Skip to main content

Home/ Sensorica Knowledge/ Group items tagged minimally

Rss Feed Group items tagged

Tiberius Brastaviceanu

peer into the future - Leaves blender - 0 views

  •  
    "easily replicable design with stock components and minimal use of custom parts (unless they can be digitally fabricated with a RepRap class 3-D printer or CNC mill -e.g. limit to what is found in most fab labs and avoid high energy processes and a skilled machinist). The designers should seek to minimize cost and complexity while keeping throughput high (continuous if possible)."
Philippe Comtois

Demonstration of haptic-enhanced minimally invasive surgery techniques - YouTube - 1 views

  •  
    Demonstration of haptic-enhanced minimally invasive surgery techniques
Tiberius Brastaviceanu

A Robust Uniaxial Force Sensor for Minimally Invasive Surgery - 0 views

  • miniature uniaxial force sensor for use within a beating heart during mitral valve annuloplasty
  • provides a hollow core to pass instrumentation
  • Fiber optic transduction eliminates electrical circuitry within the heart, and acetal components minimize ultrasound-imaging artifacts
  • ...4 more annotations...
  • 0–4-N force range
  • errors of 0.13 N (<3.2%)
  • MINIMALLY invasive surgery (MIS)
  • surgeons lose the critical sense of touch during MIS because instruments are passed through ports that mask the surgeon's feel of the internal operating environment.
Kurt Laitner

