Skip to main content

Home/ Sensorica Knowledge/ Group items tagged logic

Rss Feed Group items tagged

Kurt Laitner

Value Creating Service Systems: From Service Systems to Digital Lives - 0 views

  •  
    "Service dominant logic suggest that value is always co-created in context of use and experience. Co-creation is not an option (Vargo and Lusch, 2004, 2008). "Moving things along meant a focus on 2 key aspects. philosophy and methods. "An SD logic approach is not one that you can run a survey of attitude, behaviours or intentions. The person is embedded in his actions and practices of value creation. The focus on context means the unit of analysis is in the sociology of real life behaviours. A sociological approach makes methods a problem because we've inherited a world where we have created tools from analysing water in a bucket, not by looking at its behaviour in a river. "GD logic is compelling not only because it is entrenched for over 500 years, but also because you could measure its constructs. GDP, sales, revenues, CPI - they are all constructs of a GD logic society. What SD logic needed was better methods and new constructs. "To that end, and rather ironically, I found an ally in digital technology. Here was a world of sensors and actuators with an enthusiastic community looking for novel ways of deploying them into homes and buildings i.e. the internet-of-things. "I also found, as an ally, the thinking around new economic and business models. Here was another strand of literature largely marginalised by mainstream business literature because it was (the way I interpreted it) taking a systemic view of value proposition, value creation and value capture (ie, change one, change all) and the way the organisation had to be agile and transformed for it - which sat very nicely with SD logic. "Customised products are firm centric. Personalised products are customer initiated and empowering. Personalised products also tend to move the product into becoming platforms to afford co-creation, which advanced the notion of symmetry in value co-creation further. Finally, with the advent of platforms, the economics of 2 or multi-sided markets completed my set of theoretica
  •  
    an interesting starting point for research
Kurt Laitner

Modal operator - Wikipedia, the free encyclopedia - 2 views

  •  
    defining the attractor of a value space using modal logic
Tiberius Brastaviceanu

Decision making - Wikipedia, the free encyclopedia - 1 views

  • mental processes
  • examine individual decisions in the context of a set of needs, preferences an individual has and values they seek.
  • psychological perspective
  • ...59 more annotations...
  • cognitive perspective
  • continuous process integrated in the interaction with the environment
  • normative perspective
  • logic of decision making
  • and rationality
  • decision making is a reasoning or emotional process which can be rational or irrational, can be based on explicit assumptions or tacit assumptions.
  • Logical decision making
  • making informed decisions
  • recognition primed decision approach
  • without weighing alternatives
  • integrated uncertainty into the decision making process
  • A major part of decision making involves the analysis of a finite set of alternatives described in terms of some evaluative criteria.
  • multi-criteria decision analysis (MCDA) also known as multi-criteria decision making (MCDM).
  • differentiate between problem analysis and decision making
  • Problem analysis must be done first, then the information gathered in that process may be used towards decision making.[4]
  • decision making techniques people use in everyday life
  • Pros and Cons
  • Simple Prioritization:
  • Decision-Making Stages
  • Orientation stage
  • Conflict stage
  • Emergence stage
  • Reinforcement stage
  • Decision-Making Steps
  • Outline your goal and outcome
  • Gather data
  • Brainstorm to develop alternatives
  • List pros and cons of each alternative
  • Make the decision
  • take action
  • Learn from, and reflect on the decision making
  • Cognitive and personal biases
  • Selective search for evidence
  • Premature termination of search for evidence
  • Inertia
  • Selective perception
  • Wishful thinking or optimism bias
  • Choice-supportive bias
  • Recency
  • Repetition bias
  • Anchoring and adjustment
  • Group think – Peer pressure
  • Source credibility bias
  • Incremental decision making and escalating commitment
  • Attribution asymmetry
  • Role fulfillment
  • Underestimating uncertainty and the illusion of control
  • a person's decision making process depends to a significant degree on their cognitive style
  • thinking and feeling; extroversion and introversion; judgment and perception; and sensing and intuition.
  • someone who scored near the thinking, extroversion, sensing, and judgment
  • would tend to have a logical, analytical, objective, critical, and empirical decision making style.
  • national or cross-cultural differences
  • distinctive national style of decision making
  • human decision-making is limited by available information, available time, and the information-processing ability of the mind.
  • two cognitive styles: maximizers
  • satisficers
    • Tiberius Brastaviceanu
       
      I think we are at the CONFLICT stage at this moment
    • Tiberius Brastaviceanu
       
      These are the steps we need to go through to make a decision of the 4 items proposed by Ivan
    • Tiberius Brastaviceanu
       
      This is also interesting, where are you on these 4 dimensions? 
Kurt Laitner

Crowding Out - P2P Foundation - 1 views

  • The curve indicates that while workers will initially chose to work more when paid more per hour, there is a point after which rational workers will choose to work less
    • Kurt Laitner
       
      in other words, people are financially motivated until they are financially secure, then other motivations come in
  • "leaders" elsewhere will come and become your low-paid employees
  • At that point, the leaders are no longer leaders of a community, and they turn out to be suckers after all, working for pittance, comparatively speaking
    • Kurt Laitner
       
      so part of the dynamic is that everyone is paid fairly, if not there is the feeling of exploitation
  • ...36 more annotations...
  • under certain structural conditions non-price-based production is extraordinarily robust
    • Kurt Laitner
       
      which are... abundance?
  • There is, in fact, a massive amount of research that supports the idea that when you pay people to do something for you, they stop enjoying it, and distrust their own motivations. The mysterious something that goes away, and that “Factor X” even has a name: intrinsic motivation.
    • Kurt Laitner
       
      the real question though is why, and whether it is the paying them that is the problem, or perhaps how that is determined, and who else gets what on what basis..  if you have to have them question the fairness of the situation, they will likely check out
  • giving rewards to customers can actually undermine a company’s relationship with them
  • It just is not so easy to assume that because people behave productively in one framework (the social process of peer production that is Wikipedia, free and open source software, or Digg), that you can take the same exact behavior, with the same exact set of people, and harness them to your goals by attaching a price to what previously they were doing in a social process.
  • Extrinsic rewards suggest that there is actually an instrumental relationship at work, that you do the activity in order to get something else
  • If you pay me for it, it must be work
    • Kurt Laitner
       
      only because a dichotomy of work and play exists in western culture
  • It’s what we would call a robust effect. It shows up in many contexts. And there’s been considerable testing to try to find out exactly why it works. A major school of thought is that there is an “Overjustification Effect.” (http://kozinets.net/archives/133)
    • Kurt Laitner
       
      yes, why is key
  • interesting examples of an effect called crowding
  • Offering financial rewards for contributions to online communities basically means mixing external and intrinsic motivation.
  • A good example is children who are paid by their parents for mowing the family lawn. Once they expect to receive money for that task, they are only willing to do it again if they indeed receive monetary compensation. The induced unwillingness to do anything for free may also extend to other household chores.
  • Once ‘gold-stars’ were introduced as a symbolic reward for a certain amount of time spent practicing the instrument, the girl lost all interest in trying new, difficult pieces. Instead of aiming at improving her skills, her goal shifted towards spending time playing well-learned, easy pieces in order to receive the award (Deci with Flaste 1995)
    • Kurt Laitner
       
