Skip to main content

Home/ Sensorica Knowledge/ Group items tagged concepts

Rss Feed Group items tagged

Tiberius Brastaviceanu

What is an ontology and why we need it - 1 views

  • an ontology designer makes these decisions based on the structural properties of a class.
  • an ontology is a formal explicit description of concepts in a domain of discourse (classes (sometimes called concepts)), properties of each concept describing various features and attributes of the concept (slots (sometimes called roles or properties)), and restrictions on slots (facets (sometimes called role restrictions)). An ontology together with a set of individual instances of classes constitutes a knowledge base. In reality, there is a fine line where the ontology ends and the knowledge base begins.
  • Classes describe concepts in the domain
  • ...16 more annotations...
  • A class can have subclasses that represent concepts that are more specific than the superclass.
  • Here we discuss general issues to consider and offer one possible process for developing an ontology. We describe an iterative approach to ontology development: we start with a rough first pass at the ontology. We then revise and refine the evolving ontology and fill in the details. Along the way, we discuss the modeling decisions that a designer needs to make, as well as the pros, cons, and implications of different solutions.
  • In practical terms, developing an ontology includes: �         defining classes in the ontology, �         arranging the classes in a taxonomic (subclass–superclass) hierarchy, �         defining slots and describing allowed values for these slots, �         filling in the values for slots for instances.
  • We can then create a knowledge base by defining individual instances of these classes filling in specific slot value information and additional slot restrictions.
  • Slots describe properties of classes and instances:
  • There is no one correct way to model a domain— there are always viable alternatives. The best solution almost always depends on the application that you have in mind and the extensions that you anticipate. 2)      Ontology development is necessarily an iterative process. 3)      Concepts in the ontology should be close to objects (physical or logical) and relationships in your domain of interest. These are most likely to be nouns (objects) or verbs (relationships) in sentences that describe your domain.
  • some fundamental rules in ontology design
  • how detailed or general the ontology is going to be
  • what we are going to use the ontology for
  • concepts in the ontology must reflect this reality
  • We suggest starting the development of an ontology by defining its domain and scope. That is, answer several basic questions: �         What is the domain that the ontology will cover? �         For what  we are going to use the ontology? �         For what types of questions the information in the ontology should provide answers? �         Who will use and maintain the ontology?
  • plan to use
  • domain
  • If the people who will maintain the ontology describe the domain in a language that is different from the language of the ontology users, we may need to provide the mapping between the languages.
  • One of the ways to determine the scope of the ontology is to sketch a list of questions that a knowledge base based on the ontology should be able to answer, competency questions
  • These competency questions are just a sketch and do not need to be exhaustive.
Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools. 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Tiberius Brastaviceanu

ICT-37-2014 - 0 views

  • provide support to a large set of early stage high risk innovative SMEs in the ICT sector
  • Focus will be on SME proposing innovative ICT concept, product and service applying new sets of rules, values and models which ultimately disrupt existing markets.
  • disruptive ideas
  • ...27 more annotations...
  • prototyping
  • validation and demonstration
  • deployment
  • Proposed projects should have a potential for disruptive innovation and fast market up-take in ICT.
  • interesting for entrepreneurs and young innovative companies
  • bearing a strong EU dimension.
  • Participants can apply to Phase 1 with a view to applying to Phase 2 at a later date, or directly to Phase 2.
  • In phase 1, a feasibility study
  • services and technologies or new market applications of existing technologies
  • Intellectual Property (IP) management
  • increase profitability
  • The proposal should contain an initial business plan based on the proposed idea/concept.
  • EUR 50.000. Projects should last around 6 months
    • Tiberius Brastaviceanu
       
      I don't understand why they call it Open (ODI) when they also talk about Intellectual Property. 
  • company competitiveness
  • prototyping
  • demonstration
  • readiness and maturity for market introduction
  • may also include some research
  • For technological innovation a Technology Readiness Levels of 6 or above
  • Proposals shall be based on an elaborated business plan
  • Proposals shall contain a specification for the outcome of the project, including a first commercialisation plan, and criteria for success.
    • Tiberius Brastaviceanu
       
      We are not a SME and have no classical commercialization plan. We can form an Exchange Firm for example, and offer services for OVNi for example, helping local food networks, providing them infrastructure. But in that case, the business plan for the Exchange Firm should contain a revenue model. Who is going to pay for the deployment of the OVNi in order to make the Exchange Firm commercially viable in the eyes of the Commission?  
  • coaching and mentoring support during phase 1 and phase 2
  • growth plan and maximising it through internationalisation
  • Enhancing profitability and growth performance of SMEs by combining and transferring new and existing knowledge into innovative, disruptive and competitive solutions
  • Open Disruptive Innovation Scheme
  •  
    "Specific Challenge: The challenge is to provide support to a large set of early stage high risk innovative SMEs in the ICT sector. Focus will be on SME proposing innovative ICT concept, product and service applying new sets of rules, values and models which ultimately disrupt existing markets."
Tiberius Brastaviceanu