Smart Contracts - 0 views

  • Whether enforced by a government, or otherwise, the contract is the basic building block of a free market economy.
  • A smart contract is a set of promises, specified in digital form, including protocols within which the parties perform on the other promises.
  • The basic idea of smart contracts is that many kinds of contractual clauses (such as liens, bonding, delineation of property rights, etc.) can be embedded in the hardware and software we deal with, in such a way as to make breach of contract expensive (if desired, sometimes prohibitively so) for the breacher.
  • ...77 more annotations...
  • A broad statement of the key idea of smart contracts, then, is to say that contracts should be embedded in the world.
  • And where the vending machine, like electronic mail, implements an asynchronous protocol between the vending company and the customer, some smart contracts entail multiple synchronous steps between two or more parties
  • POS (Point of Sale)
  • EDI (Electronic Data Interchange
  • SWIFT
  • allocation of public network bandwidth via automated auctions
  • Smart contracts reference that property in a dynamic, proactively enforced form, and provide much better observation and verification where proactive measures must fall short.
  • The mechanisms of the world should be structured in such a way as to make the contracts (a) robust against naive vandalism, and (b) robust against sophisticated, incentive compatible (rational) breach.
  • A third category, (c) sophisticated vandalism (where the vandals can and are willing to sacrifice substantial resources), for example a military attack by third parties, is of a special and difficult kind that doesn't often arise in typical contracting, so that we can place it in a separate category and ignore it here.
  • The threat of physical force is an obvious way to embed a contract in the world -- have a judicial system decide what physical steps are to be taken out by an enforcement agency (including arrest, confiscation of property, etc.) in response to a breach of contract
  • It is what I call a reactive form of security.
  • The need to invoke reactive security can be minimized, but not eliminated, by making contractual arrangements verifiable
  • Observation of a contract in progress, in order to detect the first sign of breach and minimize losses, also is a reactive form of security
  • A proactive form of security is a physical mechanism that makes breach expensive
  • From common law, economic theory, and contractual conditions often found in practice, we can distill four basic objectives of contract design
  • observability
  • The disciplines of auditing and investigation roughly correspond with verification of contract performance
  • verifiability
  • The field of accounting is, roughly speaking, primarily concerned with making contracts an organization is involved in more observable
  • privity
  • This is a generalization of the common law principle of contract privity, which states that third parties, other than the designated arbitrators and intermediaries, should have no say in the enforcement of a contract
  • The field of security (especially, for smart contracts, computer and network security), roughly corresponds to the goal of privity.
  • enforceability
  • Reputation, built-in incentives, "self-enforcing" protocols, and verifiability can all play a strong part in meeting the fourth objective
  • Smart contracts often involve trusted third parties, exemplified by an intermediary, who is involved in the performance, and an arbitrator, who is invoked to resolve disputes arising out of performance (or lack thereof)
  • In smart contract design we want to get the most out of intermediaries and arbitrators, while minimizing exposure to them
  • Legal barriers are the most severe cost of doing business across many jurisdictions. Smart contracts can cut through this Gordian knot of jurisdictions
  • Where smart contracts can increase privity, they can decrease vulnerability to capricious jurisdictions
  • Secret sharing
  • The field of Electronic Data Interchange (EDI), in which elements of traditional business transactions (invoices, receipts, etc.) are exchanged electronically, sometimes including encryption and digital signature capabilities, can be viewed as a primitive forerunner to smart contracts
  • One important task of smart contracts, that has been largely overlooked by traditional EDI, is critical to "the meeting of the minds" that is at the heart of a contract: communicating the semantics of the protocols to the parties involved
  • There is ample opportunity in smart contracts for "smart fine print": actions taken by the software hidden from a party to the transaction.
  • Thus, via hidden action of the software, the customer is giving away information they might consider valuable or confidential, but the contract has been drafted, and transaction has been designed, in such a way as to hide those important parts of that transaction from the customer.
  • To properly communicate transaction semantics, we need good visual metaphors for the elements of the contract. These would hide the details of the protocol without surrendering control over the knowledge and execution of contract terms
  • Protocols based on mathematics, called cryptographic protocols, tre the basic building blocks that implement the improved tradeoffs between observability, verifiability, privity, and enforceability in smart contracts
  • secret key cryptography,
  • Public key cryptography
  • digital signatures
  • blind signature
  • Where smart contracts can increase observability or verifiability, they can decrease dependence on these obscure local legal codes and enforcement traditions
  • zero-knowledge interactive proof
  • digital mix
  • Keys are not necessarily tied to identities, and the task of doing such binding turns out to be more difficult than at first glance.
  • All public key operation are are done inside an unreadable hardware board on a machine with a very narrow serial-line connection (ie, it carries only a simple single-use protocol with well-verified security) to a dedicated firewall. Such a board is available, for example, from Kryptor, and I believe Viacrypt may also have a PGP-compatable board. This is economical for central sites, but may be less practical for normal users. Besides better security, it has the added advantage that hardware speeds up the public key computations.
  • If Mallet's capability is to physically sieze the machine, a weaker form of key protection will suffice. The trick is to hold the keys in volatile memory.
  • The data is still vulnerable to a "rubber hose attack" where the owner is coerced into revealing the hidden keys. Protection against rubber hose attacks might require some form of Shamir secret sharing which splits the keys between diverse phgsical sites.
  • How does Alice know she has Bob's key? Who, indeed, can be the parties to a smart contract? Can they be defined just by their keys? Do we need biometrics (such as autographs, typed-in passwords, retina scans, etc.)?
  • The public key cryptography software package "Pretty Good Privacy" (PGP) uses a model called "the web of trust". Alice chooses introducers whom she trusts to properly identify the map between other people and their public keys. PGP takes it from there, automatically validating any other keys that have been signed by Alice's designated introducers.
  • 1) Does the key actually belong to whom it appears to belong? In other words, has it been certified with a trusted signature?
  • 2) Does it belong to an introducers, someone you can trust to certify other keys?
  • 3) Does the key belong to someone you can trust to introduce other introducers? PGP confuses this with criterion (2). It is not clear that any single person has enough judgement to properly undertake task (3), nor has a reasonable institution been proposed that will do so. This is one of the unsolved problems in smart contracts.
  • PGP also can be given trust ratings and programmed to compute a weighted score of validity-- for example, two marginally trusted signatures might be considered as credible as one fully trusted signature
  • Notaries Public Two different acts are often called "notarization". The first is simply where one swears to the truth of some affidavit before a notary or some other officer entitled to take oaths. This does not require the notary to know who the affiant is. The second act is when someone "acknowledges" before a notary that he has executed a document as ``his own act and deed.'' This second act requires the notary to know the person making the acknowledgment.
  • "Identity" is hardly the only thing we might want map to a key. After all, physical keys we use for our house, car, etc. are not necessarily tied to our identity -- we can loan them to trusted friends and relatives, make copies of them, etc. Indeed, in cyberspace we might create "virtual personae" to reflect such multi-person relationships, or in contrast to reflect different parts of our personality that we do not want others to link. Here is a possible classification scheme for virtual personae, pedagogically presented:
  • A nym is an identifier that links only a small amount of related information about a person, usually that information deemed by the nym holder to be relevant to a particular organization or community
  • A nym may gain reputation within its community.
  • With Chaumian credentials, a nym can take advantage of the positive credentials of the holder's other nyms, as provably linked by the is-a-person credential
  • A true name is an identifier that links many different kinds of information about an person, such as a full birth name or social security number
  • As in magick, knowing a true name can confer tremendous power to one's enemies
  • A persona is any perstient pattern of behavior, along with consistently grouped information such as key(s), name(s), network address(es), writing style, and services provided
  • A reputable name is a nym or true name that has a good reputation, usually because it carries many positive credentials, has a good credit rating, or is otherwise highly regarded
  • Reputable names can be difficult to transfer between parties, because reputation assumes persistence of behavior, but such transfer can sometimes occur (for example, the sale of brand names between companies).
  • Blind signatures can be used to construct digital bearer instruments, objects identified by a unique key, and issued, cleared, and redeemed by a clearing agent.
  • The clearing agent prevents multiple clearing of particular objects, but can be prevented from linking particular objects one or both of the clearing nyms who transferred that object
  • These instruments come in an "online" variety, cleared during every transfer, and thus both verifiable and observable, and an "offline" variety, which can be transfered without being cleared, but is only verifiable when finally cleared, by revealing any the clearing nym of any intermediate holder who transfered the object multiple times (a breach of contract).
  • To implement a full transaction of payment for services, we need more than just the digital cash protocol; we need a protocol that guarantees that service will be rendered if payment is made, and vice versa
  • A credential is a claim made by one party about another. A positive credential is one the second party would prefer to reveal, such as a degree from a prestigious school, while that party would prefer not to reveal a negative credential such as a bad credit rating.
  • A Chaumian credential is a cryptographic protocol for proving one possesses claims made about onself by other nyms, without revealing linkages between those nyms. It's based around the is-a-person credential the true name credential, used to prove the linkage of otherwise unlinkable nyms, and to prevent the transfer of nyms between parties.
  • Another form of credential is bearer credential, a digital bearer instrument where the object is a credential. Here the second party in the claim refers to any bearer -- the claim is tied only to the reputable name of issuing organization, not to the nym or true name of the party holding the credential.
  • Smart Property We can extend the concept of smart contracts to property. Smart property might be created by embedding smart contracts in physical objects. These embedded protocols would automatically give control of the keys for operating the property to the party who rightfully owns that property, based on the terms of the contract. For example, a car might be rendered inoperable unless the proper challenge-response protocol is completed with its rightful owner, preventing theft. If a loan was taken out to buy that car, and the owner failed to make payments, the smart contract could automatically invoke a lien, which returns control of the car keys to the bank. This "smart lien" might be much cheaper and more effective than a repo man. Also needed is a protocol to provably remove the lien when the loan has been paid off, as well as hardship and operational exceptions. For example, it would be rude to revoke operation of the car while it's doing 75 down the freeway.
  • Smart property is software or physical devices with the desired characteristics of ownership embedded into them; for example devices that can be rendered of far less value to parties who lack possesion of a key, as demonstrated via a zero knowledge interactive proof
  • One method of implementing smart property is thru operation necessary data (OND): data necessary to the operation of smart property.
  • A smart lien is the sharing of a smart property between parties, usually two parties called the owner and the lienholder.
  • Many parties, especially new entrants, may lack this reputation capital, and will thus need to be able to share their property with the bank via secure liens
  • What about extending the concept of contract to cover agreement to a prearranged set of tort laws? These tort laws would be defined by contracts between private arbitration and enforcement agencies, while customers would have a choice of jurisdictions in this system of free-market "governments".
  • If these privately practiced law organizations (PPLs for short) bear ultimate responsibility for the criminal activities of their customers, or need to insure lack of defection or future payments on the part of customers, they may in turn ask for liens against their customers, either in with contractual terms allowing arrest of customers under certain conditions
  • Other important areas of liability include consumer liability and property damage (including pollution). There need to mechanisms so that, for example, pollution damage to others' persons or property can be assessed, and liens should exist so that the polluter can be properly charged and the victims paid. Where pollution is quantifiable, as with SO2 emissions, markets can be set up to trade emission rights. The PPLs would have liens in place to monitor their customer's emissions and assess fees where emission rights have been exceeded.
Tiberius Brastaviceanu

P2P Foundation » Blog Archive » Ethical Marketing in Age of Horizontal Social... - 0 views

