Skip to main content

Home/ Sensorica Knowledge/ Group items tagged implementation

Rss Feed Group items tagged

Tiberius Brastaviceanu

Beyond Blockchain: Simple Scalable Cryptocurrencies - The World of Deep Wealth - Medium - 0 views

  • I clarify the core elements of cryptocurrency and outline a different approach to designing such currencies rooted in biomimicry
  • This post outlines a completely different strategy for implementing cryptocurrencies with completely distributed chains
  • Rather than trying to make one global, anonymous, digital cash
  • ...95 more annotations...
  • we are interested in the resilience that comes from building a rich ecosystem of interoperable currencies
  • What are the core elements of a modern cryptocurrency?
  • Digital
  • Holdings are electronic and only exist and operate by virtue of a community’s agreement about how to interpret digital bits according to rules about operation and accounting of the currency.
  • Trustless
  • don’t have to trust a 3rd party central authority
  • Decentralized
  • Specifically, access, issuance, transaction accounting, rules & policies, should be collectively visible, known, and held.
  • Cryptographic
  • This cryptographic structure is used to enable a variety of people to host the data without being able to alter it.
  • Identity
  • there must be a way to associate these bits with some kind of account, wallet, owner, or agent who can use them
  • Other things that many take for granted in blockchains may not be core but subject to decisions in design and implementation, so they can vary between implementations
  • It does not have to be stored in a synchronized global ledger
  • does not have to be money. It may be a reputation currency, or data used for identity, or naming, etc
  • Its units do not have to be cryptographic tokens or coins
  • It does not have to protect the anonymity of users, although it may
  • if you think currency is only money, and that money must be artificially scarce
  • Then you must tackle the problem of always tracking which coins exist, and which have been spent. That is one approach — the one blockchain takes.
  • You might optimize for anonymity if you think of cryptocurrency as a tool to escape governments, regulations, and taxes.
  • if you want to establish and manage membership in new kinds of commons, then identity and accountability for actions may turn out to be necessary ingredients instead of anonymity.
  • In the case of the MetaCurrency Project, we are trying to support many use cases by building tools to enable a rich ecosystem of communities and current-sees (many are non-monetary) to enhance collective intelligence at all scales.
  • Managing consensus about a shared reality is a central challenge at the heart of all distributed computing solutions.
  • If we want to democratize money by having cryptocurrencies become a significant and viable means of transacting on a daily basis, I believe we need fundamentally more scalable approaches that don’t require expensive, dedicated hardware just to participate.
  • We should not need system wide consensus for two people to do a transaction in a cryptocurrency
  • Blockchain is about managing a consensus about what was “said.” Ceptr is about distributing a consensus about how to “speak.”
  • how nature gets the job done in massively scalable systems which require coordination and consistency
  • Replicate the same processes across all nodes
  • Empower every node with full agency
  • Hold this transformed state locally and reliably
  • Establish protocols for interaction
  • Each speaker of a language carries the processes to understand sentences they hear, and generate sentences they need
  • we certainly don’t carry some kind of global ledger of everything that’s ever been said, or require consensus about what has been said
  • Language IS a communication protocol we learn by emulating the processes of usage.
  • Dictionaries try to catch up when the usage
  • there is certainly no global ledger with consensus about the state of trillions of cells. Yet, from a single zygote’s copy of DNA, our cells coordinate in a highly decentralized manner, on scales of trillions, and without the latency or bottlenecks of central control.
  • Imagine something along the lines of a Java Virtual Machine connected to a distributed version of Github
  • Every time this JVM runs a program it confirms the hash of the code it is about to execute with the hash signed into the code repository by its developers
  • This allows each node that intends to be honest to be sure that they’re running the same processes as everyone else. So when two parties want to do a transaction, and each can have confidence their own code, and the results that your code produces
  • Then you treat it as authoritative and commit it to your local cryptographically self-validating data store
  • Allowing each node to treat itself as a full authority to process transactions (or interactions via shared protocols) is exactly how you empower each node with full agency. Each node runs its copy of the signed program/processes on its own virtual machine, taking the transaction request combined with the transaction chains of the parties to the transaction. Each node can confirm their counterparty’s integrity by replaying their transactions to produce their current state, while confirming signatures and integrity of the chain
  • If both nodes are in an appropriate state which allows the current transaction, then they countersign the transaction and append to their respective chains. When you encounter a corrupted or dishonest node (as evidenced by a breach of integrity of their chain — passing through an invalid state, broken signatures, or broken links), your node can reject the transaction you were starting to process. Countersigning allows consensus at the appropriate scale of the decision (two people transacting in this case) to lock data into a tamper-proof state so it can be stored in as many parallel chains as you need.
  • When your node appends a mutually validated and signed transaction to its chain, it has updated its local state and is able to represent the integrity of its data locally. As long as each transaction (link in the chain) has valid linkages and countersignatures, we can know that it hasn’t been tampered with.
  • If you can reliably embody the state of the node in the node itself using Intrinsic Data Integrity, then all nodes can interact in parallel, independent of other interactions to maximize scalability and simultaneous processing. Either the node has the credits or it doesn’t. I don’t have to refer to a global ledger to find out, the state of the node is in the countersigned, tamper-proof chain.
  • Just like any meaningful communication, a protocol needs to be established to make sure that a transaction carries all the information needed for each node to run the processes and produce a new signed and chained state. This could be debits or credits to an account which modify the balance, or recoding courses and grades to a transcript which modify a Grade Point Average, or ratings and feedback contributing to a reputation score, and so on.
  • By distributing process at the foundation, and leveraging Intrinsic Data Integrity, our approach results in massive improvements in throughput (from parallel simultaneous independent processing), speed, latency, efficiency, and cost of hardware.
  • You also don’t need to incent people to hold their own record — they already want it.
  • Another noteworthy observation about humans, cells, and atoms, is that each has a general “container” that gets configured to a specific use.
  • Likewise, the Receptors we’ve built are a general purpose framework which can load code for different distributed applications. These Receptors are a lightweight processing container for the Ceptr Virtual Machine Host