      this is a more troubling example, as playing the harder pieces is also practicing - I would take this as a more complex mechanism at work - perhaps the reinterpretation by the girl that all playing was considered equal, due to the pricing mechanism, in which case the proximal solution would be to pay more for more complex pieces, or for levels of achievement - the question remains of why the extrinsic reward was introduced in the first place (unwillingness to practice as much as her parents wanted?) - which would indicate intrinsic motivation was insufficient in this case
  • Suddenly, she managed to follow the prescription, as her own (intrinsic) motivation was recognized and thereby reinforced.
    • Kurt Laitner
       
      or perhaps the key was to help her fit the medication into her day, which she was having trouble with...
  • The introduction of a monetary fine transforms the relationship between parents and teachers from a non-monetary into a monetary one
    • Kurt Laitner
       
      absolutely, in some sense the guilt of being late is replaced by a rationalization that you are paying them - it is still a rationalization, and parents in this case need to be reminded that staff have lives too to reinforce the moral suasion
  • "The effects of external interventions on intrinsic motivation have been attributed to two psychological processes: (a) Impaired self-determination. When individuals perceive an external intervention to reduce their self-determination, they substitute intrinsic motivation by extrinsic control. Following Rotter (1966), the locus of control shifts from the inside to the outside of the person affected. Individuals who are forced to behave in a specific way by outside intervention, feel overjustified if they maintained their intrinsic motivation. (b) Impaired self-esteem. When an intervention from outside carries the notion that the actor's motivation is not acknowledged, his or her intrinsic motivation is effectively rejected. The person affected feels that his or her involvement and competence is not appreciated which debases its value. An intrinsically motivated person is taken away the chance to display his or her own interest and involvement in an activity when someone else offers a reward, or commands, to undertake it. As a result of impaired self-esteem, individuals reduce effort.
    • Kurt Laitner
       
      these are finally very useful - so from (a) as long as self determination is maintained (actively) extrinsic reward should not shut down intrinsic motivation AND (b) so long as motivations are recognized and reward dimensions OTHER THAN financial continue to operate, extrinsic reward should not affect intrinsic motivation
  • External interventions crowd-out intrinsic motivation if the individuals affected perceive them to be controlling
    • Kurt Laitner
       
      emphasis on "if" and replacing that with "in so far as"
  • External interventions crowd-in intrinsic motivation if the individuals concerned perceive it as supportive
    • Kurt Laitner
       
      interesting footnote
  • In that case, self-esteem is fostered, and individuals feel that they are given more freedom to act, thus enlarging self-determination
    • Kurt Laitner
       
      so effectively a system needs to ensure it is acting on all dimensions of reward, or at least those most important to the particular participant, ego (pride, recognition, guilt reduction, feeling needed, being helpful, etc), money (sustenance, beyond which it is less potent), meaning/purpose etc.  If one ran experiments controlling for financial self sufficiency, then providing appreciation and recognition as well as the introduced financial reward, they might yield different results
  • cultural categories that oppose marketplace modes of behavior (or “market logics”) with the more family-like modes of behavior of caring and sharing that we observe in close-knit communities (”community logics”)
    • Kurt Laitner
       
      are these learned or intrinsic?
  • this is labor, this is work, just do it.
    • Kurt Laitner
       
      except that this cultural meme is already a bias, not a fact
  • When communal logics are in effect, all sorts of norms of reciprocity, sacrifice, and gift-giving come into play: this is cool, this is right, this is fun
    • Kurt Laitner
       
      true, and part of our challenge then is to remove this dichotomy
  • So think about paying a kid to clean up their room, paying parishioners to go to church, paying people in a neighborhood to attend a town hall meeting, paying people to come out and vote. All these examples seem a little strange or forced. Why? Because they mix and match the communal with the market-oriented.
    • Kurt Laitner
       
      and perhaps the problem is simply the conversion to money, rather than simply tracking these activities themselves (went to church 50 times this year!, helped 50 orphans get families!) (the latter being more recognition than reward
  • Payment as disincentive. In his interesting book Freakonomics, economist Steven Levitt describes some counterintuitive facts about payment. One of the most interesting is that charging people who do the wrong thing often causes them to do it more, and paying people to do the right thing causes them to do it less.
    • Kurt Laitner
       
      and tracking them causes them to conform to cultural expectations
  • You direct people _away_ from any noble purpose you have, and instead towards grubbing for dollars
    • Kurt Laitner
       
      and we are left with the challenge, how to work to purpose but still have our scarce goods needs sufficiently provided for?  it has to be for love AND money
  • When people work for a noble purpose, they are told that their work is highly valued. When people work for $0.75/hour, they are told that their work is very low-valued
    • Kurt Laitner
       
      so pay them highly for highly valued labour, and don't forget to recognize them as well... no?
  • you're going to have to fight your way through labour laws and tax issues all the way to bankruptcy
    • Kurt Laitner
       
      this is a non argument, these are just interacting but separate problems, use ether or bitcoin, change legislation, what have you
  • Market economics. If you have open content, I can copy your content to another wiki, not pay people, and still make money. So by paying contributors, you're pricing yourself out of the market.
    • Kurt Laitner
       
      exactly, so use commonsource, they can use it all they want, but they have to flow through benefit (provide attribution, recognition, and any financial reward must be split fairly)
  • You don't have to pay people to do what they want to do anyways. The labour cost for leisure activities is $0. And nobody is going to work on a wiki doing things they don't want to do.
    • Kurt Laitner
       
      wow, exploitative in the extreme - no one can afford to do work for free, it cuts into paid work, family time etc.  if they are passionate about something they will do it for free if they cannot get permission to do it for sustenance, but they still need to sustain themselves, and they are making opportunity cost sacrifices, and if you are in turn making money off of this you are an asshole.. go ahead look in the mirror and say "I am an asshole"
  • No fair system. There's simply no fair, automated and auditable way to divvy up the money
    • Kurt Laitner
       
      this is an utter cop out - figure out what is close enough to fair and iterate forward to improve it, wow
  • too complicated to do automatically. But if you have a subjective system -- have a human being evaluate contributions to an article and portion out payments -- it will be subject to constant challenges, endless debates, and a lot of community frustration.
    • Kurt Laitner
       
      yes to the human evaluation part, but "it's too complicated" is disingenuous at the least
  • Gaming the system. People are really smart. If there's money to be made, they'll figure out how to game your payment system to get more money than they actually deserve
    • Kurt Laitner
       
      yes indeed, so get your metrics right, and be prepared to adjust them as they are gamed - and ultimately, as financial penalties are to BP, even if some people game the system, can we better the gaming of the capitalist system.. it's a low bar I know
  • They'll be trying to get as much money out of you as possible, and you'll be trying to give as little as you can to them
    • Kurt Laitner
       
      it doesn't have to be this way, unless you think that way already
  • If you can't convince people that working on your project is worth their unpaid time, then there's probably something wrong with your project.
    • Kurt Laitner
       
      wow, talk about entrepreneurial taker attitude rationalization
  • People are going to be able to sense that -- it's going to look like a cover-up, something sleazy
    • Kurt Laitner
       
      and getting paid for others free work isn't sleazy, somehow...?
  • Donate.
    • Kurt Laitner
       
      better yet, give yourself a reasonable salary, and give the rest away
  • Thank-you gifts
    • Kurt Laitner
       
      cynical.. here have a shiny bobble you idiot
  • Pay bounties
    • Kurt Laitner
       
      good way to get people to compete ineffectively instead of cooperating on a solution, the lottery mechanism is evil
  •  
    while good issue are brought up in this article, the solutions offered are myopic and the explanations of the observed effects not satisfying
Kurt Laitner

