Skip to main content

Home/ Vitamin D/ Group items tagged rats

Rss Feed Group items tagged

Matti Narkia

Improved Cholecalciferol Nutrition in Rats Is Noncalcemic, Suppresses Parathyroid Hormo... - 0 views

  •  
    Improved cholecalciferol nutrition in rats is noncalcemic, suppresses parathyroid hormone and increases responsiveness to 1, 25-dihydroxycholecalciferol. Vieth R, Milojevic S, Peltekova V. J Nutr. 2000 Mar;130(3):578-84. PMID: 10702588 We conclude suppression of 1,25(OH)(2)D and PTH, and higher renal VDR mRNA and 24-hydroxylase did not involve higher free 1,25(OH)(2)D concentration or a first pass effect at the gut. Thus, 25(OH)D or a metabolite other than 1,25(OH)(2)D is a physiological, transcriptionally and biochemically active, noncalcemic vitamin D metabolite. When viewed from a perspective that starts with higher vitamin D nutrition, the results indicate that low vitamin D nutrition may bring about a form of resistance to 1,25(OH)2D. This situation would explain why, in humans, nutritional rickets and osteomalacia are commonly associated with normal or increased levels of 1,25(OH)2D (Chesney et al. 1981Citation , Eastwood et al. 1979Citation , Garabedian et al. 1983Citation ,Rasmussen et al. 1980Citation )-these are not like the low hormone levels associated with any other endocrine-deficiency disorder. A connection between lower vitamin D nutrition and vitamin D resistance helps to explain why the supposedly inactive compound 25(OH)D is more relevant in diagnosing nutritional rickets than is the active hormone 1,25(OH)2D. If the features of improved vitamin D nutrition shown here were demonstrated for any newly synthesized compound, the compound would be classified as a noncalcemic 1,25(OH)2D analogue (Brown et al. 1989Citation , Finch et al. 1999Citation , Goff et al. 1993Citation , Koshizuka et al. 1999Citation ). Thus, we contend that 25(OH)D or a metabolite of it other than 1,25(OH)2D exists as a physiological and biologically-active noncalcemic vitamin D metabolite whose effects require further examination, particularly in relationship to studies involving the synthetic analogs of 1,25(OH)2D.
Matti Narkia

Acid-base balance and bone - Acid-base balance, dentinogenesis and dental caries: Exper... - 0 views

  •  
    Acid-base balance has an effect on bone turnover, especially on the rates of bone resorption and calcium mobilization. Bone mineral participates in the defense against acid-base disturbances, especially against metabolic acidosis (Lemann et al. 1966, Green & Kleeman 1991). The role of the bone mineral is important in the acid-base disorders, as no appreciable change in the intestinal calcium absorption occurs (Bichara et al. 1990). In the mammalian body, mainly three hormones regulate the calcium metabolism and the bone turnover. 1,25-dihydroxycholecalciferol (vitamin D derivative) increases calcium absorption from the intestine and, indirectly, from bone. Parathyroid hormone mobilizes calcium from the bone and increases the urinary phosphate excretion. Calcitonin inhibits bone resorption (Ganong 1981). Used as drugs, these hormones are also capable of inducing acid-base disorders. Calcitonin administration (Escanero et al. 1991) and vitamin D excess (Bichara et al. 1990) have been reported to cause metabolic alkalosis.
1 - 2 of 2
Showing 20 items per page