  • Ceptr enables a developer to focus on the rules and transactions for their use case instead of building a whole framework for distributed applications.
  • how units in a currency are issued
  • Most people think that money is just money, but there are literally hundreds of decisions you can make in designing a currency to target particular needs, niches, communities or patterns of flow.
  • Blockchain cryptocurrencies are fiat currencies. They create tokens or coins from nothing
  • These coins are just “spoken into being”
  • the challenging task of
  • ensure there is no counterfeiting or double-spending
  • Blockchain cryptocurrencies are fiat currencies
  • These coins are just “spoken into being”
  • the challenging task of tracking all the coins that exist to ensure there is no counterfeiting or double-spending
  • You wouldn’t need to manage consensus about whether a cryptocoin is spent, if your system created accounts which have normal balances based on summing their transactions.
  • In a mutual credit system, units of currency are issued when a participant extends credit to another user in a standard spending transaction
  • Alice pays Bob 20 credits for a haircut. Alice’s account now has -20, and Bob’s has +20.
  • Alice spent credits she didn’t have! True
  • Managing the currency supply in a mutual credit system is about managing credit limits — how far people can spend into a negative balance
  • Notice the net number units in the system remains zero
  • One elegant approach to managing mutual credit limits is to set them based on actual demand.
  • concerns about manufacturing fake accounts to game credit limits (Sybil Attacks)
  • keep in mind there can be different classes of accounts. Easy to create, anonymous accounts may get NO credit limit
  • What if I alter my code to give myself an unlimited credit limit, then spend as much as I want? As soon as you pass the credit limit encoded in the shared agreements, the next person you transact with will discover you’re in an invalid state and refuse the transaction.
  • If two people collude to commit an illegal transaction by both hacking their code to allow a normally invalid state, the same still pattern still holds. The next person they try to transact with using untampered code will detect the problem and decline to transact.
  • Most modern community currency systems have been implemented as mutual credit,
  • Hawala is a network of merchants and businessmen, which has been operating since the middle ages, performing money transfers on an honor system and typically settling balances through merchandise instead of transferring money
  • Let’s look at building a minimum viable cryptocurrency with the hawala network as our use case
  • To minimize key management infrastructure, each hawaladar’s public key is their address or identity on the network. To join the network you get a copy of the software from another hawaladar, generate your public and private keys, and complete your personal profile (name, location, contact info, etc.). You call, fax, or email at least 10 hawaladars who know you, and give them your IP address and ask them to vouch for you.
  • Once 10 other hawaladars have vouched for you, you can start doing other transactions because the protocol encoded in every node will reject a transaction chain that doesn’t start with at least 10 vouches
  • seeding your information with those other peers so you can be found by the rest of the network.
  • As described in the Mutual Credit section, at the time of transaction each party audits the counterparty’s transaction chain.
  • Our hawala crypto-clearinghouse protocol has two categories of transactions: some used for accounting and others for routing. Accounting transactions change balances. Routing transactions maintain network integrity by recording information about hawaladar
  • Accounting Transactions create signed data that changes account balances and contains these fields:
  • The final hash of all of the above fields is used as a unique transaction ID and is what each of party signs with their private keys. Signing indicates a party has agreed to the terms of the transaction. Only transactions signed by both parties are considered valid. Nodes can verify signatures by confirming that decryption of the signature using the public key yields a result which matches the transaction ID.
  • Routing Transactions sign data that changes the peers list and contain these fields:
  • As with accounting transactions, the hash of the above fields is used as the transaction’s unique key and the basis for the cryptographic signature of both counterparties.
  • Remember, instead of making changes to account balances, routing transactions change a node’s local list of peers for finding each other and processing.
  • a distributed network of mutual trust
  • operates across national boundaries
  • everyone already keeps and trusts their own separate records
  • Hawaladars are not anonymous
  • “double-spending”
  • It would be possible for someone to hack the code on their node to “forget” their most recent transaction (drop the head of their chain), and go back to their previous version of the chain before that transaction. Then they could append a new transaction, drop it, and append again.
  • After both parties have signed the agreed upon transaction, each party submits the transaction to separate notaries. Notaries are a special class of participant who validate transactions (auditing each chain, ensuring nobody passes through an invalid state), and then they sign an outer envelope which includes the signatures of the two parties. Notaries agree to run high-availability servers which collectively manage a Distributed Hash Table (DHT) servicing requests for transaction information. As their incentive for providing this infrastructure, notaries get a small transaction fee.
  • This approach introduces a few more steps and delays to the transaction process, but because it operates on independent parallel chains, it is still orders of magnitude more efficient and decentralized than reaching consensus on entries in a global ledger
  • millions of simultaneous transactions could be getting processed by other parties and notaries with no bottlenecks.
  • There are other solutions to prevent nodes from dropping the head of their transaction chain, but the approach of having notaries serve out a DHT solves a number of common objections to completely distributed accounting. Having access to reliable lookups in a DHT provides a similar big picture view that you get from a global ledger. For example, you may want a way to look up transactions even when the parties to that transaction are offline, or to be able to see the net system balance at a particular moment in time, or identify patterns of activity in the larger system without having to collect data from everyone individually.
  • By leveraging Intrinsic Data Integrity to run numerous parallel tamper-proof chains you can enable nodes to do various P2P transactions which don’t actually require group consensus. Mutual credit is a great way to implement cryptocurrencies to run in this peered manner. Basic PKI with a DHT is enough additional infrastructure to address main vulnerabilities. You can optimize your solution architecture by reserving reserve consensus work for tasks which need to guarantee uniqueness or actually involve large scale agreement by humans or automated contracts.
  • It is not only possible, but far more scalable to build cryptocurrencies without a global ledger consensus approach or cryptographic tokens.
  •  
    Article written by Arthur Brook, founder of Metacurrency project and of Ceptr.
Kurt Laitner

