Skip to main content

Home/ BI-TAGS/ Group items tagged job

Rss Feed Group items tagged

cezarovidiu

OBIEE Consultant Jobs, Average Salary for OBIEE Consultant Jobs - 0 views

  •  
    "The first part of the table below looks at the demand for the OBIEE Consultant role in IT jobs advertised across the UK. Included is a guide to the average salaries offered in IT jobs that have cited OBIEE Consultant in their job title over the 3 months to 7 February 2013 with a comparison to the same period in the previous 2 years. The second part of the table is for comparison and provides aggregates for all Job Titles currently tracked."
cezarovidiu

Why Soft Skills Matter in Data Science - 0 views

  • You cannot accept problems as handed to you in the business environment. Never allow yourself to be the analyst to whom problems are “thrown over the fence.” Engage with the people whose challenges you’re tackling to make sure you’re solving the right problem. Learn the business’s processes and the data that’s generated and saved. Learn how folks are handling the problem now, and what metrics they use (or ignore) to gauge success.
  • Solve the correct, yet often misrepresented, problem. This is something no mathematical model will ever say to you. No mathematical model can ever say, “Hey, good job formulating this optimization model, but I think you should take a step back and change your business a little instead.” And that leads me to my next point: Learn how to communicate.
  • In today’s business environment, it is often unacceptable to be skilled at only one thing. Data scientists are expected to be polyglots who understand math, code, and the plain-speak (or sports analogy-ridden speak . . . ugh) of business. And the only way to get good at speaking to other folks, just like the only way to get good at math, is through practice.
  • ...4 more annotations...
  • Beware the Three-Headed Geek-Monster: Tools, Performance, and Mathematical Perfection Many things can sabotage the use of analytics within the workplace. Politics and infighting perhaps; a bad experience from a previous “enterprise, business intelligence, cloud dashboard” project; or peers who don’t want their “dark art” optimized or automated for fear that their jobs will become redundant.
  • Not all hurdles are within your control as an analytics professional. But some are. There are three primary ways I see analytics folks sabotage their own work: overly complex modeling, tool obsession, and fixation on performance.
  • In other words, work with the rest of your organization to do better business, not to do data science for its own sake.
  • Data Smart: Using Data Science to Transform Information into Insight by John W. Foreman. Copyright © 2013.
cezarovidiu

Big Data is a Solution Looking for a Problem: Gartner - CIO India News on | CIO.in - 0 views

  • Big Data is forecast to drive $34 billion of IT spending in 2013 and create 4.4 million IT jobs by 2015, but it is currently still a solution looking for a problem, according to analyst firm Gartner.
  • While businesses are keen to start mining their data stores for useful insights, and many are already experimenting with technologies like Hadoop, the biggest challenge is working out what question you are trying to answer
cezarovidiu

BI Brief - Four Legs of a Successful Business Intelligence (BI) Project Team - 0 views

