Skip to main content

Home/ Sensorica Knowledge/ Group items matching "identity" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools. 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Tiberius Brastaviceanu

How The Blockchain Will Transform Everything From Banking To Government To Our Identities - 1 views

  • The first generation of the Internet was a great tool for communicating, collaborating and connecting online, but it was not ideal for business. When you send and share information on the Internet, you’re not sending an original but a copy. That’s good for information — it means people have a printing press for information and that information becomes democratized — but if you want to send an asset, it’s a problem. If I send you $100 online, you need to be sure you have it and I don’t, and that I can’t spend the same $100 somewhere else. As a result, we need intermediaries to perform critical roles — to establish identity between two parties in a transaction, and to do all the settlement transaction logic, which includes record-keeping.
  • With blockchain, for the first time, we have a new digital medium for value where anyone can access anything of value — stocks, bonds, money, digital property, titles, deeds — and even things like identity and votes can be moved, stored and managed securely and privately. Trust is not established though a third party but with clever code and mass consensus using a network. That’s got huge implications for intermediaries and businesses and society at large
  • And also with government, as a central repository of information an entity that delivers services.
  • ...35 more annotations...
  • There’s an opportunity to disrupt how those organizations work. Intermediaries, though they do a good job, have a few problems — they’re centralized, which makes them vulnerable to attack or failure
  • They tax the system
  • They capture data
  • They exclude billions of people from the global economy
  • internet of value
  • With blockchain, we can go from redistributing wealth to distributing value and opportunity value fairly a priori, from cradle to grave.
  • creating a true sharing economy by replacing service aggregators like Uber with distributed applications on the blockchain
  • unleashing a new age of entrepreneurship
  • build accountable governments through transparency, smart contracts and revitalized models of democracy.
  • The virtual you is owned by large intermediaries
  • This virtual you knows more about you than you do sometimes
  • So there’s a strange phenomenon from the first generation of the Internet where the most important asset class that’s been created is data —and we don’t control it or own it.
  • individuals taking back their identity through your own personal avatar
  • The financial services industry
  • antiquated
  • a complicated machine that does a simple thing
  • settlement
  • an opportunity to profoundly change the nature of the entire industry. The Starbucks transaction should be instant.
  • At the heart of it, the financial services industry moves value.
  • so this is both an existential threat to the financial services industry and an historic opportunity.
  • Banks trade on trust
  • Within the decade, every single financial asset, which is really just a contract
  • will all move to a blockchain-based format
  • In the accounting world, a lot of firms rely on costly audits to drive their profits
  • With blockchain, you could have a third entry time-stamped in a distributed ledger that could be acceptable to any relevant stakeholders from regulators to shareholders, giving you a perfect record of the truth and thus the financial health of an organization.
  • Nobel-winning economist Ronald Coase argued that firms exist because transaction costs in an open market are greater than the cost of doing things inside the boundaries of the corporation.
  • four costs — of search, coordination, contracting and establishing trust
  • Blockchains will profoundly affect all of these.
  • you can now synthesize trust on an open platform and people who’ve never met can trust each other to do certain things. So this results in a whole number of new business models
  • It turns out the Internet of Everything needs a Ledger of Everything, because a lightbulb buying power from your neighbor’s solar panel definitely won’t use banks or the Visa network
  • Right now, governments take tax revenue from corporations, individuals, licenses and so on. All of that can change. We can first of all have transparency in a radical sense because sunlight is the best disinfectant. Secondly, we can open up governments in a different sense of sharing data.
  • governments can enable self-organization to occur in society where companies, civil society organizations, NGOs, academics, foundations, and government agencies and individual citizens ought to use this data to self-organize and create what we used to call services or forms of public value. The third one has to do with the relationship between citizens and their governments.
  • There are more opportunities to create government by the people for the people
  • Electronic voting won’t be delivered by traditional server technology because it won’t be trusted by citizens
Tiberius Brastaviceanu

Beyond Blockchain: Simple Scalable Cryptocurrencies - The World of Deep Wealth - Medium - 0 views