Smart Contracts - 0 views

  • Whether enforced by a government, or otherwise, the contract is the basic building block of a free market economy.
  • A smart contract is a set of promises, specified in digital form, including protocols within which the parties perform on the other promises.
  • The basic idea of smart contracts is that many kinds of contractual clauses (such as liens, bonding, delineation of property rights, etc.) can be embedded in the hardware and software we deal with, in such a way as to make breach of contract expensive (if desired, sometimes prohibitively so) for the breacher.
  • ...77 more annotations...
  • A broad statement of the key idea of smart contracts, then, is to say that contracts should be embedded in the world.
  • And where the vending machine, like electronic mail, implements an asynchronous protocol between the vending company and the customer, some smart contracts entail multiple synchronous steps between two or more parties
  • POS (Point of Sale)
  • EDI (Electronic Data Interchange
  • SWIFT
  • allocation of public network bandwidth via automated auctions
  • Smart contracts reference that property in a dynamic, proactively enforced form, and provide much better observation and verification where proactive measures must fall short.
  • The mechanisms of the world should be structured in such a way as to make the contracts (a) robust against naive vandalism, and (b) robust against sophisticated, incentive compatible (rational) breach.
  • A third category, (c) sophisticated vandalism (where the vandals can and are willing to sacrifice substantial resources), for example a military attack by third parties, is of a special and difficult kind that doesn't often arise in typical contracting, so that we can place it in a separate category and ignore it here.
  • The threat of physical force is an obvious way to embed a contract in the world -- have a judicial system decide what physical steps are to be taken out by an enforcement agency (including arrest, confiscation of property, etc.) in response to a breach of contract
  • It is what I call a reactive form of security.
  • The need to invoke reactive security can be minimized, but not eliminated, by making contractual arrangements verifiable
  • Observation of a contract in progress, in order to detect the first sign of breach and minimize losses, also is a reactive form of security
  • A proactive form of security is a physical mechanism that makes breach expensive
  • From common law, economic theory, and contractual conditions often found in practice, we can distill four basic objectives of contract design
  • observability
  • The disciplines of auditing and investigation roughly correspond with verification of contract performance
  • verifiability
  • The field of accounting is, roughly speaking, primarily concerned with making contracts an organization is involved in more observable
  • privity
  • This is a generalization of the common law principle of contract privity, which states that third parties, other than the designated arbitrators and intermediaries, should have no say in the enforcement of a contract
  • The field of security (especially, for smart contracts, computer and network security), roughly corresponds to the goal of privity.
  • enforceability
  • Reputation, built-in incentives, "self-enforcing" protocols, and verifiability can all play a strong part in meeting the fourth objective
  • Smart contracts often involve trusted third parties, exemplified by an intermediary, who is involved in the performance, and an arbitrator, who is invoked to resolve disputes arising out of performance (or lack thereof)
  • In smart contract design we want to get the most out of intermediaries and arbitrators, while minimizing exposure to them
  • Legal barriers are the most severe cost of doing business across many jurisdictions. Smart contracts can cut through this Gordian knot of jurisdictions
  • Where smart contracts can increase privity, they can decrease vulnerability to capricious jurisdictions
  • Secret sharing
  • The field of Electronic Data Interchange (EDI), in which elements of traditional business transactions (invoices, receipts, etc.) are exchanged electronically, sometimes including encryption and digital signature capabilities, can be viewed as a primitive forerunner to smart contracts
  • One important task of smart contracts, that has been largely overlooked by traditional EDI, is critical to "the meeting of the minds" that is at the heart of a contract: communicating the semantics of the protocols to the parties involved
  • There is ample opportunity in smart contracts for "smart fine print": actions taken by the software hidden from a party to the transaction.
  • Thus, via hidden action of the software, the customer is giving away information they might consider valuable or confidential, but the contract has been drafted, and transaction has been designed, in such a way as to hide those important parts of that transaction from the customer.
  • To properly communicate transaction semantics, we need good visual metaphors for the elements of the contract. These would hide the details of the protocol without surrendering control over the knowledge and execution of contract terms
  • Protocols based on mathematics, called cryptographic protocols, tre the basic building blocks that implement the improved tradeoffs between observability, verifiability, privity, and enforceability in smart contracts
  • secret key cryptography,
  • Public key cryptography
  • digital signatures
  • blind signature
  • Where smart contracts can increase observability or verifiability, they can decrease dependence on these obscure local legal codes and enforcement traditions
  • zero-knowledge interactive proof
  • digital mix
  • Keys are not necessarily tied to identities, and the task of doing such binding turns out to be more difficult than at first glance.
  • All public key operation are are done inside an unreadable hardware board on a machine with a very narrow serial-line connection (ie, it carries only a simple single-use protocol with well-verified security) to a dedicated firewall. Such a board is available, for example, from Kryptor, and I believe Viacrypt may also have a PGP-compatable board. This is economical for central sites, but may be less practical for normal users. Besides better security, it has the added advantage that hardware speeds up the public key computations.
  • If Mallet's capability is to physically sieze the machine, a weaker form of key protection will suffice. The trick is to hold the keys in volatile memory.
  • The data is still vulnerable to a "rubber hose attack" where the owner is coerced into revealing the hidden keys. Protection against rubber hose attacks might require some form of Shamir secret sharing which splits the keys between diverse phgsical sites.
  • How does Alice know she has Bob's key? Who, indeed, can be the parties to a smart contract? Can they be defined just by their keys? Do we need biometrics (such as autographs, typed-in passwords, retina scans, etc.)?
  • The public key cryptography software package "Pretty Good Privacy" (PGP) uses a model called "the web of trust". Alice chooses introducers whom she trusts to properly identify the map between other people and their public keys. PGP takes it from there, automatically validating any other keys that have been signed by Alice's designated introducers.
  • 1) Does the key actually belong to whom it appears to belong? In other words, has it been certified with a trusted signature?