If not Global Captalism - then What? - 0 views

  • I posit an optimistic view of the potential for Society from the emergence of a new and “Open” form of Capitalism.
  • Open Capital
  • the concept of “Open” Capital is “so simple…. it repels the mind".
  • ...162 more annotations...
  • Open Capital is defined as “a proportional share in an enterprise for an indeterminate time”
  • ‘Enterprise’ is defined as ‘any entity within which two or more individuals create, accumulate or exchange Value”.
  • Value is to Economics as Energy and Matter are to Physics.
  • The Metaphysics Of Value
  • division between “subject” and “object”.
  • primary reality is “Quality”
  • formless and indefinable
  • not a “thing”
  • a non-intellectual awareness or “pre-intellectual reality”
  • but an event at which the subject becomes aware of the object and before he distinguishes it
  • Quality is the basis of both subject and object
  • distinguish between “Static” and “Dynamic” Quality
  • treating Value as a form of “Quality” as envisioned by Pirsig.
  • Riegel
  • defined “Value” as “ the Relativity of Desire” again implying indeterminacy.
  • Pirsig’s approach Capital may be viewed as “Static” Value and Money as “Dynamic” Value. “Transactions” are the “events” at which individuals (Subjects) interact with each other or with Capital (both as Objects) to create forms of Value and at which “Value judgments” are made based upon a “Value Unit”.
  • The result of these Value Events /Transactions is to create subject/object pairings in the form of data ie Who “owns” or has rights of use in What,
  • at what Price
  • accounting data
  • Neo-Classical” Economics confuses indeterminate Value with a market– determined Price –
  • Data may be static
  • This Data identifies the subject with objects such as tangible ‘Material Value’
  • Data may itself constitute ‘Intellectual Value’
  • It, too, may then be defined in a subject/object pairing through the concept of “intellectual property”.
  • Other forms of Value are however not definable by data:
  • “sentimental” Value
  • Emotional Value’
  • 'Spiritual Value’
  • We may therefore look at the “transaction” or “value event” in a new light.
  • The creation and circulation of Value essentially comprises the concept we know of as “Money”.
  • Money / Dynamic Value
  • “The purpose of money is to facilitate barter by splitting the transaction into two parts, the acceptor of money reserving the power to requisition value from any trader at any time
  • money
  • value unit dissociated from any object
  • monetary unit
  • the basis relative to which other values may be expressed
  • The monetary process is a dynamic one involving the creation and recording of obligations as between individuals and the later fulfilment of these obligations
  • The monetary “Value Event”/ Transaction involves the creation of “Credit”
  • obligation to provide something of equivalent Value at a future point in time.
  • These obligations may be recorded on transferable documents
  • database of “Credit”/obligations is not Money, but temporary “Capital”
  • “Working Capital”
  • Static Value – which only becomes “Money”/ Dynamic Value when exchanged in the transitory Monetary process.
  • what we think of as Money is in fact not tangible “cash” but rather
  • the flow of data between databases of obligations maintained by Credit Institutions
  • or dynamic
  • Banks literally “loan” Money into existence
  • In exchange for an obligation by an Individual to provide to the Bank something of Value
  • Bank’s obligation is merely to provide another obligation at some future time
  • These Bank-issued obligations are therefore
  • claim upon a claim upon Value
  • The true source of Credit is the Individual, not the intermediary Bank
  • this Money they create from nothing despite the fact that it is literally Value-less
  • Thus there is no true sharing of Risk and Reward involved in Lending
  • issue in relation to Credit/Debt and this relates to the nature of Lending itself.
  • the practice of Lending involves an incomplete exchange in terms of risk and reward: a Lender, as opposed to an Investor, has no interest in the outcome of the Loan, and requires the repayment of Principal no matter the ability of the Borrower to repay.
  • Ethical problem
    • Tiberius Brastaviceanu
       
      "The Lender has no interest in the outcome of the loan", i.e doesn't care what happens in the end. The Lender ins not interested in the economical outcome of the Lender-Loner relation. So in fact there is no real risk sharing. the only risk for the Lender is when the Loner doesn't pay back, which is not really a risk... In fact it is a risk for the small bank, who has to buy money from the central bank, but not for the central bank. 
  • Money is not
  • an “Object” circulating but rather a dynamic process of Value creation and exchange by reference to a “Value Unit”.
  • Capital/ Static Value
  • Capital represents the static accumulation of Value
  • Some forms of Capital are “productive”
  • An ethical question
  • in relation to Productive Capital relates to the extent of “property rights” which may be held over it thereby allowing individuals to assert “absolute” permanent and exclusive ownership - in particular in relation to Land
  • our current financial system is based not upon Value but rather a claim upon Value
  • Financial Capital consists of two types:
  • “Debt”
  • “Equity”
  • Interest
  • obligations of finite/temporary duration but with no participation in the assets or revenues
  • absolute and permanent ownership/participation (without obligation) in assets and revenues
  • discontinuity between Debt and Equity
  • at the heart of our current problems as a Society
  • The Enterprise
  • ‘Charitable’ Enterprise
  • ‘Social’ Enterprise
  • Value
  • exchanged in agreed proportions;
  • Value is exchanged for the Spiritual and Emotional Value
  • ‘Commercial’ Enterprise
  • ‘closed’
  • Value are exchanged between a limited number of individuals
  • Early enterprises were partnerships and unincorporated associations
  • need for institutions which outlived the lives of the Members led to the development of the Corporate body with a legal existence independent of its Members
  • The key development in the history of Capitalism was the creation of the ‘Joint Stock’ Corporate with liability limited by shares of a ‘Nominal’ or ‘Par’ value
  • over the next 150 years the Limited Liability Corporate evolved into the Public Limited Liability Corporate
  • Such “Closed” Shares of “fixed” value constitute an absolute and permanent claim over the assets and revenues of the Enterprise to the exclusion of all other “stakeholders” such as Suppliers, Customers, Staff, and Debt Financiers.
  • The latter are essentially ‘costs’ external to the
  • owners of the Enterprise
  • maximise ‘Shareholder Value’
  • There is a discontinuity/ fault-line within the ‘Closed’ Corporate
  • It has the characteristics of what biologists call a ‘semi-permeable membrane’ in the way that it allows Economic Value to be extracted from other stakeholders but not to pass the other way.
    • Tiberius Brastaviceanu
       
      It is a way to extract value from productive systems. It is a system of exploitation. 
  • Capital most certainly is and always has been - through the discontinuity (see diagram) between:‘Fixed’ Capital in the form of shares ie Equity; and ‘Working’ Capital in the form of debt finance, credit from suppliers, pre-payments by customers and obligations to staff and management.
  • irreconcilable conflict between Equity and Debt
  • xchange of Economic Value in a Closed Corporate is made difficult and true sharing of Risk and Reward is simply not possible
  • No Enterprise Model has been capable of resolving this dilemma. Until now.
  • Corporate Partnerships with unlimited liability
  • mandatory for partnerships with more than 20 partners to be incorporated
  • in the USA
  • it is the normal structure for professional partnerships
  • Limited Liability Partnerships
  • In the late 1990's
  • litigation
  • The UK LLP is supremely simple and remarkably flexible.
  • All that is needed is a simple ‘Member Agreement’ – a legal protocol which sets out the Aims, Objectives. Principles of Governance, Revenue Sharing, Dispute Resolution, Transparency and any other matters that Members agree should be included. Amazingly enough, this Agreement need not even be in writing, since in the absence of a written agreement Partnership Law is applied by way of default.
  • The ease of use and total flexibility enables the UK LLP to be utilised in a way never intended – as an ‘Open’ Corporate partnership.
  • ‘Open’ Corporate Partnership
  • concepts which characterise the ‘Open’ Corporate Partnership
  • it is now possible for any stakeholder to become a Member of a UK LLP simply through signing a suitably drafted Member Agreement
  • ‘Open’
  • supplier
  • employee
  • may instead become true Partners in the Enterprise with their interests aligned with other stakeholders.
    • Tiberius Brastaviceanu
       