  • I clarify the core elements of cryptocurrency and outline a different approach to designing such currencies rooted in biomimicry
  • This post outlines a completely different strategy for implementing cryptocurrencies with completely distributed chains
  • Rather than trying to make one global, anonymous, digital cash
  • ...95 more annotations...
  • we are interested in the resilience that comes from building a rich ecosystem of interoperable currencies
  • What are the core elements of a modern cryptocurrency?
  • Digital
  • Holdings are electronic and only exist and operate by virtue of a community’s agreement about how to interpret digital bits according to rules about operation and accounting of the currency.
  • Trustless
  • don’t have to trust a 3rd party central authority
  • Decentralized
  • Specifically, access, issuance, transaction accounting, rules & policies, should be collectively visible, known, and held.
  • Cryptographic
  • This cryptographic structure is used to enable a variety of people to host the data without being able to alter it.
  • Identity
  • there must be a way to associate these bits with some kind of account, wallet, owner, or agent who can use them
  • Other things that many take for granted in blockchains may not be core but subject to decisions in design and implementation, so they can vary between implementations
  • It does not have to be stored in a synchronized global ledger
  • does not have to be money. It may be a reputation currency, or data used for identity, or naming, etc
  • Its units do not have to be cryptographic tokens or coins
  • It does not have to protect the anonymity of users, although it may
  • if you think currency is only money, and that money must be artificially scarce
  • Then you must tackle the problem of always tracking which coins exist, and which have been spent. That is one approach — the one blockchain takes.
  • You might optimize for anonymity if you think of cryptocurrency as a tool to escape governments, regulations, and taxes.
  • if you want to establish and manage membership in new kinds of commons, then identity and accountability for actions may turn out to be necessary ingredients instead of anonymity.
  • In the case of the MetaCurrency Project, we are trying to support many use cases by building tools to enable a rich ecosystem of communities and current-sees (many are non-monetary) to enhance collective intelligence at all scales.
  • Managing consensus about a shared reality is a central challenge at the heart of all distributed computing solutions.
  • If we want to democratize money by having cryptocurrencies become a significant and viable means of transacting on a daily basis, I believe we need fundamentally more scalable approaches that don’t require expensive, dedicated hardware just to participate.
  • We should not need system wide consensus for two people to do a transaction in a cryptocurrency
  • Blockchain is about managing a consensus about what was “said.” Ceptr is about distributing a consensus about how to “speak.”
  • how nature gets the job done in massively scalable systems which require coordination and consistency
  • Replicate the same processes across all nodes
  • Empower every node with full agency
  • Hold this transformed state locally and reliably
  • Establish protocols for interaction
  • Each speaker of a language carries the processes to understand sentences they hear, and generate sentences they need
  • we certainly don’t carry some kind of global ledger of everything that’s ever been said, or require consensus about what has been said
  • Language IS a communication protocol we learn by emulating the processes of usage.
  • Dictionaries try to catch up when the usage
  • there is certainly no global ledger with consensus about the state of trillions of cells. Yet, from a single zygote’s copy of DNA, our cells coordinate in a highly decentralized manner, on scales of trillions, and without the latency or bottlenecks of central control.
  • Imagine something along the lines of a Java Virtual Machine connected to a distributed version of Github
  • Every time this JVM runs a program it confirms the hash of the code it is about to execute with the hash signed into the code repository by its developers
  • This allows each node that intends to be honest to be sure that they’re running the same processes as everyone else. So when two parties want to do a transaction, and each can have confidence their own code, and the results that your code produces
  • Then you treat it as authoritative and commit it to your local cryptographically self-validating data store
  • Allowing each node to treat itself as a full authority to process transactions (or interactions via shared protocols) is exactly how you empower each node with full agency. Each node runs its copy of the signed program/processes on its own virtual machine, taking the transaction request combined with the transaction chains of the parties to the transaction. Each node can confirm their counterparty’s integrity by replaying their transactions to produce their current state, while confirming signatures and integrity of the chain
  • If both nodes are in an appropriate state which allows the current transaction, then they countersign the transaction and append to their respective chains. When you encounter a corrupted or dishonest node (as evidenced by a breach of integrity of their chain — passing through an invalid state, broken signatures, or broken links), your node can reject the transaction you were starting to process. Countersigning allows consensus at the appropriate scale of the decision (two people transacting in this case) to lock data into a tamper-proof state so it can be stored in as many parallel chains as you need.
  • When your node appends a mutually validated and signed transaction to its chain, it has updated its local state and is able to represent the integrity of its data locally. As long as each transaction (link in the chain) has valid linkages and countersignatures, we can know that it hasn’t been tampered with.
  • If you can reliably embody the state of the node in the node itself using Intrinsic Data Integrity, then all nodes can interact in parallel, independent of other interactions to maximize scalability and simultaneous processing. Either the node has the credits or it doesn’t. I don’t have to refer to a global ledger to find out, the state of the node is in the countersigned, tamper-proof chain.
  • Just like any meaningful communication, a protocol needs to be established to make sure that a transaction carries all the information needed for each node to run the processes and produce a new signed and chained state. This could be debits or credits to an account which modify the balance, or recoding courses and grades to a transcript which modify a Grade Point Average, or ratings and feedback contributing to a reputation score, and so on.
  • By distributing process at the foundation, and leveraging Intrinsic Data Integrity, our approach results in massive improvements in throughput (from parallel simultaneous independent processing), speed, latency, efficiency, and cost of hardware.
  • You also don’t need to incent people to hold their own record — they already want it.
  • Another noteworthy observation about humans, cells, and atoms, is that each has a general “container” that gets configured to a specific use.
  • Likewise, the Receptors we’ve built are a general purpose framework which can load code for different distributed applications. These Receptors are a lightweight processing container for the Ceptr Virtual Machine Host
  • Ceptr enables a developer to focus on the rules and transactions for their use case instead of building a whole framework for distributed applications.
  • how units in a currency are issued
  • Most people think that money is just money, but there are literally hundreds of decisions you can make in designing a currency to target particular needs, niches, communities or patterns of flow.
  • Blockchain cryptocurrencies are fiat currencies. They create tokens or coins from nothing
  • These coins are just “spoken into being”
  • the challenging task of
  • ensure there is no counterfeiting or double-spending
  • Blockchain cryptocurrencies are fiat currencies
  • These coins are just “spoken into being”
  • the challenging task of tracking all the coins that exist to ensure there is no counterfeiting or double-spending
  • You wouldn’t need to manage consensus about whether a cryptocoin is spent, if your system created accounts which have normal balances based on summing their transactions.
  • In a mutual credit system, units of currency are issued when a participant extends credit to another user in a standard spending transaction
  • Alice pays Bob 20 credits for a haircut. Alice’s account now has -20, and Bob’s has +20.
  • Alice spent credits she didn’t have! True
  • Managing the currency supply in a mutual credit system is about managing credit limits — how far people can spend into a negative balance
  • Notice the net number units in the system remains zero
  • One elegant approach to managing mutual credit limits is to set them based on actual demand.
  • concerns about manufacturing fake accounts to game credit limits (Sybil Attacks)
  • keep in mind there can be different classes of accounts. Easy to create, anonymous accounts may get NO credit limit
  • What if I alter my code to give myself an unlimited credit limit, then spend as much as I want? As soon as you pass the credit limit encoded in the shared agreements, the next person you transact with will discover you’re in an invalid state and refuse the transaction.
  • If two people collude to commit an illegal transaction by both hacking their code to allow a normally invalid state, the same still pattern still holds. The next person they try to transact with using untampered code will detect the problem and decline to transact.
  • Most modern community currency systems have been implemented as mutual credit,
  • Hawala is a network of merchants and businessmen, which has been operating since the middle ages, performing money transfers on an honor system and typically settling balances through merchandise instead of transferring money
  • Let’s look at building a minimum viable cryptocurrency with the hawala network as our use case
  • To minimize key management infrastructure, each hawaladar’s public key is their address or identity on the network. To join the network you get a copy of the software from another hawaladar, generate your public and private keys, and complete your personal profile (name, location, contact info, etc.). You call, fax, or email at least 10 hawaladars who know you, and give them your IP address and ask them to vouch for you.
  • Once 10 other hawaladars have vouched for you, you can start doing other transactions because the protocol encoded in every node will reject a transaction chain that doesn’t start with at least 10 vouches
  • seeding your information with those other peers so you can be found by the rest of the network.
  • As described in the Mutual Credit section, at the time of transaction each party audits the counterparty’s transaction chain.
  • Our hawala crypto-clearinghouse protocol has two categories of transactions: some used for accounting and others for routing. Accounting transactions change balances. Routing transactions maintain network integrity by recording information about hawaladar
  • Accounting Transactions create signed data that changes account balances and contains these fields:
  • The final hash of all of the above fields is used as a unique transaction ID and is what each of party signs with their private keys. Signing indicates a party has agreed to the terms of the transaction. Only transactions signed by both parties are considered valid. Nodes can verify signatures by confirming that decryption of the signature using the public key yields a result which matches the transaction ID.
  • Routing Transactions sign data that changes the peers list and contain these fields:
  • As with accounting transactions, the hash of the above fields is used as the transaction’s unique key and the basis for the cryptographic signature of both counterparties.
  • Remember, instead of making changes to account balances, routing transactions change a node’s local list of peers for finding each other and processing.
  • a distributed network of mutual trust
  • operates across national boundaries
  • everyone already keeps and trusts their own separate records
  • Hawaladars are not anonymous
  • “double-spending”
  • It would be possible for someone to hack the code on their node to “forget” their most recent transaction (drop the head of their chain), and go back to their previous version of the chain before that transaction. Then they could append a new transaction, drop it, and append again.
  • After both parties have signed the agreed upon transaction, each party submits the transaction to separate notaries. Notaries are a special class of participant who validate transactions (auditing each chain, ensuring nobody passes through an invalid state), and then they sign an outer envelope which includes the signatures of the two parties. Notaries agree to run high-availability servers which collectively manage a Distributed Hash Table (DHT) servicing requests for transaction information. As their incentive for providing this infrastructure, notaries get a small transaction fee.
  • This approach introduces a few more steps and delays to the transaction process, but because it operates on independent parallel chains, it is still orders of magnitude more efficient and decentralized than reaching consensus on entries in a global ledger
  • millions of simultaneous transactions could be getting processed by other parties and notaries with no bottlenecks.
  • There are other solutions to prevent nodes from dropping the head of their transaction chain, but the approach of having notaries serve out a DHT solves a number of common objections to completely distributed accounting. Having access to reliable lookups in a DHT provides a similar big picture view that you get from a global ledger. For example, you may want a way to look up transactions even when the parties to that transaction are offline, or to be able to see the net system balance at a particular moment in time, or identify patterns of activity in the larger system without having to collect data from everyone individually.
  • By leveraging Intrinsic Data Integrity to run numerous parallel tamper-proof chains you can enable nodes to do various P2P transactions which don’t actually require group consensus. Mutual credit is a great way to implement cryptocurrencies to run in this peered manner. Basic PKI with a DHT is enough additional infrastructure to address main vulnerabilities. You can optimize your solution architecture by reserving reserve consensus work for tasks which need to guarantee uniqueness or actually involve large scale agreement by humans or automated contracts.
  • It is not only possible, but far more scalable to build cryptocurrencies without a global ledger consensus approach or cryptographic tokens.
  •  
    Article written by Arthur Brook, founder of Metacurrency project and of Ceptr.
Kurt Laitner