  • 2) Does it belong to an introducers, someone you can trust to certify other keys?
  • 3) Does the key belong to someone you can trust to introduce other introducers? PGP confuses this with criterion (2). It is not clear that any single person has enough judgement to properly undertake task (3), nor has a reasonable institution been proposed that will do so. This is one of the unsolved problems in smart contracts.
  • PGP also can be given trust ratings and programmed to compute a weighted score of validity-- for example, two marginally trusted signatures might be considered as credible as one fully trusted signature
  • Notaries Public Two different acts are often called "notarization". The first is simply where one swears to the truth of some affidavit before a notary or some other officer entitled to take oaths. This does not require the notary to know who the affiant is. The second act is when someone "acknowledges" before a notary that he has executed a document as ``his own act and deed.'' This second act requires the notary to know the person making the acknowledgment.
  • "Identity" is hardly the only thing we might want map to a key. After all, physical keys we use for our house, car, etc. are not necessarily tied to our identity -- we can loan them to trusted friends and relatives, make copies of them, etc. Indeed, in cyberspace we might create "virtual personae" to reflect such multi-person relationships, or in contrast to reflect different parts of our personality that we do not want others to link. Here is a possible classification scheme for virtual personae, pedagogically presented:
  • A nym is an identifier that links only a small amount of related information about a person, usually that information deemed by the nym holder to be relevant to a particular organization or community
  • A nym may gain reputation within its community.
  • With Chaumian credentials, a nym can take advantage of the positive credentials of the holder's other nyms, as provably linked by the is-a-person credential
  • A true name is an identifier that links many different kinds of information about an person, such as a full birth name or social security number
  • As in magick, knowing a true name can confer tremendous power to one's enemies
  • A persona is any perstient pattern of behavior, along with consistently grouped information such as key(s), name(s), network address(es), writing style, and services provided
  • A reputable name is a nym or true name that has a good reputation, usually because it carries many positive credentials, has a good credit rating, or is otherwise highly regarded
  • Reputable names can be difficult to transfer between parties, because reputation assumes persistence of behavior, but such transfer can sometimes occur (for example, the sale of brand names between companies).
  • Blind signatures can be used to construct digital bearer instruments, objects identified by a unique key, and issued, cleared, and redeemed by a clearing agent.
  • The clearing agent prevents multiple clearing of particular objects, but can be prevented from linking particular objects one or both of the clearing nyms who transferred that object
  • These instruments come in an "online" variety, cleared during every transfer, and thus both verifiable and observable, and an "offline" variety, which can be transfered without being cleared, but is only verifiable when finally cleared, by revealing any the clearing nym of any intermediate holder who transfered the object multiple times (a breach of contract).
  • To implement a full transaction of payment for services, we need more than just the digital cash protocol; we need a protocol that guarantees that service will be rendered if payment is made, and vice versa
  • A credential is a claim made by one party about another. A positive credential is one the second party would prefer to reveal, such as a degree from a prestigious school, while that party would prefer not to reveal a negative credential such as a bad credit rating.
  • A Chaumian credential is a cryptographic protocol for proving one possesses claims made about onself by other nyms, without revealing linkages between those nyms. It's based around the is-a-person credential the true name credential, used to prove the linkage of otherwise unlinkable nyms, and to prevent the transfer of nyms between parties.
  • Another form of credential is bearer credential, a digital bearer instrument where the object is a credential. Here the second party in the claim refers to any bearer -- the claim is tied only to the reputable name of issuing organization, not to the nym or true name of the party holding the credential.
  • Smart Property We can extend the concept of smart contracts to property. Smart property might be created by embedding smart contracts in physical objects. These embedded protocols would automatically give control of the keys for operating the property to the party who rightfully owns that property, based on the terms of the contract. For example, a car might be rendered inoperable unless the proper challenge-response protocol is completed with its rightful owner, preventing theft. If a loan was taken out to buy that car, and the owner failed to make payments, the smart contract could automatically invoke a lien, which returns control of the car keys to the bank. This "smart lien" might be much cheaper and more effective than a repo man. Also needed is a protocol to provably remove the lien when the loan has been paid off, as well as hardship and operational exceptions. For example, it would be rude to revoke operation of the car while it's doing 75 down the freeway.
  • Smart property is software or physical devices with the desired characteristics of ownership embedded into them; for example devices that can be rendered of far less value to parties who lack possesion of a key, as demonstrated via a zero knowledge interactive proof
  • One method of implementing smart property is thru operation necessary data (OND): data necessary to the operation of smart property.
  • A smart lien is the sharing of a smart property between parties, usually two parties called the owner and the lienholder.
  • Many parties, especially new entrants, may lack this reputation capital, and will thus need to be able to share their property with the bank via secure liens
  • What about extending the concept of contract to cover agreement to a prearranged set of tort laws? These tort laws would be defined by contracts between private arbitration and enforcement agencies, while customers would have a choice of jurisdictions in this system of free-market "governments".
  • If these privately practiced law organizations (PPLs for short) bear ultimate responsibility for the criminal activities of their customers, or need to insure lack of defection or future payments on the part of customers, they may in turn ask for liens against their customers, either in with contractual terms allowing arrest of customers under certain conditions
  • Other important areas of liability include consumer liability and property damage (including pollution). There need to mechanisms so that, for example, pollution damage to others' persons or property can be assessed, and liens should exist so that the polluter can be properly charged and the victims paid. Where pollution is quantifiable, as with SO2 emissions, markets can be set up to trade emission rights. The PPLs would have liens in place to monitor their customer's emissions and assess fees where emission rights have been exceeded.
Kurt Laitner