Crisis of Value Theory - P2P Foundation - 0 views

  • accumulation of knowledge assets
  • a new class has arisen which controls the vectors of information
  • In terms of knowledge creation, a vast new information commons is being created, which is increasingly out of the control of cognitive capitalism.
  • ...19 more annotations...
  • But notice that to do this, the system had to change, the core logic was no longer the same.
  • The emergence of the peer model of production, based on the non-rivalrous nature and virtually non-existent marginal cost of reproduction of digital information, and coupled with the increasing unenforceability of “intellectual property” laws, means that capital is incapable of realizing returns on ownership in the cognitive realm.
  • capital is becoming an a posteriori intervention in the realization of innovation, rather than a condition for its occurrence
  • 1) The creation of non-monetary value is exponential 2) The monetization of such value is linear
  • What this announces is a crisis of value, most such value is ‘beyond measure’, but also essentially a crisis of accumulation of capital.
  • more and more positive externalizations are created from the social field
  • “the core logic of the emerging experience economy, operating as it does in the world of non-rival exchange, is unlikely to have capitalism as its core logic.”
  • This takes the form both of “intellectual property” law, as well as direct subsidies from the taxpayer to the corporate economy
  • crisis of realization under state capitalism to capital’s growing dependence on the state to capture value from social production and redistribute it to private corporate owners
  • The state capitalist system will reach a point at which, thanks to the collapse of the portion of value comprised of rents on artificial property, the base of taxable value is imploding at the very time big business most needs subsidies to stay afloat.
  • We live in a political economy that has it exactly backwards. We believe that our natural world is infinite, and therefore that we can have an economic system based on infinite growth. But since the material world is finite, it is based on pseudo-abundance. And then we believe that we should introduce artificial scarcities in the world of immaterial production, impeding the free flow of culture and social innovation, which is based on free cooperation, by creating the obstacle of permissions and intellectual property rents protected by the state. What we need instead is a political economy based on a true notion of scarcity in the material realm, and a realization of abundance in the immaterial realm.
  • Brains and bodies still need others to produce value, but the others they need are not necessarily provided by capital and its capacities to organize production.
  • The household and informal economies have been allowed to function to the extent that they bear reproduction costs that would otherwise have to be internalized in wages; but they have been suppressed (as in the Enclosures) when they threaten to increase in size and importance to the point of offering a basis for independence from wage labor. “
  • increasing untenability of property rights in the information realm
  • there is no more outside.
  • one of intensive development, to grow in the immaterial field, and this is basically what the experience economy means
  • Innovation is becoming social and diffuse, an emergent property of the networks
  • failure of artificial abundance
  • failure of artificial scarcity
  •  
    the passing of the capitalist age
Tiberius Brastaviceanu

The commons law project: A vision of green governance - 0 views

  • “commons law” (not to be confused with common law)
  • Commons law consists of those social practices, cultural traditions and specific bodies of formal law that recognize the rights of commoners to manage their own resources
  • Ever since the rise of the nation-state and especially industrialized markets, however, commons law has been marginalized if not eclipsed by contemporary forms of market-based law
  • ...19 more annotations...
  • individual property rights and market exchange have been elevated over most everything else, and this has only eroded the rights of commoners,
  • reframe the very notion of “the economy” to incorporate non-market sharing and collaboration.
  • we had concluded that incremental efforts to expand human rights and environmental protection within the framework of the State/Market duopoly were simply not going to achieve much
  • the existing system of regulation and international treaties has been a horrendous failure over the past forty years. Neoliberal economics has corrupted and compromised law and regulation, slashing away at responsible stewardship of our shared inheritance while hastening a steady decline of the world’s ecosystems
  • We concluded that new forms of ecological governance that respect human rights, draw upon commons models and reframe our understanding of economic value, hold great promise
  • An economics and supporting civic polity that valorizes growth and material development as the precondition for virtually everything else is ultimately a dead end—literally.
  • Achieving a clean, healthy and ecologically balanced environment requires that we cultivate a practical governance paradigm based on, first, a logic of respect for nature, sufficiency, interdependence, shared responsibility and fairness among all human beings; and, second, an ethic of integrated global and local citizenship that insists upon transparency and accountability in all activities affecting the integrity of the environment.
  • We believe that commons- and rights-based ecological governance—green governance—can fulfill this logic and ethic. Properly done, it can move us beyond the neoliberal State and Market alliance—what we call the ‘State/Market’—which is chiefly responsible for the current, failed paradigm of ecological governance.
  • The basic problem is that the price system, seen as the ultimate governance mechanism of our polity, falls short in its ability to represent notions of value that are subtle, qualitative, long-term and complicated.
  • These are, however, precisely the attributes of natural systems.
  • Exchange value is the primary if not the exclusive concern.
  • anything that does not have a price and exists ‘outside’ the market is regarded (for the purposes of policy-making) as having subordinate or no value.
  • industry lobbies have captured if not corrupted the legislative process
  • regulation has become ever more insulated from citizen influence and accountability as scientific expertise and technical proceduralism have come to be more and more the exclusive determinants of who may credibly participate in the process
  • we have reached the limits of leadership and innovation within existing institutions and policy structures
  • it will not be an easy task to make the transition from State/Market ecological governance to commons- and rights-based ecological governance
  • It requires that we enlarge our understanding of ‘value’ in economic thought to account for nature and social well-being; that we expand our sense of human rights and how they can serve strategic as well as moral purposes; that we liberate ourselves from the limitations of State-centric models of legal process; and that we honor the power of non-market participation, local context and social diversity in structuring economic activity and addressing environmental problems.
  • articulate and foster a coherent new paradigm
  • deficiencies of centralized governments (corruption, lack of transparency, rigidity, a marginalized citizenry)
Steve Bosserman

