Skip to main content

Home/ BI-TAGS/ Group items tagged predictive

Rss Feed Group items tagged

cezarovidiu

What is business intelligence (BI)? - Definition from WhatIs.com - 0 views

  • Business intelligence is a data analysis process aimed at boosting business performance by helping corporate executives and other end users make more informed decisions.
  • Business intelligence (BI) is a technology-driven process for analyzing data and presenting actionable information to help corporate executives, business managers and other end users make more informed business decisions.
  • BI encompasses a variety of tools, applications and methodologies that enable organizations to collect data from internal systems and external sources, prepare it for analysis, develop and run queries against the data, and create reports, dashboards and data visualizations to make the analytical results available to corporate decision makers as well as operational workers.
  • ...9 more annotations...
  • The potential benefits of business intelligence programs include accelerating and improving decision making; optimizing internal business processes; increasing operational efficiency; driving new revenues; and gaining competitive advantages over business rivals. BI systems can also help companies identify market trends and spot business problems that need to be addressed.
  • BI data can include historical information, as well as new data gathered from source systems as it is generated, enabling BI analysis to support both strategic and tactical decision-making processes.
  • BI programs can also incorporate forms of advanced analytics, such as data mining, predictive analytics, text mining, statistical analysis and big data analytics.
  • In many cases though, advanced analytics projects are conducted and managed by separate teams of data scientists, statisticians, predictive modelers and other skilled analytics professionals, while BI teams oversee more straightforward querying and analysis of business data.
  • Business intelligence data typically is stored in a data warehouse or smaller data marts that hold subsets of a company's information. In addition, Hadoop systems are increasingly being used within BI architectures as repositories or landing pads for BI and analytics data, especially for unstructured data, log files, sensor data and other types of big data. Before it's used in BI applications, raw data from different source systems must be integrated, consolidated and cleansed using data integration and data quality tools to ensure that users are analyzing accurate and consistent information.
  • In addition to BI managers, business intelligence teams generally include a mix of BI architects, BI developers, business analysts and data management professionals; business users often are also included to represent the business side and make sure its needs are met in the BI development process.
  • To help with that, a growing number of organizations are replacing traditional waterfall development with Agile BI and data warehousing approaches that use Agile software development techniques to break up BI projects into small chunks and deliver new functionality to end users on an incremental and iterative basis.
  • consultant Howard Dresner is credited with first proposing it in 1989 as an umbrella category for applying data analysis techniques to support business decision-making processes.
  • Business intelligence is sometimes used interchangeably with business analytics; in other cases, business analytics is used either more narrowly to refer to advanced data analytics or more broadly to include both BI and advanced analytics.
cezarovidiu