Smart Contracts - 0 views

  • Whether enforced by a government, or otherwise, the contract is the basic building block of a free market economy.
  • A smart contract is a set of promises, specified in digital form, including protocols within which the parties perform on the other promises.
  • The basic idea of smart contracts is that many kinds of contractual clauses (such as liens, bonding, delineation of property rights, etc.) can be embedded in the hardware and software we deal with, in such a way as to make breach of contract expensive (if desired, sometimes prohibitively so) for the breacher.
  • ...77 more annotations...
  • A broad statement of the key idea of smart contracts, then, is to say that contracts should be embedded in the world.
  • And where the vending machine, like electronic mail, implements an asynchronous protocol between the vending company and the customer, some smart contracts entail multiple synchronous steps between two or more parties
  • POS (Point of Sale)
  • EDI (Electronic Data Interchange
  • SWIFT
  • allocation of public network bandwidth via automated auctions
  • Smart contracts reference that property in a dynamic, proactively enforced form, and provide much better observation and verification where proactive measures must fall short.
  • The mechanisms of the world should be structured in such a way as to make the contracts (a) robust against naive vandalism, and (b) robust against sophisticated, incentive compatible (rational) breach.
  • A third category, (c) sophisticated vandalism (where the vandals can and are willing to sacrifice substantial resources), for example a military attack by third parties, is of a special and difficult kind that doesn't often arise in typical contracting, so that we can place it in a separate category and ignore it here.
  • The threat of physical force is an obvious way to embed a contract in the world -- have a judicial system decide what physical steps are to be taken out by an enforcement agency (including arrest, confiscation of property, etc.) in response to a breach of contract
  • It is what I call a reactive form of security.
  • The need to invoke reactive security can be minimized, but not eliminated, by making contractual arrangements verifiable
  • Observation of a contract in progress, in order to detect the first sign of breach and minimize losses, also is a reactive form of security
  • A proactive form of security is a physical mechanism that makes breach expensive
  • From common law, economic theory, and contractual conditions often found in practice, we can distill four basic objectives of contract design
  • observability
  • The disciplines of auditing and investigation roughly correspond with verification of contract performance
  • verifiability
  • The field of accounting is, roughly speaking, primarily concerned with making contracts an organization is involved in more observable
  • privity
  • This is a generalization of the common law principle of contract privity, which states that third parties, other than the designated arbitrators and intermediaries, should have no say in the enforcement of a contract
  • The field of security (especially, for smart contracts, computer and network security), roughly corresponds to the goal of privity.
  • enforceability
  • Reputation, built-in incentives, "self-enforcing" protocols, and verifiability can all play a strong part in meeting the fourth objective
  • Smart contracts often involve trusted third parties, exemplified by an intermediary, who is involved in the performance, and an arbitrator, who is invoked to resolve disputes arising out of performance (or lack thereof)
  • In smart contract design we want to get the most out of intermediaries and arbitrators, while minimizing exposure to them
  • Legal barriers are the most severe cost of doing business across many jurisdictions. Smart contracts can cut through this Gordian knot of jurisdictions
  • Where smart contracts can increase privity, they can decrease vulnerability to capricious jurisdictions
  • Secret sharing
  • The field of Electronic Data Interchange (EDI), in which elements of traditional business transactions (invoices, receipts, etc.) are exchanged electronically, sometimes including encryption and digital signature capabilities, can be viewed as a primitive forerunner to smart contracts
  • One important task of smart contracts, that has been largely overlooked by traditional EDI, is critical to "the meeting of the minds" that is at the heart of a contract: communicating the semantics of the protocols to the parties involved
  • There is ample opportunity in smart contracts for "smart fine print": actions taken by the software hidden from a party to the transaction.
  • Thus, via hidden action of the software, the customer is giving away information they might consider valuable or confidential, but the contract has been drafted, and transaction has been designed, in such a way as to hide those important parts of that transaction from the customer.
  • To properly communicate transaction semantics, we need good visual metaphors for the elements of the contract. These would hide the details of the protocol without surrendering control over the knowledge and execution of contract terms
  • Protocols based on mathematics, called cryptographic protocols, tre the basic building blocks that implement the improved tradeoffs between observability, verifiability, privity, and enforceability in smart contracts
  • secret key cryptography,
  • Public key cryptography
  • digital signatures
  • blind signature
  • Where smart contracts can increase observability or verifiability, they can decrease dependence on these obscure local legal codes and enforcement traditions
  • zero-knowledge interactive proof
  • digital mix
  • Keys are not necessarily tied to identities, and the task of doing such binding turns out to be more difficult than at first glance.
  • All public key operation are are done inside an unreadable hardware board on a machine with a very narrow serial-line connection (ie, it carries only a simple single-use protocol with well-verified security) to a dedicated firewall. Such a board is available, for example, from Kryptor, and I believe Viacrypt may also have a PGP-compatable board. This is economical for central sites, but may be less practical for normal users. Besides better security, it has the added advantage that hardware speeds up the public key computations.
  • If Mallet's capability is to physically sieze the machine, a weaker form of key protection will suffice. The trick is to hold the keys in volatile memory.
  • The data is still vulnerable to a "rubber hose attack" where the owner is coerced into revealing the hidden keys. Protection against rubber hose attacks might require some form of Shamir secret sharing which splits the keys between diverse phgsical sites.
  • How does Alice know she has Bob's key? Who, indeed, can be the parties to a smart contract? Can they be defined just by their keys? Do we need biometrics (such as autographs, typed-in passwords, retina scans, etc.)?
  • The public key cryptography software package "Pretty Good Privacy" (PGP) uses a model called "the web of trust". Alice chooses introducers whom she trusts to properly identify the map between other people and their public keys. PGP takes it from there, automatically validating any other keys that have been signed by Alice's designated introducers.
  • 1) Does the key actually belong to whom it appears to belong? In other words, has it been certified with a trusted signature?
  • 2) Does it belong to an introducers, someone you can trust to certify other keys?
  • 3) Does the key belong to someone you can trust to introduce other introducers? PGP confuses this with criterion (2). It is not clear that any single person has enough judgement to properly undertake task (3), nor has a reasonable institution been proposed that will do so. This is one of the unsolved problems in smart contracts.
  • PGP also can be given trust ratings and programmed to compute a weighted score of validity-- for example, two marginally trusted signatures might be considered as credible as one fully trusted signature
  • Notaries Public Two different acts are often called "notarization". The first is simply where one swears to the truth of some affidavit before a notary or some other officer entitled to take oaths. This does not require the notary to know who the affiant is. The second act is when someone "acknowledges" before a notary that he has executed a document as ``his own act and deed.'' This second act requires the notary to know the person making the acknowledgment.
  • "Identity" is hardly the only thing we might want map to a key. After all, physical keys we use for our house, car, etc. are not necessarily tied to our Identity -- we can loan them to trusted friends and relatives, make copies of them, etc. Indeed, in cyberspace we might create "virtual personae" to reflect such multi-person relationships, or in contrast to reflect different parts of our personality that we do not want others to link. Here is a possible classification scheme for virtual personae, pedagogically presented:
  • A nym is an identifier that links only a small amount of related information about a person, usually that information deemed by the nym holder to be relevant to a particular organization or community
  • A nym may gain reputation within its community.
  • With Chaumian credentials, a nym can take advantage of the positive credentials of the holder's other nyms, as provably linked by the is-a-person credential
  • A true name is an identifier that links many different kinds of information about an person, such as a full birth name or social security number
  • As in magick, knowing a true name can confer tremendous power to one's enemies
  • A persona is any perstient pattern of behavior, along with consistently grouped information such as key(s), name(s), network address(es), writing style, and services provided
  • A reputable name is a nym or true name that has a good reputation, usually because it carries many positive credentials, has a good credit rating, or is otherwise highly regarded
  • Reputable names can be difficult to transfer between parties, because reputation assumes persistence of behavior, but such transfer can sometimes occur (for example, the sale of brand names between companies).
  • Blind signatures can be used to construct digital bearer instruments, objects identified by a unique key, and issued, cleared, and redeemed by a clearing agent.
  • The clearing agent prevents multiple clearing of particular objects, but can be prevented from linking particular objects one or both of the clearing nyms who transferred that object
  • These instruments come in an "online" variety, cleared during every transfer, and thus both verifiable and observable, and an "offline" variety, which can be transfered without being cleared, but is only verifiable when finally cleared, by revealing any the clearing nym of any intermediate holder who transfered the object multiple times (a breach of contract).
  • To implement a full transaction of payment for services, we need more than just the digital cash protocol; we need a protocol that guarantees that service will be rendered if payment is made, and vice versa
  • A credential is a claim made by one party about another. A positive credential is one the second party would prefer to reveal, such as a degree from a prestigious school, while that party would prefer not to reveal a negative credential such as a bad credit rating.
  • A Chaumian credential is a cryptographic protocol for proving one possesses claims made about onself by other nyms, without revealing linkages between those nyms. It's based around the is-a-person credential the true name credential, used to prove the linkage of otherwise unlinkable nyms, and to prevent the transfer of nyms between parties.
  • Another form of credential is bearer credential, a digital bearer instrument where the object is a credential. Here the second party in the claim refers to any bearer -- the claim is tied only to the reputable name of issuing organization, not to the nym or true name of the party holding the credential.
  • Smart Property We can extend the concept of smart contracts to property. Smart property might be created by embedding smart contracts in physical objects. These embedded protocols would automatically give control of the keys for operating the property to the party who rightfully owns that property, based on the terms of the contract. For example, a car might be rendered inoperable unless the proper challenge-response protocol is completed with its rightful owner, preventing theft. If a loan was taken out to buy that car, and the owner failed to make payments, the smart contract could automatically invoke a lien, which returns control of the car keys to the bank. This "smart lien" might be much cheaper and more effective than a repo man. Also needed is a protocol to provably remove the lien when the loan has been paid off, as well as hardship and operational exceptions. For example, it would be rude to revoke operation of the car while it's doing 75 down the freeway.
  • Smart property is software or physical devices with the desired characteristics of ownership embedded into them; for example devices that can be rendered of far less value to parties who lack possesion of a key, as demonstrated via a zero knowledge interactive proof
  • One method of implementing smart property is thru operation necessary data (OND): data necessary to the operation of smart property.
  • A smart lien is the sharing of a smart property between parties, usually two parties called the owner and the lienholder.
  • Many parties, especially new entrants, may lack this reputation capital, and will thus need to be able to share their property with the bank via secure liens
  • What about extending the concept of contract to cover agreement to a prearranged set of tort laws? These tort laws would be defined by contracts between private arbitration and enforcement agencies, while customers would have a choice of jurisdictions in this system of free-market "governments".
  • If these privately practiced law organizations (PPLs for short) bear ultimate responsibility for the criminal activities of their customers, or need to insure lack of defection or future payments on the part of customers, they may in turn ask for liens against their customers, either in with contractual terms allowing arrest of customers under certain conditions
  • Other important areas of liability include consumer liability and property damage (including pollution). There need to mechanisms so that, for example, pollution damage to others' persons or property can be assessed, and liens should exist so that the polluter can be properly charged and the victims paid. Where pollution is quantifiable, as with SO2 emissions, markets can be set up to trade emission rights. The PPLs would have liens in place to monitor their customer's emissions and assess fees where emission rights have been exceeded.
Tiberius Brastaviceanu