Did the Other Shoe Just Drop? Big Banks Hit with Monster $250 Billion Lawsuit in Housin... - 0 views

  • The reason for this is that credit is merely one way by which a society manages the distribution of goods and services. . . . A credit collapse . . . doesn’t make the energy, raw materials, and labor vanish into some fiscal equivalent of a black hole; they’re all still there, in whatever quantities they were before the credit collapse, and all that’s needed is some new way to allocate them to the production of goods and services.
  • Better would be to have an alternative system in place and ready to implement before the boom drops.
  • On a national level, when the Wall Street credit system fails, the government can turn to the innovative model devised by our colonial forebears and start issuing its own currency and credit—a power now usurped by private banks but written into the US Constitution as belonging to Congress
  • ...5 more annotations...
  • The chief problem with the paper scrip of the colonial governments was the tendency to print and spend too much.
  • he Pennsylvania colonists corrected that systemic flaw by establishing a publicly-owned bank, which lent money to farmers and tradespeople at interest
  • To get the funds into circulation to cover the interest, some extra scrip was printed and spent on government services.
  • The interest returned to public coffers, to be spent on the common weal.
  • The result was a system of money and credit that was sustainable without taxes, price inflation or government debt
  •  
    "The reason for this is that credit is merely one way by which a society manages the distribution of goods and services. . . . A credit collapse . . . doesn't make the energy, raw materials, and labor vanish into some fiscal equivalent of a black hole; they're all still there, in whatever quantities they were before the credit collapse, and all that's needed is some new way to allocate them to the production of goods and services." and  "Better would be to have an alternative system in place and ready to implement before the boom drops." taken together may imply something other than the article's proposed solution of  "On a national level, when the Wall Street credit system fails, the government can turn to the innovative model devised by our colonial forebears and start issuing its own currency and credit-a power now usurped by private banks but written into the US Constitution as belonging to Congress"
Tiberius Brastaviceanu

P2P Foundation » Blog Archive » Ethical Marketing in Age of Horizontal Social... - 0 views