Chip integrates chemical, logic functions | KurzweilAI - 1 views

  •  
    A complementary technology for Tactus?
Tiberius Brastaviceanu

How Peer to Peer Communities will change the World - 0 views

  • role of p2p movement
  • historical role
  • horizontalisation of human relationships
  • ...55 more annotations...
  • allowing the free aggregation of individuals around shared values or common value creation
  • a huge sociological shift
  • new life forms, social practices and human institutions
  • emergent communities of practice are developing new social practices that are informed by the p2p paradigm
  • ethical revolution
  • openness
  • participation
  • inclusivity
  • cooperation
  • commons
  • the open content industry in the U.S. to reach one sixth of GDP.
  • political expressions
  • the movement has two wings
  • constructive
  • building new tools and practices
  • resistance to neoliberalism
  • we are at a stage of emergence
  • difficulty of implementing full p2p solutions in the current dominant system
  • At this stage, there is a co-dependency between peer producers creating value, and for-profit firms ‘capturing that value’, but they both need each other.
  • Peer producers need a business ecology to insure the social reproduction of their system and financial sustainability of its participants, and capital needs the positive externalities of social cooperation which flow from p2p collaboration.
  • peer producing communities should create their own ‘mission-oriented’ social businesses, so that the surplus value remains with the value creators, i.e. the commoners themselves, but this is hardly happening now.
  • Instead what we see is a mutual accomodation between netarchical capital on one side, and peer production communities on the other.
  • the horizontal meets the vertical
  • mostly hybrid ‘diagonal’ adaptations
  • For peer producers the question becomes, if we cannot create our own fully autonomous institutions, how can we adapt while maintaining maximum autonomy and sustainability as a commons and as a community.
  • Why p2p have failed to create successful alternatives in some areas?
  • In commons-oriented peer production, where people aggegrate around a common object which requires deep cooperation, they usually have their own infrastructures of cooperation and a ecology combining community, a for-benefit association managing the infrastructure, and for-profit companies operating on the market place; in the sharing economy, where individuals merely share their own expressions, third party platforms are the norm. It is clear that for-profit companies have different priorities, and want to enclose value so that it can be sold on the marketplace. This in fact the class struggle of the p2p era, the struggle between communities and corporations around various issues because of partly differential interests.
  • Even commercially controlled platforms are being used for a massive horizontalisation and self-aggregation of human relationships, and communities, including political and radical groups are effectively using them to mobilize. What’s important is not just to focus on the limitations and intentions of the platform owners, but to use whatever we can to strengthen the autonomy of peer communities.
  • requires a clever adaptation
  • use for our own benefit
  • The fact today is that capital is still capable of marshaling vast financial and material resources, so that it can create,
  • platforms that can easily and quickly offer services, creating network effects
  • without network effects, there is no ‘there’ there, just an empty potential platform.
  • p2p activists should work on both fronts
  • using mainstream platforms for spreading their ideas and culture and reach greater numbers of people, while also developing their own autonomous media ecologies, that can operate independently, and the latter is an engagement for the ‘long haul’, i.e. the slow construction of an alternative lifeworld.
  • The commons and p2p are really just different aspects of the same phenomena; the commons is the object that p2p dynamics are building; and p2p takes place wherever there are commons.
  • So both p2p and the commons, as they create abundant (digital) or sufficient (material) value for the commoners, at the same time create opportunities to create added value for the marketplace. There is no domain that is excluded from p2p, no field that can say, “we wouldn’t be stronger by opening up to participation and community dynamics”. And there is no p2p community that can say, we are in the long term fully sustainable within the present system, without extra resources coming from the market sector.
  • One trend is the distribution of current infrastructures and practices, i.e. introducing crowdsourcing, crowdfunding, social lending, digital currencies, in order to achieve wider participation in current practices. That is a good thing, but not sufficient. All the things that I mention above, move to a distributed infrastructure, but do not change the fundamental logic of what they are doing.
  • we are talking about the distribution of capitalism, not about a deeper change in the logic of our economy.
  • No matter how good you are, no matter how much capital you have to hire the best people, you cannot compete with the innovative potential of open global communities.
  • the p2p dynamics
  • the new networked culture
  • the opposite is also happening, as we outlined above, more and more commons-oriented value communities are creating their own entrepreneurial coalitions. Of course, some type of companies, because of their monopoly positions and legacy systems, may have a very difficult time undergoing that adaptation, in which case new players will appear that can do it more effectively.
  • the corporate form is unable to deal with ecological and sustainability issues, because its very DNA, the legal obligation to enrich the shareholders, makes its strive to lower input costs,  and ignore externalities.
  • we need new corporate structures, a new type of market entity, for which profit is a means, but not an end, dedicated to a ‘benefit‘, a ‘mission’, or the sustenance of a particular community and/or commons.
  • abundance destroys scarcity and therefore markets
  • open design community
  • will inherently design for sustainability
  • for inclusion
  • conceive more distributed forms of manufacturing
  • entrepreneurs attaching themselves to open design projects start working from an entirely different space, even if they still use the classic corporate form. Prevent the sharing of sustainability designs through IP monopolies is also in my view unethical and allowing such patents should be a minimalist option, not a maximalist one.
  • The high road scenario proposes an enlightened government that ‘enables and empowers’ social production and value creation and allows a much smoother transition to p2p models; the low road scenario is one in which no structural reforms take place, the global situation descends into various forms of chaos, and p2p becomes a survival and resilience tactic in extremely difficult social, political and economic circumstances.
  • accelerated end of capitalism
  • Making sure that we get a better alternative is actually the historical task of the p2p movement. In other words, it depends on us!
  • I don’t really think in terms of technological breakthroughs, because the essential one, globally networked collective intelligence enabled by the internetworks, is already behind us; that is the major change, all other technological breakthroughs will be informed by this new social reality of the horizontalisation of our civilisation. The important thing now is to defend and extend our communication and organisation rights, against a concerted attempt to turn back the clock. While the latter is really an impossibility, this does not mean that the attempts by governments and large corporations cannot create great harm and difficulties. We need p2p technology to enable the global solution finding and implementation of the systemic crises we are facing.
Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools. 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Tiberius Brastaviceanu

What is an ontology and why we need it - 1 views

  • an ontology designer makes these decisions based on the structural properties of a class.
  • an ontology is a formal explicit description of concepts in a domain of discourse (classes (sometimes called concepts)), properties of each concept describing various features and attributes of the concept (slots (sometimes called roles or properties)), and restrictions on slots (facets (sometimes called role restrictions)). An ontology together with a set of individual instances of classes constitutes a knowledge base. In reality, there is a fine line where the ontology ends and the knowledge base begins.
  • Classes describe concepts in the domain
  • ...16 more annotations...
  • A class can have subclasses that represent concepts that are more specific than the superclass.
  • Here we discuss general issues to consider and offer one possible process for developing an ontology. We describe an iterative approach to ontology development: we start with a rough first pass at the ontology. We then revise and refine the evolving ontology and fill in the details. Along the way, we discuss the modeling decisions that a designer needs to make, as well as the pros, cons, and implications of different solutions.
  • In practical terms, developing an ontology includes: �         defining classes in the ontology, �         arranging the classes in a taxonomic (subclass–superclass) hierarchy, �         defining slots and describing allowed values for these slots, �         filling in the values for slots for instances.
  • We can then create a knowledge base by defining individual instances of these classes filling in specific slot value information and additional slot restrictions.
  • Slots describe properties of classes and instances:
  • There is no one correct way to model a domain— there are always viable alternatives. The best solution almost always depends on the application that you have in mind and the extensions that you anticipate. 2)      Ontology development is necessarily an iterative process. 3)      Concepts in the ontology should be close to objects (physical or logical) and relationships in your domain of interest. These are most likely to be nouns (objects) or verbs (relationships) in sentences that describe your domain.
  • some fundamental rules in ontology design
  • how detailed or general the ontology is going to be
  • what we are going to use the ontology for
  • concepts in the ontology must reflect this reality
  • We suggest starting the development of an ontology by defining its domain and scope. That is, answer several basic questions: �         What is the domain that the ontology will cover? �         For what  we are going to use the ontology? �         For what types of questions the information in the ontology should provide answers? �         Who will use and maintain the ontology?
  • plan to use
  • domain
  • If the people who will maintain the ontology describe the domain in a language that is different from the language of the ontology users, we may need to provide the mapping between the languages.
  • One of the ways to determine the scope of the ontology is to sketch a list of questions that a knowledge base based on the ontology should be able to answer, competency questions
  • These competency questions are just a sketch and do not need to be exhaustive.
faly77