  • 1. Project Sponsorship and Governance 2. Project Management 3. Development Team (Core Team) 4. Extended Project Team
  • 1. Project Sponsorship and Governance IT and the business should form a BI steering committee to sponsor and govern design, development, deployment, and ongoing support. It needs both the CIO and a business executive, such as CFO, COO, or a senior VP of marketing/sales to commit budget, time, and resources. The business sponsor needs the project to succeed. The CIO is committed to what is being built and how.
  • 2. Project Management Project management includes managing daily tasks, reporting status, and communicating to the extended project team, steering committee, and affected business users. The project management team needs extensive business knowledge, BI expertise, DW architecture background, and people management, project management, and communications skills. The project management team includes three functions or members: Project development manager - Responsible for deliverables, managing team resources, monitoring tasks, reporting status, and communications. Requires a hands-on IT manager with a background in iterative development. Must understand the changes caused by this approach and the impact on the business, project resources, schedule and the trade-offs. Business advisor - Works within the sponsoring business organization. Responsible for the deliverables of the business resources on the project's extended team. Serves as the business advocate on the project team and the project advocate within the business community. Often, the business advocate is a project co-manager who defers to the IT project manager the daily IT tasks but oversees the budget and business deliverables. BI/DW project advisor - Has enough expertise with architectures and technologies to guides the project team on their use. Ensures that architecture, data models, databases, ETL code, and BI tools are all being used effectively and conform to best practices and standards.
  • ...2 more annotations...
  • 3. Development Team (Core Team) The core project team is divided into four sub-teams: Business requirements - This sub-team may have business people who understand IT systems, or IT people who understand the business. In either case, the team represents the business and their interests. They are responsible for gathering and prioritizing business needs; translating them into IT systems requirements; interacting with the business on the data quality and completeness; and ensuring the business provides feedback on how well the solutions generated meet their needs. BI architecture - Develops the overall BI architecture, selects the appropriate technology, creates the data models, maps the overall data workflow from source systems to BI analytics, and oversees the ETL and BI development teams from a technical perspective. ETL development - Receives the business and data requirements, as well as the target data models to be used by BI analytics. Develops the ETL code needed to gather data from the appropriate source systems into the BI databases. Often, a system analyst who is a expert in the source systems such as SAP is part of the team to provide knowledge of the data sources, customizations, and data quality. BI development - Create the reports or analytics that the business users will interact with to do their jobs. This is often a very iterative process and requires much interaction with the business users.
  • 4. Extended Project Team There are several functions required by the project team that are often accomplished through an "extended" team: Players - A group of business users are signed up to "play with" or test the BI analytics and reports as they are developed to provide feedback to the core development team. This is a virtual team that gets together at specific periods of the project but they are committed to this role during those periods. Testers - A group of resources are gathered, similarly to the virtual team above, to perform more extensive QA testing of the BI analytics, ETL processes, and overall systems testing. You may have project members test other members' work, such as the ETL team test the BI analytics and visa versa. Operators - IT operations is often separated from the development team but it is critical that they are involved from the beginning of the project to ensure that the systems are developed and deployed within your company's infrastructure. Key functions are database administration, systems administration, and networks. In addition, this extended team may also include help desk and training resources if they are usually provided outside of development.
cezarovidiu

Filling a Critical Role in Business Today: The Data Translator - Microsoft Business Int... - 0 views

  • a lot of articles calling data scientists and statisticians the jobs of the future
  • there are more immediate needs that, when addressed, will have a much greater business impact.
  • Right now we have huge opportunities to make the data more accessible, more “joinable” and more consumable. Leaders don’t want more data – they want more information they can use to run their businesses.
  • ...5 more annotations...
  • Every company has hundreds of millions of records about their sales, expenses, employees and so on, with dozens of insights yet to be discovered through simple comparison or triangulation of relevant data.
  • Why don’t we focus on this? I think because it’s very difficult to do – being successful in this “data translator” role requires a unique set of skills and knowledge, the combination of which I call the BASE skillset: Business understanding Ability to synthetize and simplify Storytelling skills Expertise in data visualization
  • Business Understanding This one seems obvious, but it doesn’t mean simply understanding the financials of a business. Rather, it means truly knowing the operational details, the incentives, the install base, market growth, penetration, the competition, etc. An analyst can’t just know the technical aspect of a report or the math behind the numbers, but what is truly driving a pattern in terms of product quality, competition, incentives and/or offerings. The best analysts are able to mathematically isolate the key levers of a trend and then suggest actions to react to or take advantage of those trends. Ability to Synthetize and Simplify This is, in my opinion, the most underrated and underappreciated skill. Combing through thousands of data points and netting out 3-4 key issues in under 10 minutes, and then communicating these to a group of execs with very different analytical skills, is truly difficult. The key is to make it simple but not simplistic, which means you still capture the complexity even as you get to the few core insights. It requires a very thorough effort to gather all the relevant information before categorizing, prioritizing and deciding if it is significant. After a while, you become an expert and can sniff things out quickly. At the same time, there is the danger of missing anomalies when you jump to conclusions based only on a summary look.
  • Storytelling Skills There are stages that should be followed when explaining complex ideas, something data translators are frequently expected to do. The best storytellers start by giving context and trying to couple the current discussion to something the audience already knows, ensuring the story is well structured and connected. We have to move from a “buffet style” business review with thousands of numbers packed in tables to a layered approach that will guide the audience to focus first on the most relevant messages, diving deeper only when necessary. Minto Pyramid Principles, which are built around a process for organizing thought and communication, are helpful in making sure you really focus on what is important and relevant, versus being obsessed in telling every fact. Expertise in Data Visualization I am glad to finally see so much focus on Information Visualization and I believe this is correlated to the explosion of data. Traditional methods of organizing data do not facilitate an intuitive understanding of key information points or trends. For instance, the two examples below contain data on car sales across the U.S. The first, an alphabetized list, is much less intuitive than the second, which shows those sales on a map in Power View. With Power View, right away you can identify the states with the highest sales: CA, FL, TX, NY. (Workbook available here)
  • There is no better way to see patterns or trends than data visualization, making expertise in this area – both technical and analytical – critical for data translators.
cezarovidiu