Google Apps Script - introduction - 0 views

  • script that you want to run every day at a specific time
  • script that should run after a user submits a data-collection form.
  • Google Apps Script provides simple event handlers and installable event handlers, which are easy ways for you to specify functions to run at a particular time or in response to an event.
  • ...39 more annotations...
  • let's consider the terminology we use for events
  • event triggers
  • triggers
  • in response
  • event handler
  • event
  • onInstall function
  • onOpen function.
  • onEdit function
  • the simple event handlers are restricted in what they are permitted to do:
  • The spreadsheet containing the script must be opened for editing
  • cannot determine the current user
  • cannot access any services that require authentication as that user
  • Calendar, Mail and Site are not anonymous and the simple event handlers cannot access those services.
  • can only modify the current spreadsheet. Access to other spreadsheets is forbidden.
  • see Understanding Permissions and Script Execution.
  • The onOpen function runs automatically when a user opens a spreadsheet.
  • add custom menu items to the spreadsheet's menu bar.
  • onEdit function runs automatically when any cell of the spreadsheet is edited.
  • record the last modified time in a comment on the cell that was edited.
  • The onInstall function is called when a script is installed from the Script Gallery.
  • setting up custom menus for the user.
  • the script can call onOpen from onInstall.
  • Installable event handlers are set on the Triggers menu within the Script Editor, and they're called triggers in this document.
  • When a specific time is reached
  • When a form is submitted
  • When a Spreadsheet is edited
  • When a Spreadsheet is opened.
  • They can potentially access all services available to the user who installed the handler.
  • are fully-capable scripts with none of the access limitations of simple event handlers
  • may not be able to determine which user triggered the event being handled
  • The spreadsheet containing the script does not have to be open for the event to be triggered and the script to run.
  • You can connect triggers to one or more functions in a script. Any function can have multiple triggers attached. In addition, you can add trigger attributes to a function to further refine how the trigger behaves.
  • When a script runs because of a trigger, the script runs using the identity of the person who installed the trigger, not the identity of the user whose action triggered the event. This is for security reasons.
  • Installing an event handler may prompt for authorization to access
  • An event is passed to every event handler as the argument (e). You can add attributes to the (e) argument that further define how the trigger works or that capture information about how the script was triggered.
  • an example of a function that sends email to a designated individual containing information captured by a Spreadsheet when a form is submitted.
  • With Google Apps, forms have the option to automatically record the submitter's username, and this is available to the script as e.namedValues["Username"]. Note: e.namedValues are only available for Google Apps domains and not for consumer Google accounts.
  • The available attributes for triggers are described in the following tables.
  •  
    script that you want to run every day at a specific time
Tiberius Brastaviceanu

Welcome to the new reputation economy (Wired UK) - 1 views

  • banks take into account your online reputation alongside traditional credit ratings to determine your loan
  • headhunters hire you based on the expertise you've demonstrated on online forums
  • reputation data becomes the window into how we behave, what motivates us, how our peers view us and ultimately whether we can or can't be trusted.
  • ...37 more annotations...
  • At the heart of Movenbank is a concept call CRED.
  • The difference today is our ability to capture data from across an array of digital services. With every trade we make, comment we leave, person we "friend", spammer we flag or badge we earn, we leave a trail of how well we can or can't be trusted.
  • An aggregated online reputation having a real-world value holds enormous potential
  • peer-to-peer marketplaces, where a high degree of trust is required between strangers; and where a traditional approach based on disjointed information sources is currently inefficient, such as recruiting.
  • opportunity to reinvent the way people found jobs through online reputation
  • "It's not about your credit, but your credibility," King says.
  • But this wealth of data raises an important question -- who owns our reputation? Shouldn't our hard-earned online status be portable? If you're a SuperHost on Airbnb, shouldn't you be able to use that reputation to, say, get a loan, or start selling on Etsy?
  • "People are currently underusing their networks and reputation," King says. "I want to help people to understand and build their influence and reputation, and think of it as capital they can put to good use."
  • Social scientists have long been trying to quantify the value of reputation.
  • Using functional magnetic resonance imaging, the researchers monitored brain activity
  • "The implication of our study is that different types of reward are coded by the same currency system." In other words, our brains neurologically compute personal reputation to be as valuable as money.
  • Personal reputation has been a means of making socioeconomic decisions for thousands of years. The difference today is that network technologies are digitally enabling the trust we used to experience face-to-face -- meaning that interactions and exchanges are taking place between total strangers.
  • Trust and reputation become acutely important in peer-to-peer marketplaces such as WhipCar and Airbnb, where members are taking a risk renting out their cars or their homes.
  • When you are trading peer-to-peer, you can't count on traditional credit scores. A different measurement is needed. Reputation fills this gap because it's the ultimate output of how much a community trusts you.
  • Welcome to the reputation economy, where your online history becomes more powerful than your credit history.
  • Presently, reputation data doesn't transfer between verticals.
  • A wave of startups, including Connect.Me, TrustCloud, TrustRank, Legit and WhyTrusted, are trying to solve this problem by designing systems that correlate reputation data. By building a system based on "reputation API" -- a combination of a user's activity, ratings and reviews across sites -- Legit is working to build a service that gives users a score from zero to 100. In trying to create a universal metric for a person's trustworthiness, they are trying to "become the credit system of the sharing economy", says Jeremy Barton, the 27-year-old San Francisco-based cofounder of Legit.
  • His company, and other reputation ventures, face some big challenges if they are to become, effectively, the PayPal of trust. The most obvious is coming up with algorithms that can't be easily gamed or polluted by trolls. And then there's the critical hurdle of convincing online marketplaces not just to open up their reputation vaults, but create a standardised format for how they frame and collect reputation data. "We think companies will share reputation data for the same reasons banks give credit data to credit bureaux," says Rob Boyle, Legit cofounder and CTO. "It is beneficial for one company to give up their slice of reputation data if in return they get access to the bigger picture: aggregated data from other companies."
  • PeerIndex, Kred and Klout,
  • are measuring social influence, not reputation. "Influence measures your ability to drag someone into action,"
  • "Reputation is an indicator of whether a person is good or bad and, ultimately, are they trustworthy?"
  • Early influence and reputation aggregators will undoubtedly learn by trial and error -- but they will also face the significant challenge of pioneering the use of reputation data in a responsible way. And there's a challenge beyond that: reputation is largely contextual, so it's tricky to transport it to other situations.
  • Many of the ventures starting to make strides in the reputation economy are measuring different dimensions of reputation.
  • reputation is a measure of knowledge
  • a measure of trust
  • a measure of propensity to pay
  • measure of influence
  • Reputation capital is not about combining a selection of different measures into a single number -- people are too nuanced and complex to be distilled into single digits or binary ratings.
  • It's the culmination of many layers of reputation you build in different places that genuinely reflect who you are as a person and figuring out exactly how that carries value in a variety of contexts.
  • The most basic level is verification of your true identity
  • reliability and helpfulness
  • do what we say we are going to do
  • respect another person's property
  • trusted to pay on time
  • we will be able to perform a Google- or Facebook-like search and see a picture of a person's behaviour in many different contexts, over a length of time. Slivers of data that have until now lived in secluded isolation online will be available in one place. Answers on Quora, reviews on TripAdvisor, comments on Amazon, feedback on Airbnb, videos posted on YouTube, social groups joined, or presentations on SlideShare; as well as a history and real-time stream of who has trusted you, when, where and why. The whole package will come together in your personal reputation dashboard, painting a comprehensive, definitive picture of your intentions, capabilities and values.
  • idea of global reputation
  • By the end of the decade, a good online reputation could be the most valuable currency in your possession.
Tiberius Brastaviceanu