  • the development of marketing is sensible to its environment and is hence already self-limiting itself according to the previously mentioned legal and social framework
  • neuromarketing
  • explore new inner dynamics of marketing, new directions in the field of possibilities offered by the current organology and its articulations between techniques and social organization in order to influence and shape marketing as an associative force – in opposition to its current dissociative force – in the larger psychic, social and technic organology
  • ...70 more annotations...
  • find new ways of efficiency
  • arbitration between efficiency and care
  • a global thinking of the problem
  • Fighting the attention and desire resource shortage: stoping to use advertisement?
  • The question is rather here to think the moderation of the psychopower
  • empower transindividuation, i.e. to make sure that an economic activity creates more possibilities of individuation than it tend to destroy by attempting to capture attention and canalize motivation in a funnel. Empower transindividuation would imply to empowering actors of their own lifestyle, winning back the savoir-vivre prescribing production
  • Should marketing stop using psychopower?
  • marketing ethics guidelines
  • transactions are more likely to be morally defensible if both parties enter it freely and fully informed
  • the goal of marketing should be to increase the likelihood and frequency of free and informed transactions in the marketplace
  • putting freedom as a criteria of morality
  • the industrial use of pycho- and neuropower tend to fall under the category of barriers to freedom
  • neurotechniques – to capture the attention
  • psychotechniques – to attempt to create motivation
  • Most people think commercials are a small price to pay for these benefits
  • advertising
  • denying the schemes of addiction and the fact that we are becoming through the objects of attentions
  • right to avoid attention capture by advertising
  • progress made in cognitive sciences proving that
  • reward system being abnormally stimulated
  • Advertisements exploit
  • vulnerability and reinforce their overconsumption behaviors
  • “if food advertising on TV were banned, significant reductions in the prevalence of childhood obesity are possible.” (Veerman et al. 2009)
  • What is at stake falls to be much more complex than the sole Freedom of Speech invoked for the advertiser
  • liberty of non-reception
  • would mean to guaranty every citizen the right to choose where and when he wants to access the advertising information
  • Change in the industrial and commercial paradigm
  • Economy of contribution and peer production
  • An economy of contribution means that users of a service are contributing to the production of these services.
  • example
  • is open-source software that are contributively build by potentially hundreds of developers organized in communities
  • minimize the gap between the producer and consumer
  • blur the frontier between professionals and amateurs
  • The Copernican revolution of the Vendor Relationship Management paradigm
  • change in the commercial paradigm, described as an Intention Economy i.e. the opposite of the Attention Economy
  • consumers are charged to express and discuss their intention
  • with businesses rather than the usual paradigm in which businesses where fighting for a piece of canalized motivation
  • Implementing such a system would nevertheless imply that marketing departments dispose of a system in which they could value their supplies and where they could be easily found by customers. Doc Searls promotes his answer to this issue: the Vendor Relationship Management system.
  • the belief that free customers are more valuable than captive ones — to themselves, to vendors, and to the larger economy.
  • To be free
  • 1. Customers must enter relationships with vendors as independent actors.
  • 2. Customers must be the points of integration for their own data.
  • 3. Customers must have control of data they generate and gather. This means they must be able to share data selectively and voluntarily.
  • 4. Customers must be able to assert their own terms of engagement.
  • 5. Customers must be free to express their demands and intentions outside of any one company’s control.
  • This is a profoundly game-changing approach
  • big data that is the rush for consumers’ information potentially leading to the same dead-end of attention destruction and affective saturation than the former offline paradigm
  • VRM system working as a marketplace
  • the goal of marketing should be to increase the likelihood and frequency of free and informed transactions in the marketplace
  • less imperfect and less biased information in a cultural context overvaluing transparency, and a bigger atomicity due to the hereafter introduced trend for re-localized peer production.
  • 3.2.2.3 VRM and externalization of the socialization process
  • Promoting the end of advertisement
  • means to find a new way to make the information circulate, what was the primary goal of advertisement
  • Until there is no alternative to massive advertisement campaign for the information circulation, it is indeed hard to ask entrepreneurs and managers to get rid of those successors of propaganda: such a transition process necessarily imply adaptation costs from the producer and the consumer side, and possible competitive disadvantage against competitors still maximizing profit through advertisement means
  • But the internet transformation of the general organology offers new way to think information circuits and potentially constitute an opportunity to externalize the socialization process of products that is to empower citizen-consumers organized in communities
  • Empowering groups of citizen doesn’t annihilate the risks of mis-use or counterproductive interest-taker behaviors but a well-designed system of trust between peers could minimize this risk by creating a dependency to what social capital other peers give you, as it is happening in the sharing economy: the credibility of a contributive peer would be guaranteed through what the P2P Foundation calls Feedback systems and peer-police
  • a strong structuration of products characteristics, allowing customers to personalize their choices according to their desire and constraints: such a “VRM+” system
  • Marketing would then be the art of being as high as possible in this ranking, as it is happening in SEO for search engines, but in this context of criteria explosion, marketing would then be the disciple of listening to customers’ wishes and aspiration needing an attention, in order to kick in the production or to adapt the following series.
  • 3.2.2.4 Toward a possible equi-power
  • Such a system would tremendously re-configure the balance of power and tend toward a form of equi-power i.e. a social organization in which abuses of a “big” would be the potential object of a ranking sanction by the peers
  • self-regulative function
  • a form of economic Darwinism would let to conscious organization the right to curve their path toward a durable configuration in accordance with the social ecosystem.
  • the idea of equi-power is a form of homogenization of the social matter, in which the distortions in the balance of power would be compensated by the gathering of small forces sharing a common interest
  • Such a sanction systems, if successfully implemented, would make value-destructing businesses progressively decline and hopefully bankrupt,
  • long-term valuable strategic choice
  • long term satisfyingly high ranking
  • It would be utopic to think that the “being cool” marketing
  • would disappear, but marketers would have to make those two objectives compose together.
  • This social capital contagion is nevertheless a tool that would need to be controlled in its form of violence by extensive testings and iterations with forms of protections for the smallest peers, that is to say to keep this form of social violence to institutionalized, classic forms of businesses, clearly beyond the line of what should be acceptable in the global village.
  • the goal is here to create an artificial form of majority that is a self-censuring responsible behavior of corporations
Tiberius Brastaviceanu