  • the development of marketing is sensible to its environment and is hence already self-limiting itself according to the previously mentioned legal and social framework
  • neuromarketing
  • explore new inner dynamics of marketing, new directions in the field of possibilities offered by the current organology and its articulations between techniques and social organization in order to influence and shape marketing as an associative force – in opposition to its current dissociative force – in the larger psychic, social and technic organology
  • ...70 more annotations...
  • find new ways of efficiency
  • arbitration between efficiency and care
  • a global thinking of the problem
  • Fighting the attention and desire resource shortage: stoping to use advertisement?
  • The question is rather here to think the moderation of the psychopower
  • empower transindividuation, i.e. to make sure that an economic activity creates more possibilities of individuation than it tend to destroy by attempting to capture attention and canalize motivation in a funnel. Empower transindividuation would imply to empowering actors of their own lifestyle, winning back the savoir-vivre prescribing production
  • Should marketing stop using psychopower?
  • marketing ethics guidelines
  • transactions are more likely to be morally defensible if both parties enter it freely and fully informed
  • the goal of marketing should be to increase the likelihood and frequency of free and informed transactions in the marketplace
  • putting freedom as a criteria of morality
  • the industrial use of pycho- and neuropower tend to fall under the category of barriers to freedom
  • neurotechniques – to capture the attention
  • psychotechniques – to attempt to create motivation
  • Most people think commercials are a small price to pay for these benefits
  • advertising
  • denying the schemes of addiction and the fact that we are becoming through the objects of attentions
  • right to avoid attention capture by advertising
  • progress made in cognitive sciences proving that
  • reward system being abnormally stimulated
  • Advertisements exploit
  • vulnerability and reinforce their overconsumption behaviors
  • “if food advertising on TV were banned, significant reductions in the prevalence of childhood obesity are possible.” (Veerman et al. 2009)
  • What is at stake falls to be much more complex than the sole Freedom of Speech invoked for the advertiser
  • liberty of non-reception
  • would mean to guaranty every citizen the right to choose where and when he wants to access the advertising information
  • Change in the industrial and commercial paradigm
  • Economy of contribution and peer production
  • An economy of contribution means that users of a service are contributing to the production of these services.
  • example
  • is open-source software that are contributively build by potentially hundreds of developers organized in communities
  • minimize the gap between the producer and consumer
  • blur the frontier between professionals and amateurs
  • The Copernican revolution of the Vendor Relationship Management paradigm
  • change in the commercial paradigm, described as an Intention Economy i.e. the opposite of the Attention Economy
  • consumers are charged to express and discuss their intention
  • with businesses rather than the usual paradigm in which businesses where fighting for a piece of canalized motivation
  • Implementing such a system would nevertheless imply that marketing departments dispose of a system in which they could value their supplies and where they could be easily found by customers. Doc Searls promotes his answer to this issue: the Vendor Relationship Management system.
  • the belief that free customers are more valuable than captive ones — to themselves, to vendors, and to the larger economy.
  • To be free
  • 1. Customers must enter relationships with vendors as independent actors.
  • 2. Customers must be the points of integration for their own data.
  • 3. Customers must have control of data they generate and gather. This means they must be able to share data selectively and voluntarily.
  • 4. Customers must be able to assert their own terms of engagement.
  • 5. Customers must be free to express their demands and intentions outside of any one company’s control.
  • This is a profoundly game-changing approach
  • big data that is the rush for consumers’ information potentially leading to the same dead-end of attention destruction and affective saturation than the former offline paradigm
  • VRM system working as a marketplace
  • the goal of marketing should be to increase the likelihood and frequency of free and informed transactions in the marketplace
  • less imperfect and less biased information in a cultural context overvaluing transparency, and a bigger atomicity due to the hereafter introduced trend for re-localized peer production.
  • 3.2.2.3 VRM and externalization of the socialization process
  • Promoting the end of advertisement
  • means to find a new way to make the information circulate, what was the primary goal of advertisement
  • Until there is no alternative to massive advertisement campaign for the information circulation, it is indeed hard to ask entrepreneurs and managers to get rid of those successors of propaganda: such a transition process necessarily imply adaptation costs from the producer and the consumer side, and possible competitive disadvantage against competitors still maximizing profit through advertisement means
  • But the internet transformation of the general organology offers new way to think information circuits and potentially constitute an opportunity to externalize the socialization process of products that is to empower citizen-consumers organized in communities
  • Empowering groups of citizen doesn’t annihilate the risks of mis-use or counterproductive interest-taker behaviors but a well-designed system of trust between peers could minimize this risk by creating a dependency to what social capital other peers give you, as it is happening in the sharing economy: the credibility of a contributive peer would be guaranteed through what the P2P Foundation calls Feedback systems and peer-police
  • a strong structuration of products characteristics, allowing customers to personalize their choices according to their desire and constraints: such a “VRM+” system
  • Marketing would then be the art of being as high as possible in this ranking, as it is happening in SEO for search engines, but in this context of criteria explosion, marketing would then be the disciple of listening to customers’ wishes and aspiration needing an attention, in order to kick in the production or to adapt the following series.
  • 3.2.2.4 Toward a possible equi-power
  • Such a system would tremendously re-configure the balance of power and tend toward a form of equi-power i.e. a social organization in which abuses of a “big” would be the potential object of a ranking sanction by the peers
  • self-regulative function
  • a form of economic Darwinism would let to conscious organization the right to curve their path toward a durable configuration in accordance with the social ecosystem.
  • the idea of equi-power is a form of homogenization of the social matter, in which the distortions in the balance of power would be compensated by the gathering of small forces sharing a common interest
  • Such a sanction systems, if successfully implemented, would make value-destructing businesses progressively decline and hopefully bankrupt,
  • long-term valuable strategic choice
  • long term satisfyingly high ranking
  • It would be utopic to think that the “being cool” marketing
  • would disappear, but marketers would have to make those two objectives compose together.
  • This social capital contagion is nevertheless a tool that would need to be controlled in its form of violence by extensive testings and iterations with forms of protections for the smallest peers, that is to say to keep this form of social violence to institutionalized, classic forms of businesses, clearly beyond the line of what should be acceptable in the global village.
  • the goal is here to create an artificial form of majority that is a self-censuring responsible behavior of corporations
Steve Bosserman

Meg Munn MP - Sheffield Heeley's voice in Parliament | Welcome - 0 views

  •  
    Figures recently issued by Co-operativesUK show that co-operative business grew by 1.5% in 2011, twice the rate of the UK economy as a whole. This is the fourth consecutive year that the co-operative sector has outperformed the rest of UK business. The figures also show that it is not only in growth that co-operative businesses do better, they are also much more reliant - 98% are still in operation after three years compared to 65% of all businesses. Also 88% try to minimize the environmental impact of their activities compared to 44% of all businesses who state they do not take any action in this regard at all. Membership of trading co-operatives from 2010 to 2011 grew by 5.5% to 13.5 million people - the increase from 2008 to 2011 is 19.7%. Currently the number of co-operatives in the UK is around 5,900 - a growth of 23% from 2008. The largest growth by sector was in the renewable energy sector, and there are now 242 co-operative schools across the country.
Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools. 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Tiberius Brastaviceanu

Open Source 3-D Printed Nutating Mixer - Appropedia, the sustainability wiki - 0 views

  •  
    "As the open source development of additive manufacturing has led to low-cost desktop three-dimensional (3-D) printing, a number of scientists throughout the world have begun to share digital designs of free and open source scientific hardware. Open source scientific hardware enables custom experimentation, laboratory control, rapid upgrading, transparent maintenance, and lower costs in general. To aid in this trend, this study describes the development, design, assembly, and operation of a 3-D printable open source desktop nutating mixer, which provides a fixed 20° platform tilt angle for a gentle three-dimensional (gyrating) agitation of chemical or biological samples (e.g., DNA or blood samples) without foam formation. The custom components for the nutating mixer are designed using open source FreeCAD software to enable customization. All of the non-readily available components can be fabricated with a low-cost RepRap 3-D printer using an open source software tool chain from common thermoplastics. All of the designs are open sourced and can be configured to add more functionality to the equipment in the future. It is relatively easy to assemble and is accessible to both the science education of younger students as well as state-of-the-art research laboratories. Overall, the open source nutating mixer can be fabricated with US$37 in parts, which is 1/10th of the cost of proprietary nutating mixers with similar capabilities. The open source nature of the device allow it to be easily repaired or upgraded with digital files, as well as to accommodate custom sample sizes and mixing velocities with minimal additional costs."
Francois Bergeron