      Can SENSORICA be a UK LLP?
  • no profit or loss in an Open Corporate Partnership, merely Value creation and exchange between members in conformance with the Member Agreement.
  • Proportional shares
  • in an Enterprise constitute an infinitely divisible, flexible and scaleable form of Capital capable of distributing or accumulating Value organically as the Enterprise itself grows in Value or chooses to distribute it.
  • Emergence of “Open” Capital
  • example of how ‘Temporary Equity’ may operate in practice
  • The Open Capital Partnership (“OCP”)
  • Within the OCP Capital and Revenue are continuous: to the extent that an Investee pays Rental in advance of the due date he becomes an Investor.
  • Open Capital – a new Asset Class
  • create a new asset class of proportional “shares”/partnership interests
  • in Capital holding OCP’s
  • Property Investment Partnerships (“PIP’s”)
  • Open Corporate Partnerships as a Co-operative Enterprise model
  • A Co-operative is not an enterprise structure: it is a set of Principles that may be applied to different types of enterprise structure.
  • Within a Partnership there is no “Profit” and no “Loss”.
  • Partnerships
  • mutual pursuit of the creation and exchange of Value
  • Partners do not compete with each othe
  • the crippling factors in practical terms have been, inter alia: the liability to which Member partners are exposed from the actions of their co-partners on their behalf; limited ability to raise capital.
  • they favour the interests of other stakeholders, are relatively restricted in accessing investment; are arguably deficient in incentivising innovation.
  • The ‘new’ LLP was expressly created to solve the former problem by limiting the liability of Member partners to those assets which they choose to place within its protective ‘semi-permeable membrane’
  • However, the ability to configure the LLP as an “Open” Corporate permits a new and superior form of Enterprise.
  • it is possible to re-organise any existing enterprise as either a partnership or as a partnership of partnerships.
  • the revenues
  • would be divided among Members in accordance with the LLP Agreement. This means that all Members share a common interest in collaborating/co-operating to maximise the Value generated by the LLP collectively as opposed to competing with other stakeholders to maximise their individual share at the other stakeholders’ expense.
  • facilitate the creation of LLP’s as “Co-operatives of Co-operatives”.
  • he ‘Commercial’ Enterprise LLP – where the object is for a closed group of individuals to maximise the value generated in their partnership. There are already over 7,000 of these.
    • Tiberius Brastaviceanu
       
      Can SENSORICA be one of these?
  • the Profit generated in a competitive economy based upon shareholder value and unsustainable growth results from a transfer of risks outwards, and the transfer of reward inwards, leading to a one way transfer of Economic Value.
  • This,
  • will very often impoverish one or more constituency of stakeholders
  • A partnership, however, involves an exchange of value through the sharing of risk and reward.
  • Whether its assets are protected within a corporate entity with limited liability or not, it will always operate co-operatively – for mutual profit.
  • Open Capital, Economics and Politics
  • continuity between Capital as Static Value and Money as Dynamic Value which has never before been possible due to the dichotomy between the absolute/infinite and the absolute/finite durations of the competing claims over assets – “Equity” and “Debt”
  • Open Capital Partnership gives rise to a new form of Financial Capital of indeterminate duration. It enables the Capitalisation of assets and the monetisation of revenue streams in an entirely new way.
  • It is possible to envisage a Society within which individuals are members of a portfolio of Enterprises constituted as partnerships, whether limited in liability or otherwise.
  • Some will be charitable
  • Others will be ‘social’
  • ‘Commercial’ enterprises of all kinds aimed at co-operatively working together to maximise value for the Members.
  • the process has already begun
  • Capitalism
  • superior
  • to all other models, such as Socialism.
  • It can only be replaced by another ‘emergent’ phenomenon, which is adopted ‘virally’ because any Enterprise which does not utilise it will be at a disadvantage to an Enterprise which does.
  • The ‘Open’ Corporate Partnership is: capable of linking any individuals anywhere in respect of collective ownership of assets anywhere; extremely cheap and simple to operate; and because one LLP may be a Member of another it is organically flexible and ‘scaleable’. The phenomenon of “Open Capital” – which is already visible in the form of significant commercial transactions - enables an extremely simple and continuous relationship between those who wish to participate indefinitely in an Enterprise and those who wish to participate for a defined period of time.
  • Moreover, the infinitely divisible proportionate “shares” which constitute ‘Open’ Capital allow stakeholder interests to grow flexibly and organically with the growth in Value of the Enterprise. In legal terms, the LLP agreement is essentially consensual and ‘pre-distributive’: it is demonstrably superior to prescriptive complex contractual relationships negotiated adversarially and subject to subsequent re-distributive legal action. Above all, the ‘Open’ Corporate Partnership is a Co-operative phenomenon which is capable, the author believes, of unleashing the “Co-operative Advantage” based upon the absence of a requirement to pay returns to “rentier” Capitalists.
Kurt Laitner

Corporate Rebels Manifesto « Petervan's Blog - 0 views

  •  
    Dave Gray's Pod concept looks interesting, as do other deliverables from this group of illustrious folks
Kurt Laitner

Mihai Nadin - Wikipedia, the free encyclopedia - 0 views

  •  
    Another clever Romanian - important figure to look into. Anticipation interesting in same way as futureful and other concepts from Jarno Kopenen - semiotic thread runs though Pierre Levy's work as well on IEML
Kurt Laitner