PeerPoint « Poor Richard's Almanack 2010 - 1 views

  • Each PeerPoint is an autonomous node on a p2p network with no centralized corporate  infrastructure.
  • The PeerPoint will be connected between the user’s pc, home network, or mobile device and the ISP connection.
  • The PeerPoint is designed to Occupy the Internet.
  • ...7 more annotations...
  • provide greater user value
  • For numerous reasons the services provided by the commercial companies do not adequately meet the creative, social, political, and financial needs of the 99%
  • allows self-selected individuals to coalesce into powerful workgroups, forums, and movements.
  • With the PeerPoint approach, each user will own her own inexpensive internet appliance and all the data and content she creates
  • If a FreedomBox were used as a starting platform, the PeerPoint application package would be added on top of the FreedomBox security stack.
  • The common requirements for each PeerPoint app are: world class, best-of-breed open source p2p architecture consistent, granular, user-customizable security management and identity protection integrated with other apps in the suite via a common distributed database and/or “data bus” architecture. consistent, user-customizable large, medium, and small-screen (mobile device) user interfaces ability to interface with its corresponding major-market-share service (Facebook, Twitter, etc.) GPS enabled
  • First tier applications: distributed database social networking  (comparison of distributed social network applications) trust/reputation metrics crowdsourcing: content collaboration & management  (wiki, Google Docs, or better) project management/workflow data visualization (data sets, projects, networks, etc.) user-customizable complementary currency and barter exchange (Community Forge or better) crowd funding (http://www.quora.com/Is-there-an-open-source-crowdfunding-platform) voting (LiquidFeedback or better) universal search across all PeerPoint data/content and world wide web content
Tiberius Brastaviceanu

Action (Stanford Encyclopedia of Philosophy) - 0 views

  • intentionally
  • questions about the nature, variety, and identity of action
  • Should we think of the consequences, conventional or causal, of physical behavior as constituents of an action distinct from but ‘generated by’ the movement? Or should we think that there is a single action describable in a host of ways?
  • ...22 more annotations...
  • Donald Davidson
  • an action
  • is something an agent does that was ‘intentional under some description,’
  • there have been many attempts to map the relations between intentions for the future, acting intentionally, and acting with a certain intention.
  • There has been a notable or notorious debate about whether the agent's reasons in acting are causes of the action
  • rendered the action intelligible in his eyes
  • things that merely happen
  • things they genuinely do
  • distinction between
  • the doings, are the acts or actions of the agent
  • what distinguishes an action from a mere happening or occurrence?
  • An agent performs activity that is directed at a goal
  • adopted on the basis of an overall practical assessment of his options and opportunities
  • awareness
  • that he is performing the activity
  • and that the activity is aimed by him at such-and-such a chosen end
  • It is frequently noted that the agent has some sort of immediate awareness of his physical activity and of the goals that the activity is aimed at realizing.
  • ‘knowledge without observation.’
  • It is also important to the concept of ‘goal directed action’ that agents normally implement a kind of direct control or guidance over their own behavior.
  • For many years, the most intensely debated topic in the philosophy of action concerned the explanation of intentional actions in terms of the agent's reasons for acting
  • Davidson and other action theorists defended the position that reason explanations are causal explanations
  • In the foregoing, reference has been made to explanations of actions in terms of reasons, but recent work on agency has questioned whether contemporary frameworks for the philosophy of action have really articulated the way in which an agent's desires and other pro-attitudes have the distinctive force of reasons in the setting of these ordinary explanations
Tiberius Brastaviceanu

Is Shame Necessary? | Conversation | Edge - 0 views

  • What is shame's purpose? Is shame still necessary?
  • Shame is what is supposed to occur after an individual fails to cooperate with the group.
  • Whereas guilt is evoked by an individual's standards, shame is the result of group standards. Therefore, shame, unlike guilt, is felt only in the context of other people.
  • ...53 more annotations...
  • Many animals use visual observations to decide whether to work with others.
  • humans are more cooperative when they sense they're being watched.
  • The feeling of being watched enhances cooperation, and so does the ability to watch others. To try to know what others are doing is a fundamental part of being human
  • Shame serves as a warning to adhere to group standards or be prepared for peer punishment. Many individualistic societies, however, have migrated away from peer punishment toward a third-party penal system
  • Shame has become less relevant in societies where taking the law into one's own hands is viewed as a breach of civility.
  • Many problems, like most concerning the environment, are group problems. Perhaps to solve these problems we need a group emotion. Maybe we need shame.
  • Guilt prevails in many social dilemmas
  • It is perhaps unsurprising that a set of tools has emerged to assuage this guilt
  • Guilt abounds in many situations where conservation is an issue.
  • The problem is that environmental guilt, though it may well lead to conspicuous ecoproducts, does not seem to elicit conspicuous results.
  • The positive effect of idealistic consumers does exist, but it is masked by the rising demand and numbers of other consumers.
  • Guilt is a valuable emotion, but it is felt by individuals and therefore motivates only individuals. Another drawback is that guilt is triggered by an existing value within an individual. If the value does not exist, there is no guilt and hence no action
  • Getting rid of shaming seems like a pretty good thing, especially in regulating individual behavior that does no harm to others. In eschewing public shaming, society has begun to rely more heavily on individual feelings of guilt to enhance cooperation.
  • five thousand years ago, there arose another tool: writing
  • Judges in various states issue shaming punishments,
  • shaming by the state conflicts with the law's obligation to protect citizens from insults to their dignity.
  • What if government is not involved in the shaming?
  • Is this a fair use of shaming? Is it effective?
  • Shaming might work to change behavior in these cases, but in a world of urgent, large-scale problems, changing individual behavior is insignificant
  • vertical agitation
  • Guilt cannot work at the institutional level, since it is evoked by individual scruples, which vary widely
  • But shame is not evoked by scruples alone; since it's a public sentiment, it also affects reputation, which is important to an institution.
  • corporate brand reputation outranked financial performance as the most important measure of success
  • shame and reputation interact
  • in our early evolution we could gauge cooperation only firsthand
  • Shaming, as noted, is unwelcome in regulating personal conduct that doesn't harm others. But what about shaming conduct that does harm others?
  • why we learned to speak.1
  • Language
  • The need to accommodate the increasing number of social connections and monitor one another could be
  • allowed for gossip, a vector of social information.
  • in cooperation games that allowed players to gossip about one another's performance, positive gossip resulted in higher cooperation.
  • Of even greater interest, gossip affected the players' perceptions of others even when they had access to firsthand information.
  • Human society today is so big that its dimensions have outgrown our brains.
  • What tool could help us gossip in a group this size?
  • We can use computers to simulate some of the intimacy of tribal life, but we need humans to evoke the shame that leads to cooperation. The emergence of new tools— language, writing, the Internet—cannot completely replace the eyes. Face-to-face interactions, such as those outside Trader Joe's stores, are still the most impressive form of dissent.
  • what is stopping shame from catalyzing social change? I see three main drawbacks:
  • Today's world is rife with ephemeral, or "one-off," interactions.
  • Research shows, however, that if people know they will interact again, cooperation improves
  • Shame works better if the potential for future interaction is high
  • In a world of one-off interactions, we can try to compensate for anonymity with an image score,
  • which sends a signal to the group about an individual's or institution's degree of cooperation.
  • Today's world allows for amorphous identities
  • It's hard to keep track of who cooperates and who doesn't, especially if it's institutions you're monitoring
  • Shaming's biggest drawback is its insufficiency.
  • Some people have no shame
  • shame does not always encourage cooperation from players who are least cooperative
  • a certain fraction of a given population will always behave shamelessly
  • if the payoff is high enough
  • There was even speculation that publishing individual bankers' bonuses would lead to banker jealousy, not shame
  • shame is not enough to catalyze major social change
  • This is why punishment remains imperative.
  • Even if shaming were enough to bring the behavior of most people into line, governments need a system of punishment to protect the group from the least cooperative players.
  • Today we are faced with the additional challenge of balancing human interests and the interests of nonhuman life.
  •  
    The role of non-rational mechanisms in convergence - social emotions like shame and guilt 
Tiberius Brastaviceanu

