Skip to main content

Home/ Technology Trends/ Group items tagged Lab

Rss Feed Group items tagged

thinkahol *

Blood vessels for lab-grown tissues | KurzweilAI - 0 views

  •  
    Researchers from Rice University and Baylor College of Medicine (BCM) have broken one of the major roadblocks on the path to growing transplantable tissue in the lab: They've found a way to grow the blood vessels and capillaries needed to keep tissues alive.
thinkahol *

Tiny LEDs Pump out Quantum-Entangled Photons | 80beats | Discover Magazine - 0 views

  •  
    LEDsThe strange quantum state of entanglement isn't just challenging to think about, it's hard to create. This "spooky" phenomenon-in which two particles are linked, even if they're separated by distance-can be created by scientists in the lab using bulky lasers. But scientists published a study in Nature today in which they created a light-emitting diode (LED) that produces entangled photons.
thinkahol *

Why 'Gorilla Arm Syndrome' Rules Out Multitouch Notebook Displays | Gadget Lab | Wired.com - 0 views

  •  
    Apple's new MacBook Air borrows a lot of things from the iPad, including hyperportability and instant-on flash storage. But the Air won't use an iPad-like touchscreen. Neither will any of Apple's laptops. That's because of what designers call "gorilla arm."
thinkahol *

Nanorope: a step toward complex nanomaterials that assemble themselves | KurzweilAI - 0 views

  •  
    Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have coaxed polymers to braid themselves into wispy nanoscale ropes that approach the structural complexity of biological materials.
Duane Sharrock

Tissue engineering: Growing new organs, and more - MIT News Office - 0 views

  • This kind of disease modeling could have a great impact in the near term, says MIT professor Sangeeta Bhatia, who is developing liver tissue to study hepatitis C and malaria infection.
  • liver is difficult to grow outside the human body because cells tend to lose their function when they lose contact with neighboring cells. “
  • In a large-scale project recently funded by the Defense Advanced Research Projects Administration, several MIT faculty members are working on a “human-on-a-chip” system that scientists could use to study up to 10 human tissue types at a time.
  • ...6 more annotations...
  • Biological and Mechanical Engineering
  • developing regenerative therapies that help promote wound healing.
  • Endothelial cells, normally found lining blood vessels, could help repair damage caused by angioplasty or other surgical interventions; smoke inhalation; and cancer or cardiovascular disease.
  • One of the earliest successes of implantable tissues was the development of artificial skin, which is now commonly used to treat burn victims.
  • Langer is now working on more complex tissues, such as cardiac-tissue scaffolds that include electronic sensors and a synthetic polymer that could restore vocal-cord function in people who have lost their voices through overuse or other types of damage
  • In Bhatia’s lab, where tissue-engineering research is evenly divided between modeling diseases and working toward implantable organs, researchers recently developed 3-D liver tissues that include their own network of blood vessels
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
1 - 6 of 6
Showing 20 items per page