Robot's Gentle Touch Aids Delicate Cancer Surgery - 0 views

  • Surgeons have developed new minimally invasive surgery (MIS) techniques and instruments so that procedures that would previously have required a large incision can now be performed through a tiny 10mm cut.
  • University of Western Ontario and Canadian Surgical Technologies and Advanced Robotics (CSTAR) in London, Ontario
  • The researchers used a torque sensor to measure the force of the palpations.
  • ...2 more annotations...
  • Using tactile MIS sensing instruments under robotic control reduces the maximum force applied to the tissue by over 35% compared to a human controlling the same instrument. Accuracy in detecting the tumours was also far greater with the robot - between 59 and 90% depending on the robot control method used for palpation.
  • If developed further, the authors suggest that this type of instrument would particularly benefit surgeons performing lung tumour resection, where tissue often shifts significantly.
Kurt Laitner

The Energy Efficiency of Trust & Vulnerability: A Conversation | Switch and Shift - 0 views

  • trusting people because of who they are personally vs. who they are professionally
  • also need to trust systems
  • our own resources
  • ...34 more annotations...
  • How much we need to trust others depends on the context,
  • how much we trust ourselves,
  • our ability to understand the context we are in
  • When we trust, we re-allocate that energy and time to getting things done and making an impact
  • the more information and/or experience we have, the better we can decide whether or not to trust
  • Trust is a tool to assess and manage (reduce and/or increase) risk, depending on the situation.
  • Trusting someone implies making oneself more vulnerable
  • When we don’t trust, we exert a lot of energy to keep up our guard, to continually assess and verify.  This uses a lot of energy and time.
  • If the alternative is worse, we might opt for no trust
  • As we let ourselves be vulnerable, we also leave ourselves more open to new ideas, new ways of thinking which leads to empathy and innovation.
  • the more we can focus on the scope and achievement of our goals
  • trusting is efficient….and effective
  • Being vulnerable is a way to preserve energy
  • It lets us reallocate our resources to what matters and utilize our skills and those around us to increase effectiveness…impact.
  • If we are working together, we need to agree on the meaning of ‘done’.  When are we done, what does that look like?
  • “Control is for Beginners”
  • Strategic sloppiness is a way to preserve energy
  • Build on the same shared mental models
  • use the same language
  • As the ability to replicate something has become more of a commodity, we are increasingly seeing that complex interactions are the way to create ‘value from difference’ (as opposed to ‘value from sameness’).
  • allow for larger margins of error in our response and our acceptance of others
  • higher perfection slows down the tempo
  • We can’t minimize the need to be effective.
  • Efficient systems are great at dealing with complicated things – things that have many parts and sequences, but they fall flat dealing with complex systems, which is most of world today.
  • make sure we hear and see the same thing (reduce buffers around our response)
  • timing
  • intuition
  • judgment
  • experience
  • ability to look at things from many different perspective
  • to discover, uncover, understand and empathize is critical
  • focus on meaning and purpose for work (outcomes) instead of just money and profit (outputs)
  • When we have a common goal of WHY we want to do something, we are better able to trust
  • When we never do the same thing or have the same conversation twice, it becomes much more important to figure out why and what we do than how we do it (process, which is a given)
  •  
    spot on conversation on *trust, I see creating a trustful environment quickly among strangers as a key capability of an OVN, we need to quickly get past the need to protect and verify and move on to making purpose and goals happen
Tiberius Brastaviceanu

Beyond Blockchain: Simple Scalable Cryptocurrencies - The World of Deep Wealth - Medium - 0 views