From Platforms to Neighbourhoods - 0 views

  •  
    One of the biggest problems we see facing communities who want to use digital tools to coordinate is that platforms are the unit of social organization online. The logic of platforms enforces top-down cultural homogeneity on all groups who must submit to this culture in exchange for access to basic tools for coordination.
Francois Bergeron

sigrok - 1 views

  • The sigrok project aims at creating a portable, cross-platform, Free/Libre/Open-Source signal analysis software suite that supports various device types (e.g. logic analyzers, oscilloscopes, and many more). It is licensed under the terms of the GNU GPL, version 3 or later.
  •  
    suggested by Jonathan
Tiberius Brastaviceanu

Evolving Towards a Partner State in an Ethical Economy - 0 views

  • In the  emerging institutional model of peer production
  • we can distinguish an interplay between three partners
  • a community of contributors that create a commons of knowledge, software or design;
  • ...46 more annotations...
  • There is a clear institutional division of labour between these three players
  • a set of "for-benefit institutions' which manage the 'infrastructure of cooperation'
  • an enterpreneurial coalition that creates market value on top of that commons;
  • Can we also learn something about the politics of this new mode of value creation
  • Is there perhaps a new model of power and democracy co-evolving out of these new social practices, that may be an answer to the contemporary crisis of democracy
  • we are witnessing a new model for the state. A 'P2P' state, if you will.
  • The post-democratic logic of community
  • these communities are not democracies
  • because democracy, and the market, and hierarchy, are modes of allocation of scarce resources
  • Such communities are truly poly-archies and the type of power that is held in them is meritocratic, distributed, and ad hoc.
  • Everyone can contribute without permission, but such a priori permissionlessness is  matched with mechanisms for 'a posteriori'  communal validation, where those with recognized expertise and that are accepted by the community, the so-called 'maintainers' and the 'editors',  decide
  • These decisions require expertise, not communal consensus
  • tension between inclusiveness of participation and selection for excellence
  • allowing for maximum human freedom compatible with the object of cooperation. Indeed, peer production is always a 'object-oriented' cooperation, and it is the particular object that will drive the particular form chosen for its 'peer governance' mechanisms
  • The main allocation mechanism in such project, which replaces the market, the hierarchy and democracy,  is a 'distribution of tasks'
  • no longer a division of labor between 'jobs', and the mutual coordination works through what scientist call 'stigmergic signalling'
  • work environment is designed to be totally open and transparent
  • every participating individual can see what is needed, or not and decide accordingly whether to undertake his/her particular contribution
  • this new model
  • has achieved capacities both for global coordination, and for the small group dynamics that are characteristic of human tribal forms and that it does this without 'command and control'! In fact, we can say that peer production has enabled the global scaling of small-group dynamics.
  • And they have to be, because an undemocratic institution would also discourage contributions by the community of participants.
    • Kurt Laitner
       
      disagree, there are many ways to ethically distribute governance, not just democracy
  • Hence, an increased exodus of productive  capacities, in the form of direct use value production, outside the existing system of monetization, which only operates at its margins.
  • Where there is no tension between supply and demand, their can be no market, and no capital accumulation
  • Facebook and Google users create commercial value for their platforms, but only very indirectly and they are not at all rewarded for their own value creation.
  • Since what they are creating is not what is commodified on the market for scarce goods, there is no return of income for these value creators
  • This means that social media platforms are exposing an important fault line in our system
  • If you did not contribute, you had no say, so engagement was and is necessary.
    • Kurt Laitner
       
      key divergence from birth/process citizenship driven democracy
  • ⁃   At the core of value creation are various commons, where the innovations are deposited for all humanity to share and to build on ⁃   These commons are enabled and protected through nonprofit civic associations, with as national equivalent the Partner State, which empowers and enables that social production ⁃   Around the commons emerges a vibrant commons-oriented economy undertaken by different kinds of ethical companies, whose legal structures ties them to the values and goals of the commons communities, and not absentee and private shareholders intent of maximising profit at any cost
  • the citizens deciding on the optimal shape of their provisioning systems.
    • Kurt Laitner
       
      ie value equations..?
  • Today, it is proto-mode of production which is entirely inter-dependent with the system of capital
  • Is there any possibility to create a really autonmous model of peer production, that could create its own cycle of reproduction?
  • contribute
    • Kurt Laitner
       
      defined as?
    • Tiberius Brastaviceanu
       
      "ad hoc": perhaps based on context, needs and everyone's understanding of the situation
  • and whose mission is the support of the commons and its contributors
  • In this way, the social reproduction of commoners would no longer depend on the accumulation cycle of capital, but on its own cycle of value creation and realization
  • Phyles are mission-oriented, purpose-driven, community-supportive entities that operate in the market, on a global scale, but work for the commons.
  • peer production license, which has been proposed by Dmytri Kleiner.
  • Thijs Markus writes  so eloquently about Nike in the Rick Falkvinge blog, if you want to sell $5 shoes for $150 in the West, you better have one heck of a repressive IP regime in place.
  • Hence the need for SOPA/PIPA , ACTA'S and other attempts to criminalize the right to share.
  • An economy of scope exists between the production of two goods when two goods which share a CommonCost are produced together such that the CommonCost is reduced.
  • shared infrastructure costs
  • 2) The current system beliefs that innovations should be privatized and only available by permission or for a hefty price (the IP regime), making sharing of knowledge and culture a crime; let's call this feature, enforced 'artificial scarcity'.
  • 1) Our current system is based on the belief of infinite growth and the endless availability of resources, despite the fact that we live on a finite planet; let's call this feature, runaway 'pseudo-abundance'.
  • So what are the economies of scope of the new p2p age? They come in two flavours: 1) the mutualizing of knowledge and immaterial resources 2) the mutualizing of material productive resources
  • how does global governance look like in P2P civilization?
  • conflicts between contributors
  • are not decided by authoritarian fiat, but by 'negotiated coordination'.
Tiberius Brastaviceanu

