Skip to main content

Home/ Vitamin D/ Group items tagged Gut

Rss Feed Group items tagged

Matti Narkia

Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset... - 0 views

  •  
    Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of Crohn's disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density. Abreu MT, Kantorovich V, Vasiliauskas EA, Gruntmanis U, Matuk R, Daigle K, Chen S, Zehnder D, Lin YC, Yang H, Hewison M, Adams JS. Gut. 2004 Aug;53(8):1129-36. PMID: 15247180 doi: 10.1136/gut.2003.036657. Conclusions: These data demonstrate that elevated 1,25(OH)2D is more common in CD than previously appreciated and is independently associated with low bone mineral density. The source of the active vitamin D may be the inflamed intestine. Treatment of the underlying inflammation may improve metabolic bone disease in this subgroup of patients.
Matti Narkia

Vitamin D receptor gene polymorphism: association with Crohn's disease susceptibility -... - 0 views

  •  
    Vitamin D receptor gene polymorphism: association with Crohn's disease susceptibility.\nSimmons JD, Mullighan C, Welsh KI, Jewell DP.\nGut. 2000 Aug;47(2):211-4.\nPMID: 10896912 \ndoi:10.1136/gut.47.2.211
Matti Narkia

Improved Cholecalciferol Nutrition in Rats Is Noncalcemic, Suppresses Parathyroid Hormo... - 0 views

  •  
    Improved cholecalciferol nutrition in rats is noncalcemic, suppresses parathyroid hormone and increases responsiveness to 1, 25-dihydroxycholecalciferol. Vieth R, Milojevic S, Peltekova V. J Nutr. 2000 Mar;130(3):578-84. PMID: 10702588 We conclude suppression of 1,25(OH)(2)D and PTH, and higher renal VDR mRNA and 24-hydroxylase did not involve higher free 1,25(OH)(2)D concentration or a first pass effect at the gut. Thus, 25(OH)D or a metabolite other than 1,25(OH)(2)D is a physiological, transcriptionally and biochemically active, noncalcemic vitamin D metabolite. When viewed from a perspective that starts with higher vitamin D nutrition, the results indicate that low vitamin D nutrition may bring about a form of resistance to 1,25(OH)2D. This situation would explain why, in humans, nutritional rickets and osteomalacia are commonly associated with normal or increased levels of 1,25(OH)2D (Chesney et al. 1981Citation , Eastwood et al. 1979Citation , Garabedian et al. 1983Citation ,Rasmussen et al. 1980Citation )-these are not like the low hormone levels associated with any other endocrine-deficiency disorder. A connection between lower vitamin D nutrition and vitamin D resistance helps to explain why the supposedly inactive compound 25(OH)D is more relevant in diagnosing nutritional rickets than is the active hormone 1,25(OH)2D. If the features of improved vitamin D nutrition shown here were demonstrated for any newly synthesized compound, the compound would be classified as a noncalcemic 1,25(OH)2D analogue (Brown et al. 1989Citation , Finch et al. 1999Citation , Goff et al. 1993Citation , Koshizuka et al. 1999Citation ). Thus, we contend that 25(OH)D or a metabolite of it other than 1,25(OH)2D exists as a physiological and biologically-active noncalcemic vitamin D metabolite whose effects require further examination, particularly in relationship to studies involving the synthetic analogs of 1,25(OH)2D.
1 - 3 of 3
Showing 20 items per page