Magic Quadrant for Business Intelligence and Analytics Platforms - 0 views

  • Integration BI infrastructure: All tools in the platform use the same security, metadata, administration, portal integration, object model and query engine, and should share the same look and feel. Metadata management: Tools should leverage the same metadata, and the tools should provide a robust way to search, capture, store, reuse and publish metadata objects, such as dimensions, hierarchies, measures, performance metrics and report layout objects. Development tools: The platform should provide a set of programmatic and visual tools, coupled with a software developer's kit for creating analytic applications, integrating them into a business process, and/or embedding them in another application. Collaboration: Enables users to share and discuss information and analytic content, and/or to manage hierarchies and metrics via discussion threads, chat and annotations.
  • Information Delivery Reporting: Provides the ability to create formatted and interactive reports, with or without parameters, with highly scalable distribution and scheduling capabilities. Dashboards: Includes the ability to publish Web-based or mobile reports with intuitive interactive displays that indicate the state of a performance metric compared with a goal or target value. Increasingly, dashboards are used to disseminate real-time data from operational applications, or in conjunction with a complex-event processing engine. Ad hoc query: Enables users to ask their own questions of the data, without relying on IT to create a report. In particular, the tools must have a robust semantic layer to enable users to navigate available data sources. Microsoft Office integration: Sometimes, Microsoft Office (particularly Excel) acts as the reporting or analytics client. In these cases, it is vital that the tool provides integration with Microsoft Office, including support for document and presentation formats, formulas, data "refreshes" and pivot tables. Advanced integration includes cell locking and write-back. Search-based BI: Applies a search index to structured and unstructured data sources and maps them into a classification structure of dimensions and measures that users can easily navigate and explore using a search interface. Mobile BI: Enables organizations to deliver analytic content to mobile devices in a publishing and/or interactive mode, and takes advantage of the mobile client's location awareness.
  • Analysis Online analytical processing (OLAP): Enables users to analyze data with fast query and calculation performance, enabling a style of analysis known as "slicing and dicing." Users are able to navigate multidimensional drill paths. They also have the ability to write back values to a proprietary database for planning and "what if" modeling purposes. This capability could span a variety of data architectures (such as relational or multidimensional) and storage architectures (such as disk-based or in-memory). Interactive visualization: Gives users the ability to display numerous aspects of the data more efficiently by using interactive pictures and charts, instead of rows and columns. Predictive modeling and data mining: Enables organizations to classify categorical variables, and to estimate continuous variables using mathematical algorithms. Scorecards: These take the metrics displayed in a dashboard a step further by applying them to a strategy map that aligns key performance indicators (KPIs) with a strategic objective. Prescriptive modeling, simulation and optimization: Supports decision making by enabling organizations to select the correct value of a variable based on a set of constraints for deterministic processes, and by modeling outcomes for stochastic processes.
  • ...7 more annotations...
  • These capabilities enable organizations to build precise systems of classification and measurement to support decision making and improve performance. BI and analytic platforms enable companies to measure and improve the metrics that matter most to their businesses, such as sales, profits, costs, quality defects, safety incidents, customer satisfaction, on-time delivery and so on. BI and analytic platforms also enable organizations to classify the dimensions of their businesses — such as their customers, products and employees — with more granular precision. With these capabilities, marketers can better understand which customers are most likely to churn. HR managers can better understand which attributes to look for when recruiting top performers. Supply chain managers can better understand which inventory allocation levels will keep costs low without increasing out-of-stock incidents.
  • descriptive, diagnostic, predictive and prescriptive analytics
  • "descriptive"
  • diagnostic
  • data discovery vendors — such as QlikTech, Salient Management Company, Tableau Software and Tibco Spotfire — received more positive feedback than vendors offering OLAP cube and semantic-layer-based architectures.
  • Microsoft Excel users are often disaffected business BI users who are unable to conduct the analysis they want using enterprise, IT-centric tools. Since these users are the typical target users of data discovery tool vendors, Microsoft's aggressive plans to enhance Excel will likely pose an additional competitive threat beyond the mainstreaming and integration of data discovery features as part of the other leading, IT-centric enterprise platforms.
  • Building on the in-memory capabilities of PowerPivot in SQL Server 2012, Microsoft introduced a fully in-memory version of Microsoft Analysis Services cubes, based on the same data structure as PowerPivot, to address the needs of organizations that are turning to newer in-memory OLAP architectures over traditional, multidimensional OLAP architectures to support dynamic and interactive analysis of large datasets. Above-average performance ratings suggest that customers are happy with the in-memory improvements in SQL Server 2012 compared with SQL Server 2008 R2, which ranks below the survey average.
  •  
    "Gartner defines the business intelligence (BI) and analytics platform market as a software platform that delivers 15 capabilities across three categories: integration, information delivery and analysis."
cezarovidiu

4 Ways Predictive Technology Makes Your Life Easier | ClickZ - 0 views

  • Half the money I spend on advertising is wasted; the trouble is I don't know which half.
  • we can also proactively identify interested buyers based on their digital body language.
cezarovidiu

You Probably Need Parallel Except When You Don't - 0 views

  • f you are running a large Oracle data warehouse you should be using parallel
  • Like all tools you have to use parallel correctly; no more would we think of using a wrench to hammer a nail then should you think parallel is the answer to all performance problems. Sometimes parallel will make things worse, sometimes parallel will make performance less predictable.
  • Parallel introduces additional work to a query, simplistically we need to: split the query into multiple parallel processes, execute them, wait for the processes to complete and finally coordinate the results. This all takes time to do. Our time saving comes from being able to process multiple smaller chunks of data simultaneously. If the time to execute the step in parallel is not significantly faster than doing it without parallel then the additional overhead may make parallel processing a slower option; this is typically the case with small tables where a full tablescan or an indexed access is fast. Use too few parallel processes and we will not gain much in performance, too many and we risk starving the database of resource for other work or even slow our own process as it waits for resource. If you have implemented some form of CPU resource management on your system you may find that you experience delays as your parallel slaves ‘wait their turn’
cezarovidiu

What's in a Tag? | ClickZ - 0 views

  • The tag-management industry is growing rapidly, as tags are critical to gathering data about your customers.
  • It's the early days for tag management, but the industry is growing rapidly because it's not so much about tags, but about the bigger challenge of using digital data.
  • Where does tag management fit in the data picture? Here's an example someone shared with me recently: He had gone to an antivirus product's website, read the reviews, and bought the software. In the days that followed, however, he suddenly began to see banner ads from that same software maker whenever he visited CNN, ESPN, and other favorite websites. The software maker knew he had visited its website, but not that he already bought the product. They were retargeting him with banner ads at unnecessary cost and no purpose.
  • ...11 more annotations...
  • Tag management fixes this problem.
  • Most marketing teams struggle with the volume, velocity, and variety of digital data generated every time someone touches the brand. You need insights from the data. You need to understand cross-channel behavior and run predictive "what if" scenarios to improve the effectiveness of your media mix. Tag management can create a foundation to make it easier to use multichannel marketing analytics for these purposes.
  • But one of the big improvements introduced by tag management systems is this: non-technical marketers can do their own tag management.
  • No need to ask IT to deploy tags.
  • You can deploy just one tag, sometimes even just a single line of code, and then manage all the tags through a single user interface.
  • That's a big change from being forced to modify source code on your website.
  • The best tag management systems unite tagged data in one place - automatically.
  • Now the best tag management systems track a data record each time a consumer touches your brand - and deliver it to you in one place.
  • what each consumer has viewed, on what platform, how long they spent with your content, and whether they purchased anything. You get a unified view for everything the consumer has done across all marketing channels.
  • they include the right to be forgotten, easier access to your own data, explicit consent over the use of your data, and privacy by design by default.
  • And, it's clear that the best tag management systems can be a foundation for building those elusive, one-to-one relationships with customers, while using marketing analytics to further improve your marketing decisions about how, when, and where to relate to them.
cezarovidiu