The Baffler - 0 views

  • This tendency to view questions of freedom primarily through the lens of economic competition, to focus on the producer and the entrepreneur at the expense of everyone else, shaped O’Reilly’s thinking about technology.
  • the O’Reilly brand essence is ultimately a story about the hacker as hero, the kid who is playing with technology because he loves it, but one day falls into a situation where he or she is called on to go forth and change the world,
  • His true hero is the hacker-cum-entrepreneur, someone who overcomes the insurmountable obstacles erected by giant corporations and lazy bureaucrats in order to fulfill the American Dream 2.0: start a company, disrupt an industry, coin a buzzword.
  • ...139 more annotations...
  • gospel of individualism, small government, and market fundamentalism
  • innovation is the new selfishness
  • mastery of public relations
  • making it seem as if the language of economics was, in fact, the only reasonable way to talk about the subject
  • memes are for losers; the real money is in epistemes.
  • “Open source software” was also the first major rebranding exercise overseen by Team O’Reill
  • It’s easy to forget this today, but there was no such idea as open source software before 1998; the concept’s seeming contemporary coherence is the result of clever manipulation and marketing.
  • ideological cleavage between two groups
  • Richard Stallman
  • Free Software Foundation, preoccupied with ensuring that users had rights with respect to their computer programs. Those rights weren’t many—users should be able to run the program for any purpose, to study how it works, to redistribute copies of it, and to release their improved version (if there was one) to the public
  • “free software.”
  • association with “freedom” rather than “free beer”
  • copyleft
  • profound critique of the role that patent law had come to play in stifling innovation and creativity.
  • Plenty of developers contributed to “free software” projects for reasons that had nothing to do with politics. Some, like Linus Torvalds, the Finnish creator of the much-celebrated Linux operating system, did so for fun; some because they wanted to build more convenient software; some because they wanted to learn new and much-demanded skills.
  • Stallman’s rights-talk, however, risked alienating the corporate types
  • he was trying to launch a radical social movement, not a complacent business association
  • By early 1998 several business-minded members of the free software community were ready to split from Stallman, so they masterminded a coup, formed their own advocacy outlet—the Open Source Initiative—and brought in O’Reilly to help them rebrand.
  • “open source”
  • The label “open source” may have been new, but the ideas behind it had been in the air for some time.
  • In those early days, the messaging around open source occasionally bordered on propaganda
  • This budding movement prided itself on not wanting to talk about the ends it was pursuing; except for improving efficiency and decreasing costs, those were left very much undefined.
  • extremely decentralized manner, using Internet platforms, with little central coordination.
  • In contrast to free software, then, open source had no obvious moral component.
  • “open source is not particularly a moral or a legal issue. It’s an engineering issue. I advocate open source, because . . . it leads to better engineering results and better economic results
  • While free software was meant to force developers to lose sleep over ethical dilemmas, open source software was meant to end their insomnia.
  • Stallman the social reformer could wait for decades until his ethical argument for free software prevailed in the public debate
  • O’Reilly the savvy businessman had a much shorter timeline: a quick embrace of open source software by the business community guaranteed steady demand for O’Reilly books and events
  • The coup succeeded. Stallman’s project was marginalized. But O’Reilly and his acolytes didn’t win with better arguments; they won with better PR.
  • A decade after producing a singular vision of the Internet to justify his ideas about the supremacy of the open source paradigm, O’Reilly is close to pulling a similar trick on how we talk about government reform.
  • much of Stallman’s efforts centered on software licenses
  • O’Reilly’s bet wa
  • the “cloud”
  • licenses would cease to matter
  • Since no code changed hands
  • So what did matter about open source? Not “freedom”
  • O’Reilly cared for only one type of freedom: the freedom of developers to distribute software on whatever terms they fancied.
  • the freedom of the producer
  • who must be left to innovate, undisturbed by laws and ethics.
  • The most important freedom,
  • is that which protects “my choice as a creator to give, or not to give, the fruits of my work to you, as a ‘user’ of that work, and for you, as a user, to accept or reject the terms I place on that gift.”
  • O’Reilly opposed this agenda: “I completely support the right of Richard [Stallman] or any individual author to make his or her work available under the terms of the GPL; I balk when they say that others who do not do so are doing something wrong.”
  • The right thing to do, according to O’Reilly, was to leave developers alone.
  • According to this Randian interpretation of open source, the goal of regulation and public advocacy should be to ensure that absolutely nothing—no laws or petty moral considerations—stood in the way of the open source revolution
  • Any move to subject the fruits of developers’ labor to public regulation
  • must be opposed, since it would taint the reputation of open source as technologically and economically superior to proprietary software
  • the advent of the Internet made Stallman’s obsession with licenses obsolete
  • Many developers did stop thinking about licenses, and, having stopped thinking about licenses, they also stopped thinking about broader moral issues that would have remained central to the debates had “open source” not displaced “free software” as the paradigm du jour.
  • Profiting from the term’s ambiguity, O’Reilly and his collaborators likened the “openness” of open source software to the “openness” of the academic enterprise, markets, and free speech.
  • “open to intellectual exchange”
  • “open to competition”
  • “For me, ‘open source’ in the broader sense means any system in which open access to code lowers the barriers to entry into the market”).
  • “Open” allowed O’Reilly to build the largest possible tent for the movement.
  • The language of economics was less alienating than Stallman’s language of ethics; “openness” was the kind of multipurpose term that allowed one to look political while advancing an agenda that had very little to do with politics
  • highlight the competitive advantages of openness.
  • the availability of source code for universal examination soon became the one and only benchmark of openness
  • What the code did was of little importance—the market knows best!—as long as anyone could check it for bugs.
  • The new paradigm was presented as something that went beyond ideology and could attract corporate executives without losing its appeal to the hacker crowd.
  • What Raymond and O’Reilly failed to grasp, or decided to overlook, is that their effort to present open source as non-ideological was underpinned by a powerful ideology of its own—an ideology that worshiped innovation and efficiency at the expense of everything else.
  • What they had in common was disdain for Stallman’s moralizing—barely enough to justify their revolutionary agenda, especially among the hacker crowds who were traditionally suspicious of anyone eager to suck up to the big corporations that aspired to dominate the open source scene.
  • linking this new movement to both the history of the Internet and its future
  • As long as everyone believed that “open source” implied “the Internet” and that “the Internet” implied “open source,” it would be very hard to resist the new paradigm
  • Telling a coherent story about open source required finding some inner logic to the history of the Internet
  • “If you believe me that open source is about Internet-enabled collaboration, rather than just about a particular style of software license,”
  • everything on the Internet was connected to everything else—via open source.
  • The way O’Reilly saw it, many of the key developments of Internet culture were already driven by what he called “open source behavior,” even if such behavior was not codified in licenses.
  • No moralizing (let alone legislation) was needed; the Internet already lived and breathed open source
  • apps might be displacing the browser
  • the openness once taken for granted is no more
  • Openness as a happenstance of market conditions is a very different beast from openness as a guaranteed product of laws.
  • One of the key consequences of linking the Internet to the world of open source was to establish the primacy of the Internet as the new, reinvented desktop
  • This is where the now-forgotten language of “freedom” made a comeback, since it was important to ensure that O’Reilly’s heroic Randian hacker-entrepreneurs were allowed to roam freely.
  • Soon this “freedom to innovate” morphed into “Internet freedom,” so that what we are trying to preserve is the innovative potential of the platform, regardless of the effects on individual users.
  • Lumping everything under the label of “Internet freedom” did have some advantages for those genuinely interested in promoting rights such as freedom of expression
  • Forced to choose between preserving the freedom of the Internet or that of its users, we were supposed to choose the former—because “the Internet” stood for progress and enlightenment.
  • infoware
  • Yahoo
  • their value proposition lay in the information they delivered, not in the software function they executed.
  • The “infoware” buzzword didn’t catch on, so O’Reilly turned to the work of Douglas Engelbart
  • to argue that the Internet could help humanity augment its “collective intelligence” and that, once again, open source software was crucial to this endeavor.