8 concepts pour une pédagogie ouverte et hybride | JEFF T@VERNIER - 1 views

  •  
    via christophe cessetti
Steve Bosserman

Wave Glider Concept - 3 views

  •  
    Potential sensor technology applications?
Tiberius Brastaviceanu

Federated Decision Making v1.0.pdf - Google Docs - 0 views

  •  
    A concept introduced b Roy Zuninga, tibi's contact
Tiberius Brastaviceanu

Federated Decision Making v1.0.docx - Google Docs - 0 views

  •  
    a concept introduced  by Roy Zuninga - Tibi's contact
Tiberius Brastaviceanu

Discovery Network Back Office Catalog - Google Drive - 0 views

  •  
    Back Office Catalog is a concept proposed by Tibi, part of work for Multitude Project on Discovery Networks. Discovery Networks is the precursor the Open Value Network model.
Tiberius Brastaviceanu

Fibre-optical strain-gauge - Google Patents - 0 views

    • Tiberius Brastaviceanu
       
      A similar concept, based on misalignment was used by Gerald Pollack in muscle physiology (1993)   
  •  
    2 fiber device, relies on a mechanical assembly and its known elastic properties. Differs from our sensor in that ours has one free end.
Tiberius Brastaviceanu

Proposal - Food SFS-08-2014 - 1 views

  • development of more resource-efficient and sustainable food production and processing
  • competitive and innovative
    • Tiberius Brastaviceanu
       
      We are proposing collaborative ways, here the accent is put on competitive ways 
    • Tiberius Brastaviceanu
       
      We are proposing collaborative methods. Here, the accent is put on COMPETITIVE ways for a "sustainable circular economy"
  • ...29 more annotations...
  • reduction in water and energy use
  • gas emissions and waste generation
  • improving the efficiency
  • ensuring or improving shelf life, food safety and quality
  • competitive eco-innovative processes should be developed
  • sustainable circular economy
  • Intellectual Property (IP)
  • In phase 1, a feasibility study
  • technological/practical as well as economic viability of an innovation idea/concept with considerable novelty to the industry sector
  • to establish a solid high-potential innovation project
  • increase profitability of the enterprise through innovation
  • increase the return in investment in innovation activities
  • The proposal should contain an initial business plan based on the proposed idea/concept.
  • apply to phase 1 with a view to applying to phase 2 at a later date, or directly to phase 2.
  • EUR 50,000. Projects should last around 6 months
    • Tiberius Brastaviceanu
       
      Phase 1 has a classical language. We would need to mask our true identity and beliefs writing this grant proposal. I don't think it's for us... But this is only my opinion. 
  • In phase 2, innovation projects will be supported that address the specific challenge of Sustainable Food Security
  • demonstrate high potential in terms of company competitiveness and growth underpinned by a strategic business plan
    • Tiberius Brastaviceanu
       
      This is more about individual companies and their competitive advantage. Not about networks and not about collaboration and sharing. 
    • Tiberius Brastaviceanu
       
      Moreover, they put emphasis on IP protection and ownership, when we must talk about commons, knowledge commons applied to agriculture, sharing platforms, etc. 
  • Proposals shall be based on an elaborated business plan either developed through phase 1 or another means.
  • Particular attention must be paid to IP protection and ownership
  • Successful beneficiaries will be offered coaching and mentoring support during phase 1 and phase 2.
  • Enhancing profitability
  • competitive solutions
  • global business opportunities
  • sustainable
  • turnover
  • IP management
  • return on investment and profit
Tiberius Brastaviceanu

DRS-07-2014 - 0 views

  •  
    "Topic: Crisis management topic 7: Crises and disaster resilience - operationalizing resilience concepts"
Kurt Laitner

Intimacy Gradient and Other Lessons from Architecture - Life With Alacrity - 4 views

  •  
    A wonderful concept for something I've been using far more words to describe - the Intimacy Gradient - love it!
  •  
    good overview of some of the architectural considerations for an OVN
Tiberius Brastaviceanu