  • I clarify the core elements of cryptocurrency and outline a different approach to designing such currencies rooted in biomimicry
  • This post outlines a completely different strategy for implementing cryptocurrencies with completely distributed chains
  • Rather than trying to make one global, anonymous, digital cash
  • ...95 more annotations...
  • we are interested in the resilience that comes from building a rich ecosystem of interoperable currencies
  • What are the core elements of a modern cryptocurrency?
  • Digital
  • Holdings are electronic and only exist and operate by virtue of a community’s agreement about how to interpret digital bits according to rules about operation and accounting of the currency.
  • Trustless
  • don’t have to trust a 3rd party central authority
  • Decentralized
  • Specifically, access, issuance, transaction accounting, rules & policies, should be collectively visible, known, and held.
  • Cryptographic
  • This cryptographic structure is used to enable a variety of people to host the data without being able to alter it.
  • Identity
  • there must be a way to associate these bits with some kind of account, wallet, owner, or agent who can use them
  • Other things that many take for granted in blockchains may not be core but subject to decisions in design and implementation, so they can vary between implementations
  • It does not have to be stored in a synchronized global ledger
  • does not have to be money. It may be a reputation currency, or data used for identity, or naming, etc
  • Its units do not have to be cryptographic tokens or coins
  • It does not have to protect the anonymity of users, although it may
  • if you think currency is only money, and that money must be artificially scarce
  • Then you must tackle the problem of always tracking which coins exist, and which have been spent. That is one approach — the one blockchain takes.
  • You might optimize for anonymity if you think of cryptocurrency as a tool to escape governments, regulations, and taxes.
  • if you want to establish and manage membership in new kinds of commons, then identity and accountability for actions may turn out to be necessary ingredients instead of anonymity.
  • In the case of the MetaCurrency Project, we are trying to support many use cases by building tools to enable a rich ecosystem of communities and current-sees (many are non-monetary) to enhance collective intelligence at all scales.
  • Managing consensus about a shared reality is a central challenge at the heart of all distributed computing solutions.
  • If we want to democratize money by having cryptocurrencies become a significant and viable means of transacting on a daily basis, I believe we need fundamentally more scalable approaches that don’t require expensive, dedicated hardware just to participate.
  • We should not need system wide consensus for two people to do a transaction in a cryptocurrency
  • Blockchain is about managing a consensus about what was “said.” Ceptr is about distributing a consensus about how to “speak.”
  • how nature gets the job done in massively scalable systems which require coordination and consistency
  • Replicate the same processes across all nodes
  • Empower every node with full agency
  • Hold this transformed state locally and reliably
  • Establish protocols for interaction
  • Each speaker of a language carries the processes to understand sentences they hear, and generate sentences they need
  • we certainly don’t carry some kind of global ledger of everything that’s ever been said, or require consensus about what has been said
  • Language IS a communication protocol we learn by emulating the processes of usage.
  • Dictionaries try to catch up when the usage
  • there is certainly no global ledger with consensus about the state of trillions of cells. Yet, from a single zygote’s copy of DNA, our cells coordinate in a highly decentralized manner, on scales of trillions, and without the latency or bottlenecks of central control.
  • Imagine something along the lines of a Java Virtual Machine connected to a distributed version of Github
  • Every time this JVM runs a program it confirms the hash of the code it is about to execute with the hash signed into the code repository by its developers
  • This allows each node that intends to be honest to be sure that they’re running the same processes as everyone else. So when two parties want to do a transaction, and each can have confidence their own code, and the results that your code produces
  • Then you treat it as authoritative and commit it to your local cryptographically self-validating data store
  • Allowing each node to treat itself as a full authority to process transactions (or interactions via shared protocols) is exactly how you empower each node with full agency. Each node runs its copy of the signed program/processes on its own virtual machine, taking the transaction request combined with the transaction chains of the parties to the transaction. Each node can confirm their counterparty’s integrity by replaying their transactions to produce their current state, while confirming signatures and integrity of the chain
  • If both nodes are in an appropriate state which allows the current transaction, then they countersign the transaction and append to their respective chains. When you encounter a corrupted or dishonest node (as evidenced by a breach of integrity of their chain — passing through an invalid state, broken signatures, or broken links), your node can reject the transaction you were starting to process. Countersigning allows consensus at the appropriate scale of the decision (two people transacting in this case) to lock data into a tamper-proof state so it can be stored in as many parallel chains as you need.
  • When your node appends a mutually validated and signed transaction to its chain, it has updated its local state and is able to represent the integrity of its data locally. As long as each transaction (link in the chain) has valid linkages and countersignatures, we can know that it hasn’t been tampered with.
  • If you can reliably embody the state of the node in the node itself using Intrinsic Data Integrity, then all nodes can interact in parallel, independent of other interactions to maximize scalability and simultaneous processing. Either the node has the credits or it doesn’t. I don’t have to refer to a global ledger to find out, the state of the node is in the countersigned, tamper-proof chain.
  • Just like any meaningful communication, a protocol needs to be established to make sure that a transaction carries all the information needed for each node to run the processes and produce a new signed and chained state. This could be debits or credits to an account which modify the balance, or recoding courses and grades to a transcript which modify a Grade Point Average, or ratings and feedback contributing to a reputation score, and so on.
  • By distributing process at the foundation, and leveraging Intrinsic Data Integrity, our approach results in massive improvements in throughput (from parallel simultaneous independent processing), speed, latency, efficiency, and cost of hardware.
  • You also don’t need to incent people to hold their own record — they already want it.
  • Another noteworthy observation about humans, cells, and atoms, is that each has a general “container” that gets configured to a specific use.
  • Likewise, the Receptors we’ve built are a general purpose framework which can load code for different distributed applications. These Receptors are a lightweight processing container for the Ceptr Virtual Machine Host
  • Ceptr enables a developer to focus on the rules and transactions for their use case instead of building a whole framework for distributed applications.
  • how units in a currency are issued
  • Most people think that money is just money, but there are literally hundreds of decisions you can make in designing a currency to target particular needs, niches, communities or patterns of flow.
  • Blockchain cryptocurrencies are fiat currencies. They create tokens or coins from nothing
  • These coins are just “spoken into being”
  • the challenging task of
  • ensure there is no counterfeiting or double-spending
  • Blockchain cryptocurrencies are fiat currencies
  • These coins are just “spoken into being”
  • the challenging task of tracking all the coins that exist to ensure there is no counterfeiting or double-spending
  • You wouldn’t need to manage consensus about whether a cryptocoin is spent, if your system created accounts which have normal balances based on summing their transactions.
  • In a mutual credit system, units of currency are issued when a participant extends credit to another user in a standard spending transaction
  • Alice pays Bob 20 credits for a haircut. Alice’s account now has -20, and Bob’s has +20.
  • Alice spent credits she didn’t have! True
  • Managing the currency supply in a mutual credit system is about managing credit limits — how far people can spend into a negative balance
  • Notice the net number units in the system remains zero
  • One elegant approach to managing mutual credit limits is to set them based on actual demand.
  • concerns about manufacturing fake accounts to game credit limits (Sybil Attacks)
  • keep in mind there can be different classes of accounts. Easy to create, anonymous accounts may get NO credit limit
  • What if I alter my code to give myself an unlimited credit limit, then spend as much as I want? As soon as you pass the credit limit encoded in the shared agreements, the next person you transact with will discover you’re in an invalid state and refuse the transaction.
  • If two people collude to commit an illegal transaction by both hacking their code to allow a normally invalid state, the same still pattern still holds. The next person they try to transact with using untampered code will detect the problem and decline to transact.
  • Most modern community currency systems have been implemented as mutual credit,
  • Hawala is a network of merchants and businessmen, which has been operating since the middle ages, performing money transfers on an honor system and typically settling balances through merchandise instead of transferring money
  • Let’s look at building a minimum viable cryptocurrency with the hawala network as our use case
  • To minimize key management infrastructure, each hawaladar’s public key is their address or identity on the network. To join the network you get a copy of the software from another hawaladar, generate your public and private keys, and complete your personal profile (name, location, contact info, etc.). You call, fax, or email at least 10 hawaladars who know you, and give them your IP address and ask them to vouch for you.
  • Once 10 other hawaladars have vouched for you, you can start doing other transactions because the protocol encoded in every node will reject a transaction chain that doesn’t start with at least 10 vouches
  • seeding your information with those other peers so you can be found by the rest of the network.
  • As described in the Mutual Credit section, at the time of transaction each party audits the counterparty’s transaction chain.
  • Our hawala crypto-clearinghouse protocol has two categories of transactions: some used for accounting and others for routing. Accounting transactions change balances. Routing transactions maintain network integrity by recording information about hawaladar
  • Accounting Transactions create signed data that changes account balances and contains these fields:
  • The final hash of all of the above fields is used as a unique transaction ID and is what each of party signs with their private keys. Signing indicates a party has agreed to the terms of the transaction. Only transactions signed by both parties are considered valid. Nodes can verify signatures by confirming that decryption of the signature using the public key yields a result which matches the transaction ID.
  • Routing Transactions sign data that changes the peers list and contain these fields:
  • As with accounting transactions, the hash of the above fields is used as the transaction’s unique key and the basis for the cryptographic signature of both counterparties.
  • Remember, instead of making changes to account balances, routing transactions change a node’s local list of peers for finding each other and processing.
  • a distributed network of mutual trust
  • operates across national boundaries
  • everyone already keeps and trusts their own separate records
  • Hawaladars are not anonymous
  • “double-spending”
  • It would be possible for someone to hack the code on their node to “forget” their most recent transaction (drop the head of their chain), and go back to their previous version of the chain before that transaction. Then they could append a new transaction, drop it, and append again.
  • After both parties have signed the agreed upon transaction, each party submits the transaction to separate notaries. Notaries are a special class of participant who validate transactions (auditing each chain, ensuring nobody passes through an invalid state), and then they sign an outer envelope which includes the signatures of the two parties. Notaries agree to run high-availability servers which collectively manage a Distributed Hash Table (DHT) servicing requests for transaction information. As their incentive for providing this infrastructure, notaries get a small transaction fee.
  • This approach introduces a few more steps and delays to the transaction process, but because it operates on independent parallel chains, it is still orders of magnitude more efficient and decentralized than reaching consensus on entries in a global ledger
  • millions of simultaneous transactions could be getting processed by other parties and notaries with no bottlenecks.
  • There are other solutions to prevent nodes from dropping the head of their transaction chain, but the approach of having notaries serve out a DHT solves a number of common objections to completely distributed accounting. Having access to reliable lookups in a DHT provides a similar big picture view that you get from a global ledger. For example, you may want a way to look up transactions even when the parties to that transaction are offline, or to be able to see the net system balance at a particular moment in time, or identify patterns of activity in the larger system without having to collect data from everyone individually.
  • By leveraging Intrinsic Data Integrity to run numerous parallel tamper-proof chains you can enable nodes to do various P2P transactions which don’t actually require group consensus. Mutual credit is a great way to implement cryptocurrencies to run in this peered manner. Basic PKI with a DHT is enough additional infrastructure to address main vulnerabilities. You can optimize your solution architecture by reserving reserve consensus work for tasks which need to guarantee uniqueness or actually involve large scale agreement by humans or automated contracts.
  • It is not only possible, but far more scalable to build cryptocurrencies without a global ledger consensus approach or cryptographic tokens.
  •  
    Article written by Arthur Brook, founder of Metacurrency project and of Ceptr.
Tiberius Brastaviceanu