  • Now it was all about Amazon learning from its customers and Google learning from the sites in its index.
  • The idea of the Internet as both a repository and incubator of “collective intelligence”
  • in 2004, O’Reilly and his business partner Dale Dougherty hit on the idea of “Web 2.0.” What did “2.0” mean, exactly?
  • he primary goal was to show that the 2001 market crash did not mean the end of the web and that it was time to put the crash behind us and start learning from those who survived.
  • Tactically, “Web 2.0” could also be much bigger than “open source”; it was the kind of sexy umbrella term that could allow O’Reilly to branch out from boring and highly technical subjects to pulse-quickening futurology
  • O’Reilly couldn’t improve on a concept as sexy as “collective intelligence,” so he kept it as the defining feature of this new phenomenon.
  • What set Web 2.0 apart from Web 1.0, O’Reilly claimed, was the simple fact that those firms that didn’t embrace it went bust
  • find a way to harness collective intelligence and make it part of their business model.
  • By 2007, O’Reilly readily admitted that “Web 2.0 was a pretty crappy name for what’s happening.”
  • O’Reilly eventually stuck a 2.0 label on anything that suited his business plan, running events with titles like “Gov 2.0” and “Where 2.0.” Today, as everyone buys into the 2.0 paradigm, O’Reilly is quietly dropping it
  • assumption that, thanks to the coming of Web 2.0, we are living through unique historical circumstances
  • Take O’Reilly’s musings on “Enterprise 2.0.” What is it, exactly? Well, it’s the same old enterprise—for all we know, it might be making widgets—but now it has learned something from Google and Amazon and found a way to harness “collective intelligence.”
  • tendency to redescribe reality in terms of Internet culture, regardless of how spurious and tenuous the connection might be, is a fine example of what I call “Internet-centrism.”
  • “Open source” gave us the “the Internet,” “the Internet” gave us “Web 2.0,” “Web 2.0” gave us “Enterprise 2.0”: in this version of history, Tim O’Reilly is more important than the European Union
  • For Postman, each human activity—religion, law, marriage, commerce—represents a distinct “semantic environment” with its own tone, purpose, and structure. Stupid talk is relatively harmless; it presents no threat to its semantic environment and doesn’t cross into other ones.
  • Since it mostly consists of falsehoods and opinions
  • it can be easily corrected with facts
  • to say that Tehran is the capital of Iraq is stupid talk
  • Crazy talk, in contrast, challenges a semantic environment, as it “establishes different purposes and assumptions from those we normally accept.” To argue, as some Nazis did, that the German soldiers ended up far more traumatized than their victims is crazy talk.
  • For Postman, one of the main tasks of language is to codify and preserve distinctions among different semantic environments.
  • As he put it, “When language becomes undifferentiated, human situations disintegrate: Science becomes indistinguishable from religion, which becomes indistinguishable from commerce, which becomes indistinguishable from law, and so on.
  • pollution
  • Some words—like “law”—are particularly susceptible to crazy talk, as they mean so many different things: from scientific “laws” to moral “laws” to “laws” of the market to administrative “laws,” the same word captures many different social relations. “Open,” “networks,” and “information” function much like “law” in our own Internet discourse today.
  • For Korzybski, the world has a relational structure that is always in flux; like Heraclitus, who argued that everything flows, Korzybski believed that an object A at time x1 is not the same object as object A at time x2
  • Our language could never properly account for the highly fluid and relational structure of our reality—or as he put it in his most famous aphorism, “the map is not the territory.”
  • Korzybski argued that we relate to our environments through the process of “abstracting,” whereby our neurological limitations always produce an incomplete and very selective summary of the world around us.
  • nothing harmful in this per se—Korzybski simply wanted to make people aware of the highly selective nature of abstracting and give us the tools to detect it in our everyday conversations.
  • Korzybski developed a number of mental tools meant to reveal all the abstracting around us
  • He also encouraged his followers to start using “etc.” at the end of their statements as a way of making them aware of their inherent inability to say everything about a given subject and to promote what he called the “consciousness of abstraction.”
  • There was way too much craziness and bad science in Korzybski’s theories
  • but his basic question
  • “What are the characteristics of language which lead people into making false evaluations of the world around them?”
  • Tim O’Reilly is, perhaps, the most high-profile follower of Korzybski’s theories today.
  • O’Reilly openly acknowledges his debt to Korzybski, listing Science and Sanity among his favorite books
  • It would be a mistake to think that O’Reilly’s linguistic interventions—from “open source” to “Web 2.0”—are random or spontaneous.
  • There is a philosophy to them: a philosophy of knowledge and language inspired by Korzybski. However, O’Reilly deploys Korzybski in much the same way that the advertising industry deploys the latest findings in neuroscience: the goal is not to increase awareness, but to manipulate.
  • O’Reilly, of course, sees his role differently, claiming that all he wants is to make us aware of what earlier commentators may have overlooked. “A metaphor is just that: a way of framing the issues such that people can see something they might otherwise miss,
  • But Korzybski’s point, if fully absorbed, is that a metaphor is primarily a way of framing issues such that we don’t see something we might otherwise see.
  • In public, O’Reilly modestly presents himself as someone who just happens to excel at detecting the “faint signals” of emerging trends. He does so by monitoring a group of überinnovators that he dubs the “alpha geeks.” “The ‘alpha geeks’ show us where technology wants to go. Smart companies follow and support their ingenuity rather than trying to suppress it,
  • His own function is that of an intermediary—someone who ensures that the alpha geeks are heard by the right executives: “The alpha geeks are often a few years ahead of their time. . . . What we do at O’Reilly is watch these folks, learn from them, and try to spread the word by writing down (
  • The name of his company’s blog—O’Reilly Radar—is meant to position him as an independent intellectual who is simply ahead of his peers in grasping the obvious.
  • “the skill of writing is to create a context in which other people can think”
  • As Web 2.0 becomes central to everything, O’Reilly—the world’s biggest exporter of crazy talk—is on a mission to provide the appropriate “context” to every field.
  • In a fascinating essay published in 2000, O’Reilly sheds some light on his modus operandi.
  • The thinker who emerges there is very much at odds with the spirit of objectivity that O’Reilly seeks to cultivate in public
  • meme-engineering lets us organize and shape ideas so that they can be transmitted more effectively, and have the desired effect once they are transmitted
  • O’Reilly meme-engineers a nice euphemism—“meme-engineering”—to describe what has previously been known as “propaganda.”
  • how one can meme-engineer a new meaning for “peer-to-peer” technologies—traditionally associated with piracy—and make them appear friendly and not at all threatening to the entertainment industry.
  • O’Reilly and his acolytes “changed the canonical list of projects that we wanted to hold up as exemplars of the movement,” while also articulating what broader goals the projects on the new list served. He then proceeds to rehash the already familiar narrative: O’Reilly put the Internet at the center of everything, linking some “free software” projects like Apache or Perl to successful Internet start-ups and services. As a result, the movement’s goal was no longer to produce a completely free, independent, and fully functional operating system but to worship at the altar of the Internet gods.
  • Could it be that O’Reilly is right in claiming that “open source” has a history that predates 1998?
  • Seen through the prism of meme-engineering, O’Reilly’s activities look far more sinister.
  • His “correspondents” at O’Reilly Radar don’t work beats; they work memes and epistemes, constantly reframing important public issues in accordance with the templates prophesied by O’Reilly.
  • Or take O’Reilly’s meme-engineering efforts around cyberwarfare.
  • Now, who stands to benefit from “cyberwarfare” being defined more broadly? Could it be those who, like O’Reilly, can’t currently grab a share of the giant pie that is cybersecurity funding?
  • Frank Luntz lists ten rules of effective communication: simplicity, brevity, credibility, consistency, novelty, sound, aspiration, visualization, questioning, and context.
  • Thus, O’Reilly’s meme-engineering efforts usually result in “meme maps,” where the meme to be defined—whether it’s “open source” or “Web 2.0”—is put at the center, while other blob-like terms are drawn as connected to it.
  • The exact nature of these connections is rarely explained in full, but this is all for the better, as the reader might eventually interpret connections with their own agendas in mind. This is why the name of the meme must be as inclusive as possible: you never know who your eventual allies might be. “A big part of meme engineering is giving a name that creates a big tent that a lot of people want to be under, a train that takes a lot of people where they want to go,”
  • News April 4 mail date March 29, 2013 Baffler party March 6, 2013 Žižek on seduction February 13, 2013 More Recent Press I’ve Seen the Worst Memes of My Generation Destroyed by Madness io9, April 02, 2013 The Baffler’s New Colors Imprint, March 21, 2013
  • There is considerable continuity across O’Reilly’s memes—over time, they tend to morph into one another.
Tiberius Brastaviceanu