Focus on Valuable Data - Not Big Data - to Boost Conversions and ROI | ClickZ - 0 views

  • Big Data has been all the rage. But fast data, even if it is small, can be more valuable than complicated masses of information.
  • Here's why: All the focus on "bigger is better" has overlooked the fact that most Big Data segments have not been validated with a business application or value.
  • Those kinds of analytics can help you find the right streams to access and work with, and also can help you build out robust programs that identify valuable customers.
  • ...1 more annotation...
  • 1) Your First-Party Data: The primary and most valuable data set you can access, first-party data encompasses transactional and other customer-level profile information you have on your customers. It could also include your own off-line segmentation analysis that allows you to map a customer to a customer profile around which you build your marketing programs. This can also include your analytics or other on-site tracking data, which can deliver behavioral insight to your consumers. This data can be difficult to export from its current environment due to the ad hoc nature of the data, but, if possible, look at ways to make this information accessible to your digital sites. 2) Third-Party Data: A consumer's broader Web browsing and buying history can now be accessed in session to provide you with more context on their likes and habits. Data management platforms (DMPs) and other data aggregators are accelerating this offering and, just as importantly, the availability of this type of data. This is invaluable in the context of new visitors who you know nothing about historically. 3) Real-Time Behavior: Let's not forget what our customers are telling us with each click. We get enamored with our predictive modeling to the point that we do not see the tell-tale signs as they are happening. Take the time to stop, look, and react. Your analytic tools, personalization tools, and other software-as-a-service (SaaS) platforms can help you trigger alternate site experiences based on every click you see.
cezarovidiu

Magic Quadrant for Advanced Analytics Platforms - 1 views

  • Gartner defines advanced analytics as, "the analysis of all kinds of data using sophisticated quantitative methods (for example, statistics, descriptive and predictive data mining, simulation and optimization) to produce insights that traditional approaches to business intelligence (BI) — such as query and reporting — are unlikely to discover."
  • packaged analytics applications that target specific business domains
  • Revolution Analytics
cezarovidiu

Analyzing Human Data: Take a Dive to Find Out What Your Customers Really Feel - Content... - 0 views

  • What really interests me, and what I think should interest marketers, is what I’ll call signals – one of which is intent. Intent is critical because it can predict action. For example, “Is this person shopping to buy a product like my product?” “Is this person unhappy and needing some form of attention?” “Is this person about to return the product for a reason that is addressable?”
  • Sentiment is one ingredient of intent. If someone is happy, sad, angry … that can be determined via sentiment analysis technologies.
  • Many tools struggle with context.
  • ...9 more annotations...
  • An example I hear over and over again is “thin” – good when you’re talking about electronics, but bad if you’re talking about hotel walls or the feel of hotel sheets. To do sentiment analysis correctly, you need refinement. You need customization for particular industries and business functions.
  • The market, unfortunately, is polluted with tools that claim to have sentiment abilities, but are too crude to be usable. Even with refinement (e.g., the ability to handle negators and contextual sentiment), approaches that deliver only positive and negative ratings don’t take you very far.
  • There are definitely easy, inexpensive entry points that can meet basic, just-getting-started needs: tools for social listening, survey analysis, customer service (handling contact-center notes, for instance), customer experience (via analysis of online reviews and forums), automated email processing, and other needs. These technologies are user friendly, available on demand, as a service.
  • Text mining:
  • Digital Reasoning, Luminoso and AlchemyAPI.
  • Image recognition and analysis: Image analysis now automatically identifies brand labels in pictures.
  • VisualGraph (now owned by Pinterest), Curalate, Piqora (nee Pinfluencer), and gazeMetrix.
  • Emotional analysis in images, audio, and video: These companies promote analysis of speech and facial expression primarily for structured studies
  • • Affectiva conducts webcam emotional analysis for media and ad research, including development tools to integrate emotional study in mobile apps. • Emotient performs emotional analyses in retail environments, evaluating signage, displays, and customer service. • EmoVu by Eyeris tests the engagement level of both short- and long-form video content. • Beyond Verbal studies emotion based on a person’s voice in real time.
1 - 14 of 14
Showing 20 items per page