Design Like No One Is Patenting - How SparkFun Stays Ahead of the Pack - 0 views

  • Electronics supplier SparkFun designs dozens of products a year and they haven’t patented a single one. It’s worked out pretty well so far.
  • makes its living by shipping kits and components like bread boards, servo motors and Arduino parts to a mixture of students, hobbyists, and professionals making prototypes
  • the company has made its name is in a stable of its own custom parts and kits, the designs for which it gives away for free.
  • ...40 more annotations...
  • “We find that people will copy your design no matter what you do,” she says. “You might as well just play the game and go ahead and innovate. It’s fun, it keeps us on our toes.”
  • “The open source model just forces us to innovate,” says Boudreaux.
  • the open hardware model means that SparkFun’s existence depends not on any particular product, but on an ongoing relationship with customers that’s not too dissimilar to the loyalty commanded by a fashion house.
  • wolf of obsolescence is always at electronics’ door
  • don’t spend much time worrying about the copyists, they just keep releasing new looks
  • it’s about staying relevant and filling the needs of the community
  • SparkFun’s rapid turnover model is one that echoes the fashion industry.
  • keep their service exemplary
  • listening to their customers
  • developed a community of loyal users and fans
  • weekly new product posts
  • You can learn a lot about what a company cares about by looking at what they give away and what they protect.
  • SparkFun’s actual value is in the community of fans and loyal customers that keep coming back, and the expertise under its roof in servicing their needs.
  • Their catalog has about 2,500 items at any given time
  • SparkFun orders parts from 500 suppliers
  • 15 new products every week
  • hey retire products at a similar rate, due to either low sales, or obsolescence
  • Of the 2,500 items, about 400 are things designed internally.
  • To handle the pace of change, SparkFun needs to keep its inventory lean.
  • “We try to do small runs and order in small quantities. Especially something that’s going to be obsolete quickly.”
  • To help manage the demand, they use an in-house software system
  • along with inventory and CMS management, tries to predict demand for different components and ensure they get ordered with sufficient lead time to account for how long it takes to get there.
  • the innovation (revisions and new releases) here at SparkFun is organic and not planned,” says Boudreaux, “But we do a few things to make sure we are keeping up.”
  • monitors all costumer feedback from emails to the comment section that is present on every page of the company’s site. They also ensure that team members have time to tinker in the office, write tutorials, and visit hackerspaces and maker events. “For us, designing (and revising) widgets is the job.”
  • anyone in the company can suggest ideas and contribute designs.
  • ideas run through an internal process of design, review, prototyping, testing and release.
  • “They eat these products up, even if the products are not ready for the mainstream & educator community due to minimal documentation or stability.”
  • symbiotic relationship with these early adopters, where feedback helps SparkFun revised and improve products for use by the rest of the community
  • I don’t think they help much
  • The risk of this rate of change is that SparkFun can end up outpacing some of their customers.
  • “There’s balance in everything,” says Boudreaux, “Innovation does not necessarily need speed in order to create valuable change. Sometimes innovation works at a slower pace, but that does not mean it is any less valuable to those that benefit from it, and we are constantly balancing the needs of two very different customers.”
  • unprotected and unencumbered by patents
  • racing to get the latest, coolest things in the hands of its customers.
  • patents
  • “We have to be willing to kill ideas that don’t work, take a lot of tough criticism, and move fast. If we stay agile, we stay relevant.”
  • cost $30,000 to $50,000
  • USPTO is so backed up you’ll have to wait three to five years to even hear back on their decision.
  • how much does technology change in five years?
  • company’s blog where they’ve been documenting production and business practices for years.
  • they even want to open source Sparkle. “It’s a wild ride,” she says, “but a fun one for sure.”
  •  
    shared by Jonathan, annotated by Tibi
Kurt Laitner

The basic orientation of p2p theory towards societal reform: transforming civil society... - 1 views

  • under the ‘leadership’ of corporations and those members of our society who have access to capital.
  • Despite all democratic advances, the state forms have clearly been captured by private interests.
  • in a capitalist system, ‘civil society’ is not directly productive of the goods and services that we need to survive, live and thrive
  • ...22 more annotations...
  • everything that needs to be made, has to be designed through collaborative innovation in the first place
  • continuous interchange and dialogue of citizens as they determine their collective life
  • Both civil society and the notion of citizenship can be criticized for being insufficiently inclusionary, and therefore as ‘mechanisms of exclusion’.
  • consisting of shared depositories of knowledge, code and design; the communities of contributors and users of such commons
  • infrastructures of collaboration, which are managed by a new type of ‘for-benefit associations’
  • democratically governed by all participants and stakeholders in such commons
    • Kurt Laitner
       
      hmm
  • which are not derived or secondary from either the private or state forms.
  • civil society is the locus of the shared abundance of value creation, and the place for the continual dialogue regarding the necessities of common life.
  • democratically decide
    • Kurt Laitner
       
      ? our values need be expressed in every action within the matrix, not just when a 'vote' is held, in fact general democratic 'voting' should probably disappear
  • the ‘common good’ of society as a whole
    • Kurt Laitner
       
      there is no such thing
  • The difference is that the commons where the immaterial value is created are positioned in a field of abundance characteristic for non-rival or anti-rival goods; while the for-benefit associations are responsible for the sometimes contentious allocation of rival infrastructures.
    • Kurt Laitner
       