How The Blockchain Will Transform Everything From Banking To Government To Our Identities - 1 views

  • The first generation of the Internet was a great tool for communicating, collaborating and connecting online, but it was not ideal for business. When you send and share information on the Internet, you’re not sending an original but a copy. That’s good for information — it means people have a printing press for information and that information becomes democratized — but if you want to send an asset, it’s a problem. If I send you $100 online, you need to be sure you have it and I don’t, and that I can’t spend the same $100 somewhere else. As a result, we need intermediaries to perform critical roles — to establish identity between two parties in a transaction, and to do all the settlement transaction logic, which includes record-keeping.
  • With blockchain, for the first time, we have a new digital medium for value where anyone can access anything of value — stocks, bonds, money, digital property, titles, deeds — and even things like identity and votes can be moved, stored and managed securely and privately. Trust is not established though a third party but with clever code and mass consensus using a network. That’s got huge implications for intermediaries and businesses and society at large
  • And also with government, as a central repository of information an entity that delivers services.
  • ...35 more annotations...
  • There’s an opportunity to disrupt how those organizations work. Intermediaries, though they do a good job, have a few problems — they’re centralized, which makes them vulnerable to attack or failure
  • They tax the system
  • They capture data
  • They exclude billions of people from the global economy
  • internet of value
  • With blockchain, we can go from redistributing wealth to distributing value and opportunity value fairly a priori, from cradle to grave.
  • creating a true sharing economy by replacing service aggregators like Uber with distributed applications on the blockchain
  • unleashing a new age of entrepreneurship
  • build accountable governments through transparency, smart contracts and revitalized models of democracy.
  • The virtual you is owned by large intermediaries
  • This virtual you knows more about you than you do sometimes
  • So there’s a strange phenomenon from the first generation of the Internet where the most important asset class that’s been created is data —and we don’t control it or own it.
  • individuals taking back their identity through your own personal avatar
  • The financial services industry
  • antiquated
  • a complicated machine that does a simple thing
  • settlement
  • an opportunity to profoundly change the nature of the entire industry. The Starbucks transaction should be instant.
  • At the heart of it, the financial services industry moves value.
  • so this is both an existential threat to the financial services industry and an historic opportunity.
  • Banks trade on trust
  • Within the decade, every single financial asset, which is really just a contract
  • will all move to a blockchain-based format
  • In the accounting world, a lot of firms rely on costly audits to drive their profits
  • With blockchain, you could have a third entry time-stamped in a distributed ledger that could be acceptable to any relevant stakeholders from regulators to shareholders, giving you a perfect record of the truth and thus the financial health of an organization.
  • Nobel-winning economist Ronald Coase argued that firms exist because transaction costs in an open market are greater than the cost of doing things inside the boundaries of the corporation.
  • four costs — of search, coordination, contracting and establishing trust
  • Blockchains will profoundly affect all of these.
  • you can now synthesize trust on an open platform and people who’ve never met can trust each other to do certain things. So this results in a whole number of new business models
  • It turns out the Internet of Everything needs a Ledger of Everything, because a lightbulb buying power from your neighbor’s solar panel definitely won’t use banks or the Visa network
  • Right now, governments take tax revenue from corporations, individuals, licenses and so on. All of that can change. We can first of all have transparency in a radical sense because sunlight is the best disinfectant. Secondly, we can open up governments in a different sense of sharing data.
  • governments can enable self-organization to occur in society where companies, civil society organizations, NGOs, academics, foundations, and government agencies and individual citizens ought to use this data to self-organize and create what we used to call services or forms of public value. The third one has to do with the relationship between citizens and their governments.
  • There are more opportunities to create government by the people for the people
  • Electronic voting won’t be delivered by traditional server technology because it won’t be trusted by citizens
Kurt Laitner

Smart contracts · FellowTraveler/Open-Transactions Wiki · GitHub - 0 views

  • Once voting groups are someday eventually added to OT, they will also be able to act as parties to agreements, and they will be able to take a vote in order to change their own bylaws!
    • Kurt Laitner
       
      ah governance
  • Scripted clauses can also be configured to trigger on certain events.
  • Smart contracts are most distinguished by the fact that they can have scriptable clauses
  • ...7 more annotations...
  • The script code is unable to manipulate any assets excepting those explicitly declared beforehand on the smart contract,
  • Not only can the smart contract move_funds() between these declared accounts, as its script logic dictates, but it can also stash_funds() directly inside the contract itself!
  • A smart contract can be activated, after which point it takes on a “life of its own”
  • You can also define variables in your smart contract, which persist through its entire lifetime. As the smart contract—including its internal state—continues to process over time, receipts will continue to drop into the relevant parties’ inboxes,
  • A signed copy of the original smart contract shows it as it was, when the parties first signed and activated it. Additionally, a server-signed, updated version of the contract comes with each receipt, showing the latest state
  • Once the contract expires (or is deactivated) then a finalReceipt is dropped into all relevant inboxes, after which no other receipts are possible for that smart contract.
  • Let’s say a party needs to DIRECTLY trigger one of the clauses on the contract. (Instead of waiting around for it to trigger automatically based on some rule.) For example, perhaps an escrow user wishes to execute a clause in order to DISPUTE THE OUTCOME, or perhaps an arbitrator wishes to activate a clause in order to RENDER A JUDGMENT. OT’s smart contracts can do precisely these sorts of things, limited only by your imagination (and my pre-alpha code.)
1 - 16 of 16
Showing 20 items per page