OBIEE - state of the market - rates | OBIEE Blog - 0 views

  • First observation: Dice. I’m trying to be cautiously optimistic, but it seems as Business Intelligence market in general is picking up.
cezarovidiu

Business Intelligence Blog - The ElastiCube Chronicles - 0 views

  • SiSense’s survey finds that salaries for data professionals are on the rise across all geographies. The annual earnings of a data professional can range from an average of $55,000 USD for a data analyst to an average of $132,000 for VP Analytics. As many as 61% of the survey respondents reported higher earnings in 2012 compared to 2011, and only 12% reported lower earnings.
  • Other highlights of the survey findings include: Data professionals are highly educated. 85% of the respondents have some college degree, 39% have a Master’s degree, and 5% are Ph.D.’s. Those with doctoral degrees earn on average 65% more than those with Master’s degrees, who in turn earn 16% more than those with Bachelor’s degrees. On the job experience is even more important than education in determining salary levels. On average, professionals with ten or more years of experience earn 80% more than those with 3 years or less.
  • At the same time, the survey shows that those with 6 years or less make up as much as 59% of the data profession workforce.
  • ...1 more annotation...
  • Most Data Professionals work in teams of up to five people. “Companies are starting to realize that Data is key to their success. The majority of them, though are not growing their Data Science teams fast enough to win. This maybe because they don’t want to or because they can’t. This is an alarming trend though and only software can come to the rescue,” noted Aziza.
cezarovidiu

Tableau Software's Pat Hanrahan on "What Is a Data Scientist?" - Forbes - 0 views

  • In the contemporary enterprise, almost everyone will need to have data-science skills of some kind.
  • “When most people think of a data scientist, they think of a statistician, a guy with ‘analyst’ in his title,’” Hanrahan says. “Or, someone who works in IT and manages the data warehouses. To do these jobs, you certainly needed programming skills; you probably needed advanced statistics skills, or some combination of those skills.”
  • “At the most basic level, you are a data scientist if you have the analytical skills and the tools to ‘get’ data, manipulate it and make decisions with it,” he says.
  •  
    "What is a Data Scientist?"
cezarovidiu