Permaculture Principles | Design Principles - 1 views

  • how the principles of permaculture might apply to business.
  • The shift will be from merely prioritising output to thinking more widely.
  • how to build resilience for business
  • ...64 more annotations...
  • observation
  • A post-peak world will depend on detailed observation and good design rather than energy-intensive solutions.
  • not rely on weather forecasts but to learn to read the clouds,
  • “instead of researching the market, be the market”
  • businesses should be out there observing.
  • larger businesses tend to rely more on surveys and on second-hand information.
  • direct contact with customers.
  • move our idea of ‘capital’ from what we have in the bank, to the resources we have around us
  • not running a business on a constant high speed cash throughput with little or no capital reserves
  • lack of resilience in the just-in-time supply approach
  • a shift to storages of parts and materials, as well as the need to financially not be so dependent on debt financing
  • work slower with more financial reserves and take less risks, not building beyond what the company’s financial resources can support.
  • either to not borrow any money at all, or to borrow so much money that you can’t fail, being bigger than the people you borrow money from, so they have a vested interest in your succeeding!
  • energy efficient
  • long term
  • Looking to make buildings as autonomous as possible in a world entering energy descent is critical
  • see things that are flowing past and through the business that others don’t see as being a resource and having no monetary value as being valuable.
  • any intervention we make in a system, any changes we make or elements we introduce ought to be productive
  • This is instinctive to businesses
  • Obtain a Yield, in this context, is out of balance
  • much of business
  • have taken this to extremes
  • A well-designed system using permaculture principles should be able to self-regulate, and require the minimum of intervention and maintenance, like a woodland ecosystem, which requires no weeding, fertiliser or pest control.
  • moving from “we’re just obeying the law” to being proactive, acting before you get hit over the head with regulation and other vulnerabilities.
  • be able to put a foot on the break, not just going hell for leather on profit maximisation.
  • apply applied restraint, avoiding excessive, overfast growth that hasn’t been consolidated
  • looking for the negative feedbacks, from customers and from the environment in general
  • We need to increase the tightness of feedbacks.
  • Where nature can perform particular functions
  • we should utilise these attributes, rather than thinking we can replace them
  • Where nature can take some work off our hands we should let it.
  • a shift towards renewable resources
  • The emerging opportunities for businesses are things that are renewable. Renewable energy sources are the ones that will ensure a business’s stability in the long run. We can also broaden the concept of renewable resources to include things like goodwill and trust, things which a business can rebuild with good husbandry. Most business doesn’t just depend on law and competition, trust is at the heart of much business and it is very much a renewable resource.
  • The concept of waste is essentially a reflection of poor design. Every output from one system could become the input to another system. We need to think cyclically rather than in linear systems.
  • looking at our work from a range of perspectives
  • wider context
  • keep a clearer sense of the wider canvas on which we are painting, and the forces that affect what we are doing.
  • being strategic is important too
  • ask how is what we are doing part of a bigger picture, the move away from globalisation and towards the local, taking steps back from the everyday.
  • This can be done firstly by allowing space for Devil’s advocates, for black sheep, for hearing the voices of those outside of the dominant culture of the organisation and secondly by looking from a holistic perspective of how things interconnect, rather than just relying on experts who are embedded in detail. It emphasises the need to value the generalist, to give value to holistic thinkers.
  • allowing people to imagine different possibilities.
  • scenario planning
  • Permaculture has been described as the science of maximising beneficial relationships.
  • Solutions are to be found in integrated holistic solutions rather than increased specialisation and compartmentalisation
  • The challenge here is to move to seeing business as being part of the geographical community, as being rooted in place, rather than just part of a globalised community. At the moment for many larger businesses, the local is something one pays lip-service to as a source of good PR, something one is passing through, rather than actually being an integral part of the community.
  • This is a profound structural challenge for large organisations. Part of the resilience of the organisation comes from the degree of lateral integration. Resilience is in all solutions, it is the characteristic of ecological systems. If we apply these principles, resilience is one of the emergent properties
  • the notion that big is best needs to be challenged
  • new opportunities are very hard to understand and exploit from a macro level perspective, and are much better done from small scale perspective. It is here that the idea of appropriateness of scale becomes key.
  • more diverse systems have much more inbuilt resilience
  • have a diversity of small businesses, local currencies, food sources, energy sources and so on than if they are just dependent on centralised systems, globalisation’s version of monoculture.
  • not having all your eggs in one basket.
  • In the short term this kind of diversification could reduce profits, but in the longer term it will be more secure
  • this is about the reverse of specialisation, about having a mixed portfolio, and presents a big culture change for businesses.
  • it is a good strategy for business to keep a diverse portfolio of what sustains the business, keep some things that appear to be peripheral. They may not at this stage appear to be a serious part of how the business is run, but in this new world they will increasingly become so
  • ‘edge’
  • the point where two ecosystems meet is often more productive than either of those systems on their own.
  • overlap systems where possible so as to maximise their potential.
  • recognising that innovation doesn’t come from the centre but from fringe thinkers.
  • giving status to the marginal
  • It is important that the business has as many fingers in as many pies as possible, as many interfaces, and recognises that every person working for the business represents it in the community.
  • Natural systems are constantly in flux, evolving and growing.
  • Remaining observant of the changes around you, and not fixing onto the idea that anything around you is fixed or permanent will help too.
  • be flexible, lean and adaptable
  • A healthy approach is to start with no complete plan, to allow the process to be emergent. This is not a time when we can work to a rigid plan as conditions will change so fast. Organisations will need to stay on their toes, without rigid management.
Tiberius Brastaviceanu

Co-Creating as Disruption to the Dominant Cultural Framework » Wirearchy - 0 views

  • more open people processes
  • Participative processes like Open Space, World Cafes, Unconferences, Peer Circles
  • Barcamps, Wordcamps, Govcamps, Foo Camps, Unconferences, high-end celebrity-and-marketing-and venture-capital ‘experience’ markets, new cultural and artistic festivals with technology-and-culture-making themes
  • ...45 more annotations...
  • maker faires
  • community-and-consensus building, organizing for activism and fundraising
  • The impetus behind this explosion is both technological and sociological
  • Technological
  • information technology and the creation and evolution of the Internet and the Web
  • appearance, development and evolution of social tools, web services, massive storage, and the ongoing development of computer-and-smart-devices development
  • Sociological
  • People are searching for ways to find others with similar interests and motivations so that they can engage in activities that help them learn, find work, grow capabilities and skills, and tackle vexing social and economic problems
  • get informed and take action
  • Developing familiarity and practice with open and collaborative processes
  • play and work together
  • rules about self-management, operate democratically, and produce results grounded in ownership and the responsibilities that have been agreed upon by the ‘community’
  • The relationships and flows of information can be transferred to online spaces and often benefit from wider connectivity.
  • Today, our culture-making activities are well engaged in the early stages of cultural mutation
  • What’s coming along next ?  “Smart” devices and Internet everywhere in our lives ?  Deep(er) changes to the way things are conceived, carried out, managed and used ?  New mental models ?  Or, will we discover real societal limits to what can be done given the current framework of laws, institutions and established practices with which people are familiar and comfortable ?
  • Shorter cycle-based development and release
  • Agile development
  • It is clear evidence that the developmental and learning dynamics generated by continuous or regular feedback loops are becoming the norm in areas of activity in which change and short cycles of product development are constants.
  • The Internet of Things (IoT)
  • clothes, homes, cars, buildings, roads, and a wide range of other objects that have a place in peoples’ daily life activities
  • experiencing major growth, equally in terms of hardware, software and with respect to the way the capabilities are configured and used
  • The IoT concept is being combined with the new-ish concepts of Open Data and Big Data
  • ethical, political and social impact policy decisions
  • that key opportunities associated with widespread uptake of the IoT are derived from the impact upon peoples’ activities and lives
  • ‘we’ are on our way towards more integrated eco-systems of issues, people and technologies
  • participation and inclusion enabled by interconnectedness are quickly becoming the ‘new rules’
  • What the Future May Hold
  • the ‘scenario planning’ approach
  • world’s politics, economics, anthropology, technology, psychology, sociology and philosophy
  • A scenario planning exercise carried out by the Rockefeller Foundation
  • Clearly these early (and now not-so-weak) signals and patterns tell us that the core assumptions and principles that have underpinned organized human activities for most of the past century
  • are being changed by the combinations and permutations of new, powerful, inexpensive and widely accessible information-processing technologies
  • The short description of each scenario reinforces the perception that we are both individually and collectively in transition from a linear, specialized, efficiency-driven paradigm towards a paradigm based on continuous feedback loops and principles of participation, both large and small in scope.
  • cultural ‘mutation’
  • Wirearchy
  • a dynamic two-way flow of power and authority based on knowledge, trust, credibility and a focus on results, enabled by interconnected people and technology.
  • the role of social media and smart mobile devices in the uprisings in Egypt, Libya and elsewhere in the Middle East
  • The roots of organizational development (OD) are in humanistic psychology and sociology action and ethnographic and cybernetic/ socio-technical systems theory.  It’s a domain that emerged essentially as a counter-balance to the mechanistic and machine-metaphor-based core assumptions about the organized activities in our society.
  • Organizational development principles are built upon some basic assumptions about human motivations, engagement and activities.
  • Participative Work Design – The Six Criteria
  • in recent years created models that help clarify how to evaluate and respond to the continuous turbulence and ambiguity generated by participating in interconnected flows of information.
  • contexts characterized by either Simple, Complicated or Chaotic dynamics (from complexity theory fundamentals). Increasingly, Complexity is emerging as a key definer of the issues, problems and opportunities faced by our societies.
  • peer-to-peer movement(s) unfolding around the world
  • Co-creating in a wide range of forms, processes and purpose may become an effective and important antidote to the spreading enclosure of human creative activity.
  • But .. the dominant models of governance, commercial ownership and the use and re-use of that which is co-created by people are going to have to undergo much more deep change in order to disrupt the existing paradigm of proprietary commercial creation and the model of socio-economic power that this paradigm enables and carries today.
Kurt Laitner