      !!!
  • Whereas the commons themselves are plurarchies based on permissionless contribution, forking and other rights guaranteeing the diversity of contributions and contributors; the for-benefit associations are democratically governed.
  • true reform of the private sector and the corporate form.
    • Kurt Laitner
       
      really?
  • Under conditions of the rule of capital, for-profit corporations are beholden to work for the interests of the shareholders. This format allows for the accumulation of capital, but also indirectly of political power, through the power of money to influence politics and politicians. For-profit corporations are part of a system of infinite growth and compound interest, must continuously compete with other corporations, and therefore, also minimize costs. For-profit corporations are designed to ignore negative environmental externalities by avoiding to pay the costs associated with them; and to ignore positive social externalities, also by avoiding to pay for them. In terms of sustainability, corporations practice planned obsolescence as a rule, because while the market is a scarcity allocation mechanism, capitalism itself is a scarcity maintenance and creation mechanism. Anti-sustainable practices are systemic and part of the DNA of the for-profit corporation.
  • Under conditions of peer production, design and innovation moves to commons-based communitiies, which lack the incentive for unsustainable design; products are inherently design for sustainability, and the production process itself is designed for openness and distribution.
  • designed to make the commoners and the commons themselves sustainable, by not ‘leaking’ surplus value to external shareholders
  • mission-oriented, community supportive, sustainability-oriented corporate forms, that operate in the marketplace but do not themselves reproduce capitalism.
  • surplus value stays within the commons, allows its autonomous social reproduction, and sustains the commoners
  • ethical mechanism that subsumes profit making under the social goal of strengthening the commons.
  • because commons and their communities are themselves specific, and do not automatically take into account the common good of society as a whole .
  • A Partner State functions center around enabling and empowering social production and abandons some of the paternalistic aspects of the welfare state by focusing on strengthening the possibilities of autonomy.
  • mobilization of social forces to obtain a new social contract
  •  
    Good synopsis of the big picture by Michel
Kurt Laitner

Towards a Material Commons | Guerrilla Translation! - 0 views

  • the modes of communication we use are very tightly coupled with the modes of production that finance them
  • I’m focused on the policy formation around this transition to a new, open knowledge and commons-based economy, and that’s the research work I’m doing here
  • The problem is I can only make a living by still working for capital.
  • ...88 more annotations...
  • We now have a technology which allows us to globally scale small group dynamics, and to create huge productive communities, self-organized around the collaborative production of knowledge, code, and design. But the key issue is that we are not able to live from that, right
  • A lot of co-ops have been neo-liberalizing, as it were, have become competitive enterprises competing against other companies but also against other co-ops, and they don’t share their knowledge
  • We cannot create our own livelihood within that sphere
  • instead of having a totally open commons, which allows multinationals to use our commons and reinforce the system of capital, the idea is to keep the accumulation within the sphere of the commons.
  • The result would be a type of open cooperative-ism, a kind of synthesis or convergence between peer production and cooperative modes of production
  • then the material work, the work of working for clients and making a livelihood, would be done through co-ops
  • But it hasn’t had much of a direct connection to this emerging commons movement, which shares so many of the values and  principles of the traditional cooperative movement.
  • There’s also a lot of peer-to-peer work going on, but it’s not very well versed around issues like cooperative organization, formal or legal forms of ownership, which are based on reciprocity and cooperation, and how to interpret the commons vision with a structure, an organizational structure and a legal structure that actually gives it economic power, market influence, and a means of connecting it to organizational forms that have durability over the long-term.
  • The young people, the developers in open source or free software, the people who are in co-working centers, hacker spaces, maker spaces. When they are thinking of making a living, they think startups
  • They have a kind of generic reaction, “oh, let’s do a startup”, and then they look for venture funds. But this is a very dangerous path to take
  • Typically, the venture capital will ask for a controlling stake, they have the right to close down your start up whenever they feel like it, when they feel that they’re not going to make enough money
  • Don’t forget that with venture capital, only 1 out of 10 companies will actually make it, and they may be very rich, but it’s a winner-take-all system
  • we don’t have what Marx used to call social reproduction
  • I would like John to talk about the solidarity co-ops, and how that integrates the notion of the commons or the common good in the very structure of the co-op
  • They don’t have a commons of design or code, they privatize and patent, just like private competitive enterprise, their knowledge
  • Cooperatives, which are basically a democratic and collective form of enterprise where members have control rights and democratically direct the operations of the co-op, have been the primary stakeholders in any given co-op – whether it’s a consumer co-op, or a credit union, or a worker co-op.
  • Primarily, the co-op is in the service of its immediate members
  • What was really fascinating about the social co-ops was that, although they had members, their mission was not only to serve the members but also to provide service to the broader community
  • In the city of Bologna, for example, over 87% of the social services provided in that city are provided through contract with social co-ops
  • democratically run
  • much more participatory, and a much more engaged model
  • The difference, however, is that the structure of social co-ops is still very much around control rights, in other words, members have rights of control and decision-making within how that organization operates
  • And it is an incorporated legal structure that has formal recognition by the legislation of government of the state, and it has the power, through this incorporated power, to negotiate with and contract with government for the provision of these public services
  • In Québec they’re called Solidarity co-ops
  • So, the social economy, meaning organizations that have a mutual aim in their purpose, based on the principles of reciprocity, collective benefit, social benefit, is emerging as an important player for the design and delivery of public services
  • This, too, is in reaction to the failure of the public market for provision of services like affordable housing or health care or education services
  • This is a crisis in the role of the state as a provider of public services. So the question has emerged: what happens when the state fails to provide or fulfill its mandate as a provider or steward of public goods and services, and what’s the role of civil society and the social economy in response?
  • we have commonses of knowledge, code and design. They’re more easily created, because as a knowledge worker, if you have access to the network and some means, however meager, of subsistence, through effort and connection you can actually create knowledge. However, this is not the case if you move to direct physical production, like the open hardware movement
  • I originally encountered Michel after seeing some talks by Benkler and Lessig at the Wizard of OS 4, in 2006, and I wrote an essay criticizing that from a materialist perspective, it was called “The creative anti-commons and the poverty of networks”, playing on the terms that both those people used.
  • In hardware, we don’t see that, because you need to buy material, machines, plastic, metal.
  • Some people have called the open hardware community a “candy” economy, because if you’re not part of these open hardware startups, you’re basically not getting anything for your efforts
  • democratic foundations like the Apache foundation
  • They conceive of peer production, especially Benkler, as being something inherently immaterial, a form of production that can only exist in the production of immaterial wealth
  • From my materialist point of view, that’s not a mode of production, because a mode of production must, in the first place, reproduce its productive inputs, its capital, its labor, and whatever natural wealth it consumes
  • From a materialist point of view, it becomes  obvious that the entire exchange value produced in these immaterial forms would be captured by the same old owners of materialist wealth
  • different definition of peer production
  • independent producers collectively sharing a commons of productive assets
  • I wanted to create something like a protocol for the formation and allocation of physical goods, the same way we have TCP/IP and so forth, as a way to allocate immaterial goods
  • share and distribute and collectively create immaterial wealth, and become independent producers based on this collective commons.
  • One was the Georgist idea of using rent, economic rent, as a fundamental mutualizing source of wealth
  • Mutualizing unearned income
  • So, the unearned income, the portion of income derived from ownership of productive assets is evenly distributed
  • This protocol would seek to normalize that, but in a way that doesn’t require administration
  • typical statist communist reaction to the cooperative movement is saying that cooperatives can exclude and exploit one another
  • But then, as we’ve seen in history, there’s something that develops called an administrative class,  which governs over the collective of cooperatives or the socialist state, and can become just as counterproductive and often exploitive as capitalist class
  • So, how do we create cooperation among cooperatives, and distribution of wealth among cooperatives, without creating this administrative class?
  • This is why I borrowed from the work of Henry George and Silvio Gesell in created this idea of rent sharing.
  • This is not done administratively, this is simply done as a protocol
  • The idea is that if a cooperative wants an asset, like, an example is if one of the communes would like to have a tractor, then essentially the central commune is like a bond market. They float a bond, they say I want a tractor, I am willing to pay $200 a month for this tractor in rent, and other members of the cooperative can say, hey, yeah, that’s a good idea,we think that’s a really good allocation of these productive assets, so we are going to buy these bonds. The bond sale clears, the person gets the tractor, the money from the rent of the tractor goes back to clear the bonds, and  after that, whatever further money is collected through the rent on this tractor – and I don’t only mean tractors, same would be applied to buildings, to land, to any other productive assets – all this rent that’s collected is then distributed equally among all of the workers.
  • The idea is that people earn income not only by producing things, but by owning the means of production, owning productive assets, and our society is unequal because the distribution of productive assets is unequal
  • This means that if you use your exact per capita share of property, no more no less than what you pay in rent and what you received in social dividend, will be equal
  • But if you’re not working at that time, because you’re old, or otherwise unemployed, then obviously the the productive assets that you will be using will be much less than the mean and the median, so what you’ll receive as dividend will be much more than what you pay in rent, essentially providing a basic income
  • venture communism doesn’t seek to control the product of the cooperatives
  • It doesn’t seek to limit, control, or even tell them how they should distribute it, or under what means; what they produce is entirely theirs, it’s only the collective management of the commons of productive assets
  • On paper this would seem to work, but the problem is that this assumes that we have capital to allocate in this way, and that is not the case for most of the world workers
  • how do we get to that stage?
  • other two being counter politics and insurrectionary finance
  • do we express our activism through the state, or do we try to achieve our goals by creating the alternative society outside
  • pre-figurative politics, versus statist politics
  • My materialist background tells me that when you sell your labor on the market, you have nothing more than your subsistence costs at the end of it, so where is this wealth meant to come from
  • I believe that the only reason that we have any extra wealth beyond subsistence is because of organized social political struggle; because we have organized in labor movements, in the co-op movement, and in other social forms
  • To create the space for prefiguring presupposes engagement with the state, and struggle within parliaments, and struggle within the public social forum
  • Instead, we should think that no, we must engage in the state in order to protect our ability to have alternative societies
  • We can only get rid of the state in these areas once we have alternative, distributed, cooperative means to provide those same functions
  • We can only eliminate the state from these areas once they actually exist, which means we actually have to build them
  • What I mean by insurrectionary finance is that we have to acknowledge that it’s not only forming capital and distributing capital, it’s also important how intensively we use capital
  • I’m not proposing that the cooperative movement needs to engage in the kind of derivative speculative madness that led to the financial crisis, but at the same time we can’t… it can’t be earn a dollar, spend a dollar
  • We have to find ways to create liquidity
  • to deal with economic cycles
  • they did things the organized left hasn’t been able to do, which is takeover industrial means of production
  • if they can take over these industrial facilities, just in order to shut them down and asset strip them, why can’t we take them over and mutualize them?
  • more ironic once you understand that the source of investment that Milken and his colleagues were working with were largely workers pension funds
  • idea of venture communism
  • pooling, based on the capture of unearned income
  • in Québec, there is a particular form of co-op that’s been developed that allows small or medium producers to pool their capital to purchase machinery and to use it jointly
  • The other idea I liked was trying to minimize a management class
  • much more lean and accountable because they are accountable to boards of directors that represent the interests of the members
  • I’ve run into this repeatedly among social change activists who immediately recoil at the notion of thinking about markets and capital, as part of their change agenda
  • I had thought previously, like so many, that economics is basically a bought discipline, and that it serves the interests of existing elites. I really had a kind of reaction against that
  • complete rethinking of economics
  • recapture the initiative around vocabulary, and vision, with respect to economics
  • reimagining and reinterpreting, for a popular and common good, the notion of market and capital
  • advocating for a vision of social change that isn’t just about politics, and isn’t just about protest, it has to be around how do we reimagine and reclaim economics
  • markets actually belong to communities and people
  • capital wasn’t just an accumulated wealth for the rich
  • I think what we’re potentially  talking about here is to make the social economy hyper-productive, hyper-competitive, hyper-cooperative
  • The paradox is that capital already knows this. Capital is investing in these peer production projects
  • Part of the proposal of the FLOK society project in Ecuador will be to get that strategic reorganization to make the social economy strategic
  •  
    A lot of really interesting points of discussion in here.
Kurt Laitner

