Skip to main content

Home/ Technology Trends/ Group items tagged complex

Rss Feed Group items tagged

thinkahol *

Nanorope: a step toward complex nanomaterials that assemble themselves | KurzweilAI - 0 views

  •  
    Scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have coaxed polymers to braid themselves into wispy nanoscale ropes that approach the structural complexity of biological materials.
thinkahol *

Stamping out low-cost nanodevices | KurzweilAI - 0 views

  •  
    A simple technique for stamping patterns invisible to the human eye onto a special class of nanomaterials has been developed by researchers at Vanderbilt University. The new method works with porous nanomaterials that are riddled with tiny voids, which give them unique optical, electrical, chemical, and mechanical properties. There are nanoporous forms of gold, silicon, alumina, and titanium oxide, among others. The technique involves the creation of pre-mastered stamps using traditional, but complex, clean room processes and then using the stamps to create patterns using a new process called direct imprinting of porous substrates (DIPS). DIPS can create a device in less than a minute, regardless of its complexity. The smallest pattern the researchers have made to date has features of only a few tens of nanometers (about the size of a single fatty acid molecule). They have also succeeded in imprinting the smallest pattern yet reported in nanoporous gold, one with 70-nanometer features. The first device the group has created is a "diffraction-based" biosensor that can be configured to identify a variety of different organic molecules, including DNA, proteins and viruses. The researchers envision a wide range of applications including drug delivery, chemical and biological sensors, solar cells, and battery electrodes.
thinkahol *

New Scientist TV: Giant 3D loom weaves parts for supercar - 0 views

  •  
    It's a sports car few people will be able to get their hands on. In production since last December, only 500 Lexus LFAs will be produced and they were already sold out in early June 2010 (see photo below). But it's not just its top speed of 325 kilometres per hour that's attracting buyers. The car is being used as a test bed for newly-designed parts made from carbon fibre and plastic. Compared to steel or aluminium, it makes the car stronger and lighter but producing these components is much more time-consuming: only one car is currently being assembled per day. One of the key technologies being used is a high-tech circular loom, guided by lasers, that can weave 3D objects (see video above). The machine's futuristic design attracted lots of media attention two years ago, but the video was pulled for fear it would expose company secrets. Now Lexus is revealing how the loom is being used to create complex 3D parts with varying thicknesses and curved shapes. For example, it can create roof rails by weaving fibres around a core, two layers at time, until twelve layers later a hollow roof rail is produced. The piece can then be moulded and injected with resin to create the finished part. The machine was also used to create the car's chassis and front pillars as well as the steering wheel.
Duane Sharrock

Tissue engineering: Growing new organs, and more - MIT News Office - 0 views

  • This kind of disease modeling could have a great impact in the near term, says MIT professor Sangeeta Bhatia, who is developing liver tissue to study hepatitis C and malaria infection.
  • liver is difficult to grow outside the human body because cells tend to lose their function when they lose contact with neighboring cells. “
  • In a large-scale project recently funded by the Defense Advanced Research Projects Administration, several MIT faculty members are working on a “human-on-a-chip” system that scientists could use to study up to 10 human tissue types at a time.
  • ...6 more annotations...
  • Biological and Mechanical Engineering
  • developing regenerative therapies that help promote wound healing.
  • Endothelial cells, normally found lining blood vessels, could help repair damage caused by angioplasty or other surgical interventions; smoke inhalation; and cancer or cardiovascular disease.
  • One of the earliest successes of implantable tissues was the development of artificial skin, which is now commonly used to treat burn victims.
  • Langer is now working on more complex tissues, such as cardiac-tissue scaffolds that include electronic sensors and a synthetic polymer that could restore vocal-cord function in people who have lost their voices through overuse or other types of damage
  • In Bhatia’s lab, where tissue-engineering research is evenly divided between modeling diseases and working toward implantable organs, researchers recently developed 3-D liver tissues that include their own network of blood vessels
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
  •  
    "MIT News examines research with the potential to reshape medicine and health care through new scientific knowledge, novel treatments and products, better management of medical data, and improvements in health-care delivery. "
1 - 4 of 4
Showing 20 items per page