Smart Contracts - 0 views

  • Whether enforced by a government, or otherwise, the contract is the basic building block of a free market economy.
  • A smart contract is a set of promises, specified in digital form, including protocols within which the parties perform on the other promises.
  • The basic idea of smart contracts is that many kinds of contractual clauses (such as liens, bonding, delineation of property rights, etc.) can be embedded in the hardware and software we deal with, in such a way as to make breach of contract expensive (if desired, sometimes prohibitively so) for the breacher.
  • ...77 more annotations...
  • A broad statement of the key idea of smart contracts, then, is to say that contracts should be embedded in the world.
  • And where the vending machine, like electronic mail, implements an asynchronous protocol between the vending company and the customer, some smart contracts entail multiple synchronous steps between two or more parties
  • POS (Point of Sale)
  • EDI (Electronic Data Interchange
  • SWIFT
  • allocation of public network bandwidth via automated auctions
  • Smart contracts reference that property in a dynamic, proactively enforced form, and provide much better observation and verification where proactive measures must fall short.
  • The mechanisms of the world should be structured in such a way as to make the contracts (a) robust against naive vandalism, and (b) robust against sophisticated, incentive compatible (rational) breach.
  • A third category, (c) sophisticated vandalism (where the vandals can and are willing to sacrifice substantial resources), for example a military attack by third parties, is of a special and difficult kind that doesn't often arise in typical contracting, so that we can place it in a separate category and ignore it here.
  • The threat of physical force is an obvious way to embed a contract in the world -- have a judicial system decide what physical steps are to be taken out by an enforcement agency (including arrest, confiscation of property, etc.) in response to a breach of contract
  • It is what I call a reactive form of security.
  • The need to invoke reactive security can be minimized, but not eliminated, by making contractual arrangements verifiable
  • Observation of a contract in progress, in order to detect the first sign of breach and minimize losses, also is a reactive form of security
  • A proactive form of security is a physical mechanism that makes breach expensive
  • From common law, economic theory, and contractual conditions often found in practice, we can distill four basic objectives of contract design
  • observability
  • The disciplines of auditing and investigation roughly correspond with verification of contract performance
  • verifiability
  • The field of accounting is, roughly speaking, primarily concerned with making contracts an organization is involved in more observable
  • privity
  • This is a generalization of the common law principle of contract privity, which states that third parties, other than the designated arbitrators and intermediaries, should have no say in the enforcement of a contract
  • The field of security (especially, for smart contracts, computer and network security), roughly corresponds to the goal of privity.
  • enforceability
  • Reputation, built-in incentives, "self-enforcing" protocols, and verifiability can all play a strong part in meeting the fourth objective
  • Smart contracts often involve trusted third parties, exemplified by an intermediary, who is involved in the performance, and an arbitrator, who is invoked to resolve disputes arising out of performance (or lack thereof)
  • In smart contract design we want to get the most out of intermediaries and arbitrators, while minimizing exposure to them
  • Legal barriers are the most severe cost of doing business across many jurisdictions. Smart contracts can cut through this Gordian knot of jurisdictions
  • Where smart contracts can increase privity, they can decrease vulnerability to capricious jurisdictions
  • Secret sharing
  • The field of Electronic Data Interchange (EDI), in which elements of traditional business transactions (invoices, receipts, etc.) are exchanged electronically, sometimes including encryption and digital signature capabilities, can be viewed as a primitive forerunner to smart contracts
  • One important task of smart contracts, that has been largely overlooked by traditional EDI, is critical to "the meeting of the minds" that is at the heart of a contract: communicating the semantics of the protocols to the parties involved
  • There is ample opportunity in smart contracts for "smart fine print": actions taken by the software hidden from a party to the transaction.
  • Thus, via hidden action of the software, the customer is giving away information they might consider valuable or confidential, but the contract has been drafted, and transaction has been designed, in such a way as to hide those important parts of that transaction from the customer.
  • To properly communicate transaction semantics, we need good visual metaphors for the elements of the contract. These would hide the details of the protocol without surrendering control over the knowledge and execution of contract terms
  • Protocols based on mathematics, called cryptographic protocols, tre the basic building blocks that implement the improved tradeoffs between observability, verifiability, privity, and enforceability in smart contracts
  • secret key cryptography,
  • Public key cryptography
  • digital signatures
  • blind signature
  • Where smart contracts can increase observability or verifiability, they can decrease dependence on these obscure local legal codes and enforcement traditions
  • zero-knowledge interactive proof
  • digital mix
  • Keys are not necessarily tied to identities, and the task of doing such binding turns out to be more difficult than at first glance.
  • All public key operation are are done inside an unreadable hardware board on a machine with a very narrow serial-line connection (ie, it carries only a simple single-use protocol with well-verified security) to a dedicated firewall. Such a board is available, for example, from Kryptor, and I believe Viacrypt may also have a PGP-compatable board. This is economical for central sites, but may be less practical for normal users. Besides better security, it has the added advantage that hardware speeds up the public key computations.
  • If Mallet's capability is to physically sieze the machine, a weaker form of key protection will suffice. The trick is to hold the keys in volatile memory.
  • The data is still vulnerable to a "rubber hose attack" where the owner is coerced into revealing the hidden keys. Protection against rubber hose attacks might require some form of Shamir secret sharing which splits the keys between diverse phgsical sites.
  • How does Alice know she has Bob's key? Who, indeed, can be the parties to a smart contract? Can they be defined just by their keys? Do we need biometrics (such as autographs, typed-in passwords, retina scans, etc.)?
  • The public key cryptography software package "Pretty Good Privacy" (PGP) uses a model called "the web of trust". Alice chooses introducers whom she trusts to properly identify the map between other people and their public keys. PGP takes it from there, automatically validating any other keys that have been signed by Alice's designated introducers.
  • 1) Does the key actually belong to whom it appears to belong? In other words, has it been certified with a trusted signature?
