the electrical power required by a computer chip by as much as 99 percent. Wang’s research, supported in part by Intel, was published in March in the online version of Nature Materials. Where electronic transistors rely on the presence or absence of current to register the ones and zeros of digital logic, spintronic transistors depend on ”spin,” a quantum characteristic of the electron. Picture the electron as a rotating globe. When the north pole is pointing upward, that’s spin up; when pointing the other way, it’s spin down. When the spins of most electrons are aligned, the material is magnetic. When their spins are random, the material isn’t. An applied current can align or randomize the spins, allowing for spin-based switches.
Aasemoon =)

Asymmetric Processing Makes the Most of Multicore Processors « The Embedded Beat - 0 views

  • Let’s face it. Most of the gear you use at work or play has multicore processors in it. Your laptop has them (the CPU itself has two cores, and the dedicated graphics processor has many more). That game console in the living room has still more, and even a high-end smartphone typically has a CPU and graphics core on a single chip. Out of sight but definitely not out of mind–particularly if they cease working–are the servers and high-throughput network routers, all which have numerous multicore processors in them. The multiple cores in these devices work in concert to provide quick responses to user queries or to manage the smooth flow of data throughout the office.
Aasemoon =)

IEEE Spectrum: Organic Transistor Could Outshine OLEDs - 0 views

  • A transistor that emits light and is made from organic materials could lead to cheaper digital displays and fast-switching light sources on computer chips, according to the researchers who built it. Small displays made from diodes of the same type of materials (organic light-emitting diodes, or OLEDs) are already in commercial production, but the transistor design could improve on those and lead to applications where OLEDs can’t go. The new organic light-emitting transistor (OLET) is much more efficient than previous designs. It has an external quantum efficiency—a key measure of how much light comes out per charge carrier pumped in—of 5 percent. An OLED based on the same material has a quantum efficiency of only 2 percent. Previous OLET designs had an efficiency of only 0.6 percent.
Aasemoon =)

Ethernet controller IP implements new audio video bridging features | Audio DesignLine - 0 views

  • Synopsys, Inc., has unveiled the DesignWare Ethernet Quality-of-Service (QoS) Controller IP which implements the new IEEE specifications for audio video bridging (AVB) features. The DesignWare Ethernet IP solution supports the new IEEE 802.1AS and 802.1-Qav version D6.0 specifications. These specifications enable efficient networking of streaming audio video (AV) applications through IEEE 802.1 networks found in consumer electronics, automotive AV and professional sound system products. Synopsys' DesignWare Ethernet QoS Controller, which supports 10/100/1G data transfer speeds, allows designers to develop system-on-chips (SoCs) that deliver time-synchronized, low-latency audio and video over Ethernet networks with exceptional quality-of-service while retaining compatibility with legacy networks.
‹ Previous 21 - 25 of 25
Showing 20 items per page