Business model 2.0 - Google Drive - 0 views

  •  
    a business model for open value networks implemented by SENSORICA
sebastianklemm

Social Impact Network - 0 views

  •  
    The "Social Impact Network" approach will be a combination of a crowd based impact investment infrastructure, onboarded international aid organisation as stakeholders and local project coordinators for the implementation of impact projects in local communities in need. The platform will start with Photovoltaic projects in Lebanon, with UNDP Lebanon Country Office as first main stakeholder that reviews the PV projects & identifies project coordinators. This approach can also work to help implement the "Greens for Good" solution.
sebastianklemm

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH - 2 views

  •  
    GIZ working to achieve sustainable development every day: As a service provider in the field of international cooperation for sustainable development and international education work, we are dedicated to shaping a future worth living around the world. Together with our commissioning parties and partners, we generate and implement ideas for political, social and economic change. GIZ works flexibly to deliver effective and efficient solutions that offer people better prospects and sustainably improve their living conditions. For GIZ, the 2030 Agenda is the overarching framework that guides its work, which it implements in close cooperation with its partners and commissioning parties.
Tiberius Brastaviceanu

How Peer to Peer Communities will change the World - 0 views

  • role of p2p movement
  • historical role
  • horizontalisation of human relationships
  • ...55 more annotations...
  • allowing the free aggregation of individuals around shared values or common value creation
  • a huge sociological shift
  • new life forms, social practices and human institutions
  • emergent communities of practice are developing new social practices that are informed by the p2p paradigm
  • ethical revolution
  • openness
  • participation
  • inclusivity
  • cooperation
  • commons
  • the open content industry in the U.S. to reach one sixth of GDP.
  • political expressions
  • the movement has two wings
  • constructive
  • building new tools and practices
  • resistance to neoliberalism
  • we are at a stage of emergence
  • difficulty of implementing full p2p solutions in the current dominant system
  • At this stage, there is a co-dependency between peer producers creating value, and for-profit firms ‘capturing that value’, but they both need each other.
  • Peer producers need a business ecology to insure the social reproduction of their system and financial sustainability of its participants, and capital needs the positive externalities of social cooperation which flow from p2p collaboration.
  • peer producing communities should create their own ‘mission-oriented’ social businesses, so that the surplus value remains with the value creators, i.e. the commoners themselves, but this is hardly happening now.
  • Instead what we see is a mutual accomodation between netarchical capital on one side, and peer production communities on the other.
  • the horizontal meets the vertical
  • mostly hybrid ‘diagonal’ adaptations
  • For peer producers the question becomes, if we cannot create our own fully autonomous institutions, how can we adapt while maintaining maximum autonomy and sustainability as a commons and as a community.
  • Why p2p have failed to create successful alternatives in some areas?
  • In commons-oriented peer production, where people aggegrate around a common object which requires deep cooperation, they usually have their own infrastructures of cooperation and a ecology combining community, a for-benefit association managing the infrastructure, and for-profit companies operating on the market place; in the sharing economy, where individuals merely share their own expressions, third party platforms are the norm. It is clear that for-profit companies have different priorities, and want to enclose value so that it can be sold on the marketplace. This in fact the class struggle of the p2p era, the struggle between communities and corporations around various issues because of partly differential interests.
  • Even commercially controlled platforms are being used for a massive horizontalisation and self-aggregation of human relationships, and communities, including political and radical groups are effectively using them to mobilize. What’s important is not just to focus on the limitations and intentions of the platform owners, but to use whatever we can to strengthen the autonomy of peer communities.
  • requires a clever adaptation
  • use for our own benefit
  • The fact today is that capital is still capable of marshaling vast financial and material resources, so that it can create,
  • platforms that can easily and quickly offer services, creating network effects
  • without network effects, there is no ‘there’ there, just an empty potential platform.
  • p2p activists should work on both fronts
  • using mainstream platforms for spreading their ideas and culture and reach greater numbers of people, while also developing their own autonomous media ecologies, that can operate independently, and the latter is an engagement for the ‘long haul’, i.e. the slow construction of an alternative lifeworld.
  • The commons and p2p are really just different aspects of the same phenomena; the commons is the object that p2p dynamics are building; and p2p takes place wherever there are commons.
  • So both p2p and the commons, as they create abundant (digital) or sufficient (material) value for the commoners, at the same time create opportunities to create added value for the marketplace. There is no domain that is excluded from p2p, no field that can say, “we wouldn’t be stronger by opening up to participation and community dynamics”. And there is no p2p community that can say, we are in the long term fully sustainable within the present system, without extra resources coming from the market sector.
  • One trend is the distribution of current infrastructures and practices, i.e. introducing crowdsourcing, crowdfunding, social lending, digital currencies, in order to achieve wider participation in current practices. That is a good thing, but not sufficient. All the things that I mention above, move to a distributed infrastructure, but do not change the fundamental logic of what they are doing.
  • we are talking about the distribution of capitalism, not about a deeper change in the logic of our economy.
  • No matter how good you are, no matter how much capital you have to hire the best people, you cannot compete with the innovative potential of open global communities.
  • the p2p dynamics
  • the new networked culture
  • the opposite is also happening, as we outlined above, more and more commons-oriented value communities are creating their own entrepreneurial coalitions. Of course, some type of companies, because of their monopoly positions and legacy systems, may have a very difficult time undergoing that adaptation, in which case new players will appear that can do it more effectively.
  • the corporate form is unable to deal with ecological and sustainability issues, because its very DNA, the legal obligation to enrich the shareholders, makes its strive to lower input costs,  and ignore externalities.
  • we need new corporate structures, a new type of market entity, for which profit is a means, but not an end, dedicated to a ‘benefit‘, a ‘mission’, or the sustenance of a particular community and/or commons.
  • abundance destroys scarcity and therefore markets
  • open design community
  • will inherently design for sustainability
  • for inclusion
  • conceive more distributed forms of manufacturing
  • entrepreneurs attaching themselves to open design projects start working from an entirely different space, even if they still use the classic corporate form. Prevent the sharing of sustainability designs through IP monopolies is also in my view unethical and allowing such patents should be a minimalist option, not a maximalist one.
  • The high road scenario proposes an enlightened government that ‘enables and empowers’ social production and value creation and allows a much smoother transition to p2p models; the low road scenario is one in which no structural reforms take place, the global situation descends into various forms of chaos, and p2p becomes a survival and resilience tactic in extremely difficult social, political and economic circumstances.
  • accelerated end of capitalism
  • Making sure that we get a better alternative is actually the historical task of the p2p movement. In other words, it depends on us!
  • I don’t really think in terms of technological breakthroughs, because the essential one, globally networked collective intelligence enabled by the internetworks, is already behind us; that is the major change, all other technological breakthroughs will be informed by this new social reality of the horizontalisation of our civilisation. The important thing now is to defend and extend our communication and organisation rights, against a concerted attempt to turn back the clock. While the latter is really an impossibility, this does not mean that the attempts by governments and large corporations cannot create great harm and difficulties. We need p2p technology to enable the global solution finding and implementation of the systemic crises we are facing.
Tiberius Brastaviceanu