  • 2) Does it belong to an introducers, someone you can trust to certify other keys?
  • 3) Does the key belong to someone you can trust to introduce other introducers? PGP confuses this with criterion (2). It is not clear that any single person has enough judgement to properly undertake task (3), nor has a reasonable institution been proposed that will do so. This is one of the unsolved problems in smart contracts.
  • PGP also can be given trust ratings and programmed to compute a weighted score of validity-- for example, two marginally trusted signatures might be considered as credible as one fully trusted signature
  • Notaries Public Two different acts are often called "notarization". The first is simply where one swears to the truth of some affidavit before a notary or some other officer entitled to take oaths. This does not require the notary to know who the affiant is. The second act is when someone "acknowledges" before a notary that he has executed a document as ``his own act and deed.'' This second act requires the notary to know the person making the acknowledgment.
  • "Identity" is hardly the only thing we might want map to a key. After all, physical keys we use for our house, car, etc. are not necessarily tied to our identity -- we can loan them to trusted friends and relatives, make copies of them, etc. Indeed, in cyberspace we might create "virtual personae" to reflect such multi-person relationships, or in contrast to reflect different parts of our personality that we do not want others to link. Here is a possible classification scheme for virtual personae, pedagogically presented:
  • A nym is an identifier that links only a small amount of related information about a person, usually that information deemed by the nym holder to be relevant to a particular organization or community
  • A nym may gain reputation within its community.
  • With Chaumian credentials, a nym can take advantage of the positive credentials of the holder's other nyms, as provably linked by the is-a-person credential
  • A true name is an identifier that links many different kinds of information about an person, such as a full birth name or social security number
  • As in magick, knowing a true name can confer tremendous power to one's enemies
  • A persona is any perstient pattern of behavior, along with consistently grouped information such as key(s), name(s), network address(es), writing style, and services provided
  • A reputable name is a nym or true name that has a good reputation, usually because it carries many positive credentials, has a good credit rating, or is otherwise highly regarded
  • Reputable names can be difficult to transfer between parties, because reputation assumes persistence of behavior, but such transfer can sometimes occur (for example, the sale of brand names between companies).
  • Blind signatures can be used to construct digital bearer instruments, objects identified by a unique key, and issued, cleared, and redeemed by a clearing agent.
  • The clearing agent prevents multiple clearing of particular objects, but can be prevented from linking particular objects one or both of the clearing nyms who transferred that object
  • These instruments come in an "online" variety, cleared during every transfer, and thus both verifiable and observable, and an "offline" variety, which can be transfered without being cleared, but is only verifiable when finally cleared, by revealing any the clearing nym of any intermediate holder who transfered the object multiple times (a breach of contract).
  • To implement a full transaction of payment for services, we need more than just the digital cash protocol; we need a protocol that guarantees that service will be rendered if payment is made, and vice versa
  • A credential is a claim made by one party about another. A positive credential is one the second party would prefer to reveal, such as a degree from a prestigious school, while that party would prefer not to reveal a negative credential such as a bad credit rating.
  • A Chaumian credential is a cryptographic protocol for proving one possesses claims made about onself by other nyms, without revealing linkages between those nyms. It's based around the is-a-person credential the true name credential, used to prove the linkage of otherwise unlinkable nyms, and to prevent the transfer of nyms between parties.
  • Another form of credential is bearer credential, a digital bearer instrument where the object is a credential. Here the second party in the claim refers to any bearer -- the claim is tied only to the reputable name of issuing organization, not to the nym or true name of the party holding the credential.
  • Smart Property We can extend the concept of smart contracts to property. Smart property might be created by embedding smart contracts in physical objects. These embedded protocols would automatically give control of the keys for operating the property to the party who rightfully owns that property, based on the terms of the contract. For example, a car might be rendered inoperable unless the proper challenge-response protocol is completed with its rightful owner, preventing theft. If a loan was taken out to buy that car, and the owner failed to make payments, the smart contract could automatically invoke a lien, which returns control of the car keys to the bank. This "smart lien" might be much cheaper and more effective than a repo man. Also needed is a protocol to provably remove the lien when the loan has been paid off, as well as hardship and operational exceptions. For example, it would be rude to revoke operation of the car while it's doing 75 down the freeway.
  • Smart property is software or physical devices with the desired characteristics of ownership embedded into them; for example devices that can be rendered of far less value to parties who lack possesion of a key, as demonstrated via a zero knowledge interactive proof
  • One method of implementing smart property is thru operation necessary data (OND): data necessary to the operation of smart property.
  • A smart lien is the sharing of a smart property between parties, usually two parties called the owner and the lienholder.
  • Many parties, especially new entrants, may lack this reputation capital, and will thus need to be able to share their property with the bank via secure liens
  • What about extending the concept of contract to cover agreement to a prearranged set of tort laws? These tort laws would be defined by contracts between private arbitration and enforcement agencies, while customers would have a choice of jurisdictions in this system of free-market "governments".
  • If these privately practiced law organizations (PPLs for short) bear ultimate responsibility for the criminal activities of their customers, or need to insure lack of defection or future payments on the part of customers, they may in turn ask for liens against their customers, either in with contractual terms allowing arrest of customers under certain conditions
  • Other important areas of liability include consumer liability and property damage (including pollution). There need to mechanisms so that, for example, pollution damage to others' persons or property can be assessed, and liens should exist so that the polluter can be properly charged and the victims paid. Where pollution is quantifiable, as with SO2 emissions, markets can be set up to trade emission rights. The PPLs would have liens in place to monitor their customer's emissions and assess fees where emission rights have been exceeded.
Tiberius Brastaviceanu