How Many Kinds of Property are There? - 0 views

  • Whenever a group of people depend on a resource that everybody uses but nobody owns, and where one person’s use effects another person’s ability to use the resource, either the population fails to provide the resource, overconsumes and/or fails to replenish it, or they construct an institution for undertaking and managing collective action.
  • Common-pool resources may be owned by national, regional, or local [1]governments; by [2] communal groups; by [3] private individuals or corporations; or used as open access resources by whomever can gain access
  • Based on her survey, Ostrom distilled this list of common design principles from the experience of successful governance institutions: Clearly defined boundaries. Individuals or households who have rights to withdraw resource units from the CPR must be clearly defined, as must the boundaries of the CPR itself. Congruence between appropriation and provision rules and local conditions. Appropriation rules restricting time, place, technology, and/or quantity of resource units are related to local conditions and to provision rules requiring labour, material, and/or money. Collective-choice arrangements. Most individuals affected by the operational rules can participate in modifying the operational rules [how refreshing. Standing!]. Monitoring. Monitors, who actively audit CPR conditions and appropriator behavior, are accountable to the appropriators or are the appropriators. Graduated sanctions. Appropriators who violate operational rules are likely to be assessed graduated sanctions (depending on the seriousness and context of the offence) by other appropriators, by officials accountable to these appropriators, or by both. Conflict-resolution mechanisms. Appropriators and their officials have rapid access to low-cost local arenas to resolve conflicts among appropriators or between appropriators and officials. Minimal recognition of rights to organize. The rights of appropriators to devise their own institutions are not challenged by external governmental authorities. For CPRs that are parts of larger systems: Nested enterprises. Appropriation, provision, monitoring, enforcement, conflict resolution, and governance activities are organized in multiple layers of nested enterprises.
  •  
    Good review of Ostrom and Bollier's definitions of commons and governance approaches to this property class
  •  
    This paper is mostly about commons... the title is misleading.
1 - 20 of 20
Showing 20 items per page