Using Email to Get the Conversion (Without Stalking) | ClickZ - 0 views

  • The reality of the inbox is that people subscribe to a lot more stuff than they are committed to reading. As a result, they sift through the advertising and marketing noise to find the gems--the messages they connect with and that add value to their lives.
  • your email has to add value to your customers' lives
  • From your initial sign up process to the content and frequency of your messaging, your most important job is showing your audience that you respect the privilege of being invited into their inbox.
  • ...15 more annotations...
  • Rule #1: Don't ask for more information than you'd personally be willing to give. Asking for too much information in an opt-in form can be a major deterrent to visitors who would otherwise be likely to sign up.
  • Make signing up as simple as possible by requiring only the bare minimum. In many cases, this means just the email address. Every field you add to your form beyond that will decrease the chances of someone filling it out.
  • Here's another tip: If you really want to convince a visitor to opt in to your communications, make it clear that the value they'll receive greatly outweighs the hassle of signing up
  • An opt-in form that says something like "Sign up for our newsletter," doesn't offer any benefit to the visitor. Give people a reason to opt-in by offering them something they'll care about, like: "Sign up for our monthly newsletter and gain instant access to our 57-page e-book on X."
  • Offers of buying guides, e-books, case studies, online videos, and instant coupons are all great incentives to test.
  • I recently welcomed two kittens into the family and we buy our supplies from Petco. As soon as I signed up for Petco's Pals Rewards program, the store proceeded to email me every single day with a new coupon offer. Can you guess what I did? Yep, I opted out. I'll still buy pet supplies from Petco, but at some point, the annoyance became greater than the value of the coupons.
  • One of the most critical steps in structuring your e-commerce email campaign is to set the publish frequency to align with the types of products you're selling and who you're selling to. At a bare minimum, segment your audience into two broad categories of current customers and prospects.
  • When you're communicating with prospective customers, offer discounts, promotions and pre-sale notifications and buying tips in your emails, to move them along the conversion path.
  • You can further segment your email list by those you send to frequently, those you send to less frequently and those you send to only sometimes.
  • You'll find your sweet spot by tracking conversions from the list, looking at the opt-out rate and by allowing your audience to manage the frequency of the communications (for example, by giving them the option to change the frequency before they opt out entirely).
  • When most people opt in to receive B2B email communications, they are at the top of the conversion funnel; the "awareness" stage. A smart B2B email campaign will then provide the right content to bring the buyer deeper into the conversion funnel, with content specific for each stage of the buying cycle.
  • Here are some ideas to get you started: Explore learning concepts that get the reader up to speed on the ideas surrounding your services, and that demonstrate your brand's unique perspective.  Dive into the ideas behind why a service like yours is so important to customers, what to look for in a company, and how your service or ideas compare to others.  Answer common questions your prospective customers have at each stage of the buying cycle and even after the purchase.
  • Don't forget you're not selling to rational people. Most of the buying decisions in a B2B environment are based on what could happen if the choice is wrong. Unlike the consumer market, where an item can be easily returned if it doesn't meet the buyer's needs, making the wrong purchase decision in the B2B arena could be extremely costly.
  • Your goal as the marketer is to arm the potential buyer with content that will reduce any fear and uncertainty about selecting your business over the competition.
  • Think of topics like, "7 Biggest Mistakes People Make When Choosing [insert your service here]" as a basis for building your case. If you have a sales team, ask them for the most common objections they hear from prospects, and create your content around the specific concerns known to be top-of-mind for many buyers.
cezarovidiu

Installing Hadoop for Fedora & Oracle Linux(Single Node Cluster) | accretion infinity - 0 views

  • Hadoop is a framework written in Java for running applications on large clusters of commodity hardware and incorporates features similar to those of the Google File System (GFS) and of the Map Reduce computing paradigm. Hadoop’s HDFS is a highly fault-tolerant distributed file system and, like Hadoop in general, designed to be deployed on low-cost hardware. It provides high throughput access to application data and is suitable for applications that have large data sets.
  • Some of the Hadoop projects we will talk about are: HDFS : A distributed filesystem that runs on large clusters of commodity machines. Map Reduce: A distributed data processing model and execution environment that runs on large clusters of commodity machines. Pig: A data flow language and execution environment for exploring very large datasets. Pig runs on HDFS and MapReduce clusters. HBase: A distributed, column-oriented database. HBase uses HDFS for its underlying storage, and supports both batch-style computations using MapReduce and point queries (random reads). ZooKeeper: A distributed, highly available coordination service. ZooKeeper provides primitives such as distributed locks that can be used for building distributed applications. Oozie: Oozie is a workflow scheduler system to manage Apache Hadoop jobs.
  • Oracle Linux as the operating system and Hadoop 1.1.2 or 1.2.0
1 - 15 of 15
Showing 20 items per page