Welcome to the new reputation economy (Wired UK) - 1 views

  • banks take into account your online reputation alongside traditional credit ratings to determine your loan
  • headhunters hire you based on the expertise you've demonstrated on online forums
  • reputation data becomes the window into how we behave, what motivates us, how our peers view us and ultimately whether we can or can't be trusted.
  • ...37 more annotations...
  • At the heart of Movenbank is a concept call CRED.
  • The difference today is our ability to capture data from across an array of digital services. With every trade we make, comment we leave, person we "friend", spammer we flag or badge we earn, we leave a trail of how well we can or can't be trusted.
  • An aggregated online reputation having a real-world value holds enormous potential
  • peer-to-peer marketplaces, where a high degree of trust is required between strangers; and where a traditional approach based on disjointed information sources is currently inefficient, such as recruiting.
  • opportunity to reinvent the way people found jobs through online reputation
  • "It's not about your credit, but your credibility," King says.
  • But this wealth of data raises an important question -- who owns our reputation? Shouldn't our hard-earned online status be portable? If you're a SuperHost on Airbnb, shouldn't you be able to use that reputation to, say, get a loan, or start selling on Etsy?
  • "People are currently underusing their networks and reputation," King says. "I want to help people to understand and build their influence and reputation, and think of it as capital they can put to good use."
  • Social scientists have long been trying to quantify the value of reputation.
  • Using functional magnetic resonance imaging, the researchers monitored brain activity
  • "The implication of our study is that different types of reward are coded by the same currency system." In other words, our brains neurologically compute personal reputation to be as valuable as money.
  • Personal reputation has been a means of making socioeconomic decisions for thousands of years. The difference today is that network technologies are digitally enabling the trust we used to experience face-to-face -- meaning that interactions and exchanges are taking place between total strangers.
  • Trust and reputation become acutely important in peer-to-peer marketplaces such as WhipCar and Airbnb, where members are taking a risk renting out their cars or their homes.
  • When you are trading peer-to-peer, you can't count on traditional credit scores. A different measurement is needed. Reputation fills this gap because it's the ultimate output of how much a community trusts you.
  • Welcome to the reputation economy, where your online history becomes more powerful than your credit history.
  • Presently, reputation data doesn't transfer between verticals.
  • A wave of startups, including Connect.Me, TrustCloud, TrustRank, Legit and WhyTrusted, are trying to solve this problem by designing systems that correlate reputation data. By building a system based on "reputation API" -- a combination of a user's activity, ratings and reviews across sites -- Legit is working to build a service that gives users a score from zero to 100. In trying to create a universal metric for a person's trustworthiness, they are trying to "become the credit system of the sharing economy", says Jeremy Barton, the 27-year-old San Francisco-based cofounder of Legit.
  • His company, and other reputation ventures, face some big challenges if they are to become, effectively, the PayPal of trust. The most obvious is coming up with algorithms that can't be easily gamed or polluted by trolls. And then there's the critical hurdle of convincing online marketplaces not just to open up their reputation vaults, but create a standardised format for how they frame and collect reputation data. "We think companies will share reputation data for the same reasons banks give credit data to credit bureaux," says Rob Boyle, Legit cofounder and CTO. "It is beneficial for one company to give up their slice of reputation data if in return they get access to the bigger picture: aggregated data from other companies."
  • PeerIndex, Kred and Klout,
  • are measuring social influence, not reputation. "Influence measures your ability to drag someone into action,"
  • "Reputation is an indicator of whether a person is good or bad and, ultimately, are they trustworthy?"
  • Early influence and reputation aggregators will undoubtedly learn by trial and error -- but they will also face the significant challenge of pioneering the use of reputation data in a responsible way. And there's a challenge beyond that: reputation is largely contextual, so it's tricky to transport it to other situations.
  • Many of the ventures starting to make strides in the reputation economy are measuring different dimensions of reputation.
  • reputation is a measure of knowledge
  • a measure of trust
  • a measure of propensity to pay
  • measure of influence
  • Reputation capital is not about combining a selection of different measures into a single number -- people are too nuanced and complex to be distilled into single digits or binary ratings.
  • It's the culmination of many layers of reputation you build in different places that genuinely reflect who you are as a person and figuring out exactly how that carries value in a variety of contexts.
  • The most basic level is verification of your true identity
  • reliability and helpfulness
  • do what we say we are going to do
  • respect another person's property
  • trusted to pay on time
  • we will be able to perform a Google- or Facebook-like search and see a picture of a person's behaviour in many different contexts, over a length of time. Slivers of data that have until now lived in secluded isolation online will be available in one place. Answers on Quora, reviews on TripAdvisor, comments on Amazon, feedback on Airbnb, videos posted on YouTube, social groups joined, or presentations on SlideShare; as well as a history and real-time stream of who has trusted you, when, where and why. The whole package will come together in your personal reputation dashboard, painting a comprehensive, definitive picture of your intentions, capabilities and values.
  • idea of global reputation
  • By the end of the decade, a good online reputation could be the most valuable currency in your possession.
1 - 20 of 36 Next ›
Showing 20 items per page