Proposal - Food SFS-08-2014 - 1 views

  • development of more resource-efficient and sustainable food production and processing
  • competitive and innovative
    • Tiberius Brastaviceanu
       
      We are proposing collaborative ways, here the accent is put on competitive ways 
    • Tiberius Brastaviceanu
       
      We are proposing collaborative methods. Here, the accent is put on COMPETITIVE ways for a "sustainable circular economy"
  • ...29 more annotations...
  • reduction in water and energy use
  • gas emissions and waste generation
  • improving the efficiency
  • ensuring or improving shelf life, food safety and quality
  • competitive eco-innovative processes should be developed
  • sustainable circular economy
  • Intellectual Property (IP)
  • In phase 1, a feasibility study
  • technological/practical as well as economic viability of an innovation idea/concept with considerable novelty to the industry sector
  • to establish a solid high-potential innovation project
  • increase profitability of the enterprise through innovation
  • increase the return in investment in innovation activities
  • The proposal should contain an initial business plan based on the proposed idea/concept.
  • apply to phase 1 with a view to applying to phase 2 at a later date, or directly to phase 2.
  • EUR 50,000. Projects should last around 6 months
    • Tiberius Brastaviceanu
       
      Phase 1 has a classical language. We would need to mask our true identity and beliefs writing this grant proposal. I don't think it's for us... But this is only my opinion. 
  • In phase 2, innovation projects will be supported that address the specific challenge of Sustainable Food Security
  • demonstrate high potential in terms of company competitiveness and growth underpinned by a strategic business plan
    • Tiberius Brastaviceanu
       
      This is more about individual companies and their competitive advantage. Not about networks and not about collaboration and sharing. 
    • Tiberius Brastaviceanu
       
      Moreover, they put emphasis on IP protection and ownership, when we must talk about commons, knowledge commons applied to agriculture, sharing platforms, etc. 
  • Proposals shall be based on an elaborated business plan either developed through phase 1 or another means.
  • Particular attention must be paid to IP protection and ownership
  • Successful beneficiaries will be offered coaching and mentoring support during phase 1 and phase 2.
  • Enhancing profitability
  • competitive solutions
  • global business opportunities
  • sustainable
  • turnover
  • IP management
  • return on investment and profit
Kurt Laitner

Intimacy Gradient and Other Lessons from Architecture - Life With Alacrity - 4 views

  •  
    A wonderful concept for something I've been using far more words to describe - the Intimacy Gradient - love it!
  •  
    good overview of some of the architectural considerations for an OVN
Tiberius Brastaviceanu

Access control - Wikipedia, the free encyclopedia - 0 views

  • The act of accessing may mean consuming, entering, or using.
  • Permission to access a resource is called authorization.
  • Locks and login credentials are two analogous mechanisms of access control.
  • ...26 more annotations...
  • Geographical access control may be enforced by personnel (e.g., border guard, bouncer, ticket checker)
  • n alternative of access control in the strict sense (physically controlling access itself) is a system of checking authorized presence, see e.g. Ticket controller (transportation). A variant is exit control, e.g. of a shop (checkout) or a country
  • access control refers to the practice of restricting entrance to a property, a building, or a room to authorized persons
  • can be achieved by a human (a guard, bouncer, or receptionist), through mechanical means such as locks and keys, or through technological means such as access control systems like the mantrap.
  • Physical access control is a matter of who, where, and when
  • Historically, this was partially accomplished through keys and locks. When a door is locked, only someone with a key can enter through the door, depending on how the lock is configured. Mechanical locks and keys do not allow restriction of the key holder to specific times or dates. Mechanical locks and keys do not provide records of the key used on any specific door, and the keys can be easily copied or transferred to an unauthorized person. When a mechanical key is lost or the key holder is no longer authorized to use the protected area, the locks must be re-keyed.[citation needed] Electronic access control uses computers to solve the limitations of mechanical locks and keys. A wide range of credentials can be used to replace mechanical keys. The electronic access control system grants access based on the credential presented. When access is granted, the door is unlocked for a predetermined time and the transaction is recorded. When access is refused, the door remains locked and the attempted access is recorded. The system will also monitor the door and alarm if the door is forced open or held open too long after being unlocked
  • Credential
  • Access control system operation
  • The above description illustrates a single factor transaction. Credentials can be passed around, thus subverting the access control list. For example, Alice has access rights to the server room, but Bob does not. Alice either gives Bob her credential, or Bob takes it; he now has access to the server room. To prevent this, two-factor authentication can be used. In a two factor transaction, the presented credential and a second factor are needed for access to be granted; another factor can be a PIN, a second credential, operator intervention, or a biometric input
  • There are three types (factors) of authenticating information:[2] something the user knows, e.g. a password, pass-phrase or PIN something the user has, such as smart card or a key fob something the user is, such as fingerprint, verified by biometric measurement
  • Passwords are a common means of verifying a user's identity before access is given to information systems. In addition, a fourth factor of authentication is now recognized: someone you know, whereby another person who knows you can provide a human element of authentication in situations where systems have been set up to allow for such scenarios
  • When a credential is presented to a reader, the reader sends the credential’s information, usually a number, to a control panel, a highly reliable processor. The control panel compares the credential's number to an access control list, grants or denies the presented request, and sends a transaction log to a database. When access is denied based on the access control list, the door remains locked.
  • A credential is a physical/tangible object, a piece of knowledge, or a facet of a person's physical being, that enables an individual access to a given physical facility or computer-based information system. Typically, credentials can be something a person knows (such as a number or PIN), something they have (such as an access badge), something they are (such as a biometric feature) or some combination of these items. This is known as multi-factor authentication. The typical credential is an access card or key-fob, and newer software can also turn users' smartphones into access devices.
  • An access control point, which can be a door, turnstile, parking gate, elevator, or other physical barrier, where granting access can be electronically controlled. Typically, the access point is a door. An electronic access control door can contain several elements. At its most basic, there is a stand-alone electric lock. The lock is unlocked by an operator with a switch. To automate this, operator intervention is replaced by a reader. The reader could be a keypad where a code is entered, it could be a card reader, or it could be a biometric reader. Readers do not usually make an access decision, but send a card number to an access control panel that verifies the number against an access list
  • monitor the door position
  • Generally only entry is controlled, and exit is uncontrolled. In cases where exit is also controlled, a second reader is used on the opposite side of the door. In cases where exit is not controlled, free exit, a device called a request-to-exit (REX) is used. Request-to-exit devices can be a push-button or a motion detector. When the button is pushed, or the motion detector detects motion at the door, the door alarm is temporarily ignored while the door is opened. Exiting a door without having to electrically unlock the door is called mechanical free egress. This is an important safety feature. In cases where the lock must be electrically unlocked on exit, the request-to-exit device also unlocks the doo
  • Access control topology
  • Access control decisions are made by comparing the credential to an access control list. This look-up can be done by a host or server, by an access control panel, or by a reader. The development of access control systems has seen a steady push of the look-up out from a central host to the edge of the system, or the reader. The predominant topology circa 2009 is hub and spoke with a control panel as the hub, and the readers as the spokes. The look-up and control functions are by the control panel. The spokes communicate through a serial connection; usually RS-485. Some manufactures are pushing the decision making to the edge by placing a controller at the door. The controllers are IP enabled, and connect to a host and database using standard networks
  • Access control readers may be classified by the functions they are able to perform
  • and forward it to a control panel.
  • Basic (non-intelligent) readers: simply read
  • Semi-intelligent readers: have all inputs and outputs necessary to control door hardware (lock, door contact, exit button), but do not make any access decisions. When a user presents a card or enters a PIN, the reader sends information to the main controller, and waits for its response. If the connection to the main controller is interrupted, such readers stop working, or function in a degraded mode. Usually semi-intelligent readers are connected to a control panel via an RS-485 bus.
  • Intelligent readers: have all inputs and outputs necessary to control door hardware; they also have memory and processing power necessary to make access decisions independently. Like semi-intelligent readers, they are connected to a control panel via an RS-485 bus. The control panel sends configuration updates, and retrieves events from the readers.
  • Systems with IP readers usually do not have traditional control panels, and readers communicate directly to a PC that acts as a host
  • a built in webservice to make it user friendly
  • Some readers may have additional features such as an LCD and function buttons for data collection purposes (i.e. clock-in/clock-out events for attendance reports), camera/speaker/microphone for intercom, and smart card read/write support
Tiberius Brastaviceanu

