Content analysis and the cold-start problem - Duke Listens! - 0 views
-
A classic problem in traditional collaborative filtering recommendation is the 'cold start' problem. It is hard to generate recommendations for new items because there isn't enough taste data about the new items to make reliable correlations with other items. That's where content analysis comes in. The cold start problem can be alleviated by basing recommendations on similarity of content as well as the wisdom of the crowds. New items can be analyzed and enrolled into a recommender, making these items available and recommendable.