Designing the Void | Management Innovation eXchange - 0 views

    • Tiberius Brastaviceanu
       
      This is about self-organization, putting in place bounderies and internal mechanisms to make the the system self-organize into something desirable.  You can see this from a game theory perspective - how to set a game which will drive a specific human behavior. 
    • Tiberius Brastaviceanu
       
      This is about self-organization, putting in place bounderies and internal mechanisms to make the the system self-organize into something desirable.  You can see this from a game theory perspective - how to set a game which will drive a specific human behavior. 
    • Tiberius Brastaviceanu
       
      Very similar to SENSORICA, an environment of entrepreneurs. The argument against this is that not everyone is a risk taker or has initiative. The answer to it is that not every role in the organization requires that. 
    • Tiberius Brastaviceanu
       
      Very similar to SENSORICA, an environment of entrepreneurs. The argument against this is that not everyone is a risk taker or has initiative. The answer to it is that not every role in the organization requires that. 
  • The system is not made up of artifacts but rather an elegantly designed void. He says “I prefer to use the analogy of rescuing an endangered species from extinction, rather than engaging in an invasive breeding program the focus should be on the habitat that supports the species. Careful crafting of the habitat by identifying the influential factors; removing those that are detrimental, together with reinforcing those that are encouraging, the species will naturally re-establish itself. Crafting the habitat is what I mean by designing the void.”
  • ...75 more annotations...
  • It is essential that autonomy is combined with responsibility.
  • staff typically manage the whole work process from making sales, manufacture, accounts, to dispatch
  • they are also responsible for managing their own capitalization; a form of virtual ownership develops. Everything they need for their work, from office furniture to high-end machinery will appear on their individual balance sheet; or it will need to be bought in from somewhere else in the company on a pay-as-you go or lease basis. All aspects of the capital deployed in their activities must be accounted for and are therefore treated with the respect one accords one’s own property.
    • Tiberius Brastaviceanu
       
      So they have a value accounting system, like SENSORICA, where they log "uses" and "consumes". 
    • Tiberius Brastaviceanu
       
      ...
    • Tiberius Brastaviceanu
       
      So they have a value accounting system, like SENSORICA, where they log "uses" and "consumes".  
  • The result is not simply a disparate set of individuals doing their own thing under the same roof. Together they benefit from an economy of scale as well as their combined resources to tackle large projects; they are an interconnected whole. They have in common a brand, which they jointly represent, and also a business management system (the Say-Do-Prove system) - consisting not only of system-wide boundaries but also proprietary business management software which helps each take care of the back-end accounting and administrative processing. The effect is a balance between freedom and constraint, individualism and social process.
  • embodiment of meaning
  • But culture is a much more personal phenomenon
  • Culture is like climate- it does not exist in and of itself- it cannot exist in a vacuum, it must exist within a medium.
  • underlying culture
  • Incompatibility between the presenting culture and the underlying one provide a great source of tension
  • The truth of course is that when tension builds to a critical level it takes just a small perturbation to burst the bubble and the hidden culture reveals itself powered by the considerable pent-up energy.
    • Tiberius Brastaviceanu
       
      SENSORICA had this problem of different cultures, and it caused the 2 crisis in 2014. 
    • Tiberius Brastaviceanu
       
      SENSORICA had this problem of different cultures, and it caused the 2 crisis in 2014. 
  • Consider again the idea that for the health of an endangered species; the conditions in their habitat must be just right. In business, the work environment can be considered analogous to this idea of habitat.
  • A healthy environment is one that provides a blank canvas; it should be invisible in that it allows culture to be expressed without taint
  • The over-arching, high-level obligations are applied to the organization via contractual and legal terms.
  • But it is these obligations that the traditional corporate model separates out into functions and then parcels off to distinct groups. The effect is that a clear sight of these ‘higher’ obligations by the people at the front-end is obstructed. The overall sense of responsibility is not transmitted but gets lost in the distortions, discontinuities and contradictions inherent in the corporate systems of hierarchy and functionalization.
  • employees are individually rewarded for their contribution to each product. They are not “compensated” for the hours spent at work. If an employee wants to calculate their hourly rate, then they are free to do so however, they are only rewarded for the outcome not the duration of their endeavors.
  • Another simplification is the application of virtual accounts (Profit and Loss (P&L) account and Balance Sheet) on each person within the business.
  • The company systems simply provide a mechanism for cheaply measuring the success of each individual’s choices. For quality the measure is customer returns, for delivery it is an on-time-and-in-full metric and profit is expressed in terms of both pounds sterling and ROI (return on investment).
    • Tiberius Brastaviceanu
       
      They have a value accounting system. 
    • Tiberius Brastaviceanu
       
      They have a value accounting system. 
  • The innumerable direct links back to an external reality -like the fragile ties that bound giant Gulliver, seem much more effective at aligning the presenting culture and the underlying embodied culture, and in doing so work to remove the existing tension.
  • With a culture that responds directly to reality, the rules in the environment can be “bounding” rather than “binding”- limiting rather than instructive; this way individual behavior need not be directed at all. The goal is to free the individual to express himself fully through his work, bounded only by the limits of the law. With clever feedback (self-referencing feedback loops) integrated into the design, the individuals can themselves grow to collectively take charge of the system boundaries, culture and even the environment itself, always minded of the inherent risks they are balancing, leaving the law of the land as the sole artificial boundary.
  • the conventional company, which, instead of rewarding enterprise, trains compliance by suppressing individual initiative under layer upon layer of translation tools.
  • apply accountability to the individual not command-and-control.
  • without the divisive and overbearing management cabal the natural reaction of humans is to combine their efforts
  • a new member of staff at Matt Black Systems
  • recruited by another staff member (sponsor) and they will help you learn the basics of the business management system- they will help you get to know the ropes.
  • jobs are passed to new staff members, a royalty payment can be established on the work passed over.
  • Along with that job you will be given a cash float (risk capital), P&L Account, a Balance Sheet and computer software to help plan and record your activities. Your operation is monitored by your sponsor to see if you increase the margin or volume, and so establish a sustainable operation. Training and mentoring is provided to support the steep learning curve - but without removing the responsibility of producing a return on the sponsor’s risk capital.
  • You will, in the meantime be looking to establish some of your own work for which you will not have to pay a commission or royalty to your sponsor and this will provide you with more profitable operations such that eventually you might pass back to the sponsor the original operation, as it has become your lowest margin activity. It will then find its way to a new employee (along with the associated Balance Sheet risk capital) where the process is repeated by the sponsor.[4]
  • Remuneration for staff is calibrated in a way that reflects the balance of different forces around ‘pay’
  • there is an obligation upon the company to pay a minimum wage even if the profitability of the operation does not support this
  • there are therefore two aspects of the basic pay structure: one is “absolute” and reflects the entrepreneurial skill level of the employee according to a sophisticated grading scale
  • A further 20% of the original profit will be paid into his risk capital account, which will be his responsibility to deploy in any way he sees fit as part of his Balance Sheet. Of the three remaining 20% slices of the original profit, one is paid out as corporation tax, another as a dividend to the shareholders and the last retained as collective risk capital on the company’s balance sheet- a war chest so to speak.
  • Julian Wilson and Andrew Holm sell products / services to their staff (such as office space and software) they have an identical customer/supplier relationship with the other employees.
  • Naturally there are some people that can’t generate a profit. The sponsor’s risk capital will eventually be consumed through pay. After a process of rescue and recovery- where their shortcomings are identified and they are given the opportunity to put them right, they either improve or leave, albeit with a sizeable increase in their skills.
  • there is a gradual process of accustomisation; the void of the new employee is surrounded by others dealing with their particular activities, offering both role models and operations they may wish to relinquish. One step at a time the new employee acquires the skills to become completely self-managing, to increase their margins, to make investments, to find new business, to become a creator of their own success. Ultimately, they learn to be an entrepreneur.
  • responsible autonomy as an alternative vision to traditional hierarchy
  • Matt Black Systems it is not simply commitment that they targeted in their employees, rather they aim for the specific human qualities they sum up as magic- those of curiosity, imagination, creativity, cooperation, self-discipline and realization (bringing ideas to reality).
  • a new form of association of individuals working together under the umbrella of a company structure: a kind of collective autonomy
  • The business is called Matt Black Systems, based in Poole in dorset
  • Turning an organisation on its head- removing all management, establishing a P&L account and Balance Sheet on everyone in the organisation and having customers payment go first into the respective persons P&L account has revolutionised this company. 
  • This innovative company’s approach views business success as wholly reliant upon human agency, and its wellspring at the individual level.
  • problem (of unnecessarily high overheads placed on production) that arguably is behind the decline in western manufacturing
  • over-managed business
  • Autonomy Enables Productivity
  • organizational design brings to light the unconscious socio-philosophical paradigm of the society in which it exists, organizational development points to how change occurs.
  • a mechanistic approach to organization
  • scientific management employs rationalism and determinism in pursuit of efficiency, but leaves no place for self-determination for most people within the system.
  • Command and Control
  • today, a really “modern” view of an organization is more likely to be depicted in terms that are akin to an organism.
  • When it comes to getting work done, the simple question is: are people the problem or the solution?
  • the Taylorist approach may be more real in theory than in practice: its instrumentalist view of the workforce is cursed by unintended consequences. When workers have no space for their own creative expression, when they are treated like automata not unique individuals, when they become demotivated and surly, when they treat their work as a necessary evil; this is no recipe for a functional organization.
  • The natural, human reaction to this is unionization, defiance and even outright rebellion; to counter this, management grows larger and more rigid in pursuit of compliance, organizations become top heavy with staff who do not contribute directly to the process of value creation but wield power over those who do.
  • voluntary slavery of ‘wagery’
  • Even when disgruntled employees strike free and start their own businesses they seem unable to resist the hegemony of the conventional command-and-control approach
  • Making the transition involves adherence to a whole new sociology of work with all the challenging social and psychological implications that brings.
  • first principal that people in the business have the ability to provide the solution
  • In the “theory of constraints” the goal is to align front-line staff into a neat, compact line for maximum efficiency. Surely the most considered approach is to have front-line staff self-align in pursuit of their individual goals?
  • The removal of hierarchy and specialization is key to a massive improvement in both profitability and productivity. In summary: there are no managers in the company, or foremen, or sales staff, or finance departments; the company is not functionally compartmentalized and there is no hierarchy of command. In fact every member of staff operates as a virtual micro-business with their own Profit & Loss account and Balance Sheet, they manage their own work and see processes through from end to end
  • Formal interaction between colleagues takes place via “customer and supplier” relationships.
  • autonomy enables productivity
  • if one creates a space in which staff pursue their own goals and are not paid by the hour, they will focus on their activities not the clock; if they are not told what to do, they will need to develop their own initiative; if they are free to develop their own processes, they will discover through their own creative faculties how to work more productively- in pursuit of their goals
  • The human qualities which are of greatest potential value to the business are: curiosity, imagination, creativity, cooperation, self-discipline and realization (bringing ideas to reality)
  • These qualities are the very ones most likely to be withheld by an individual when the environment is ‘wrong’.
  • Any elements in the business environment that undermine the autonomy and purpose of the individual will see the above qualities withheld
  • High on the list of undermining elements come power-hierarchy and over-specialization
  • the responsibility of the individual is formalized, specified and restricted. An improved system is not one where responsibility is distributed perfectly but rather one where there is simply no opportunity for responsibility to be lost (via the divisions between the chunks). Systems must be reorganized so responsibility -the most essential of qualities -is protected and wholly preserved.
  • Matt Black Systems believe this can only be done by containing the whole responsibility within an individual, holding them both responsible and giving them ‘response-ability’
  • The experience of Matt Black Systems demonstrates that radical change is possible
  • productivity is up 300%, the profit margin is up 10%[3], customer perception has shifted from poor to outstanding, product returns are at less than 1%, “on time and in full” delivery is greater than 96%, pay has increased 100%.
  • staff develop broader and deeper skills and feel greater job security; they get direct feedback from their customers which all go to fuel self-confidence and self-esteem.
  • the staff manage themselves
  • “only variety can absorb variety”.
  • What is particular about their story is that behind it is a very consciously crafted design that surrounds the individualism of each person with hard boundaries of the customer, the law and the business. It is these boundaries rather than the instructive persona of ‘the boss’ that gives rise to the discipline in which individuals can develop. Autonomy is not the same as freedom, at least not in the loose sense of ‘do as you please’. An autonomous person is a person who has become self-governing, who has developed a capacity for self-regulation, quite a different notion from the absence of boundaries. Indeed, it is with establishing the right boundaries that the business philosophy is most concerned. The company provides the crucible in which the individual can develop self-expression but the container itself is bounded. Wilson calls this “designing the void”. This crucible is carefully constructed from an all-encompassing, interconnecting set of boundaries that provide an ultimate limit to behaviours (where they would fall foul of the law or take risks with catastrophic potential). It is an illusion to think, as a director of a company, that you are not engaged in a process of social conditioning; the basis of the culture is both your responsibility and the result of your influence. The trick is to know what needs to be defined and what needs to be left open. The traditional authoritarian, controlling characters that often dominate business are the antithesis of this in their drive to fill this void with process, persona and instruction. Alternatively, creating an environment that fosters enterprise, individuals discover how to be enterprising.
Tiberius Brastaviceanu

Ceramic Network - Let your data flow - 2 views

  •  
    With Ceramic's permissionless data streaming network, you can store streams of information and ever-changing files directly on the decentralized web - and share updates with anyone in the world
1 - 20 of 20
Showing 20 items per page