POWER-CURVE SOCIETY: The Future of Innovation, Opportunity and Social Equity in the Eme... - 1 views

  • how technological innovation is restructuring productivity and the social and economic impact resulting from these changes
  • concern about the technological displacement of jobs, stagnant middle class income, and wealth disparities in an emerging "winner-take-all" economy
  • personal data ecosystems that could potentially unlock a revolutionary wave of individual economic empowerment
  • ...70 more annotations...
  • the bell curve described the wealth and income distribution of American society
  • As the technology boom of the 1990s increased productivity, many assumed that the rising water level of the economy was raising all those middle class boats. But a different phenomenon has also occurred. The wealthy have gained substantially over the past two decades while the middle class has remained stagnant in real income, and the poor are simply poorer.
  • America is turning into a power-curve society: one where there are a relative few at the top and a gradually declining curve with a long tail of relatively poorer people.
  • For the first time since the end of World War II, the middle class is apparently doing worse, not better, than previous generations.
  • an alarming trend
  • What is the role of technology in these developments?
  • a sweeping look at the relationship between innovation and productivity
  • New Economy of Personal Information
  • Power-Curve Society
  • the future of jobs
  • the report covers the social, policy and leadership implications of the “Power-Curve Society,”
  • World Wide Web
  • as businesses struggle to come to terms with this revolution, a new set of structural innovations is washing over businesses, organizations and government, forcing near-constant adaptation and change. It is no exaggeration to say that the explosion of innovative technologies and their dense interconnections is inventing a new kind of economy.
  • the new technologies are clearly driving economic growth and higher productivity, the distribution of these benefits is skewed in worrisome ways.
  • the networked economy seems to be producing a “power-curve” distribution, sometimes known as a “winner-take-all” economy
  • Economic and social insecurity is widespread.
  • major component of this new economy, Big Data, and the coming personal data revolution fomenting beneath it that seeks to put individuals, and not companies or governments, at the forefront. Companies in the power-curve economy rely heavily on big databases of personal information to improve their marketing, product design, and corporate strategies. The unanswered question is whether the multiplying reservoirs of personal data will be used to benefit individuals as consumers and citizens, or whether large Internet companies will control and monetize Big Data for their private gain.
  • Why are winner-take-all dynamics so powerful?
  • appear to be eroding the economic security of the middle class
  • A special concern is whether information and communications technologies are actually eliminating more jobs than they are creating—and in what countries and occupations.
  • How is the power-curve economy opening up opportunities or shutting them down?
  • Is it polarizing income and wealth distributions? How is it changing the nature of work and traditional organizations and altering family and personal life?
  • many observers fear a wave of social and political disruption if a society’s basic commitments to fairness, individual opportunity and democratic values cannot be honored
  • what role government should play in balancing these sometimes-conflicting priorities. How might educational policies, research and development, and immigration policies need to be altered?
  • The Innovation Economy
  • Conventional economics says that progress comes from new infusions of capital, whether financial, physical or human. But those are not necessarily the things that drive innovation
  • What drives innovation are new tools and then the use of those new tools in new ways.”
  • at least 50 percent of the acceleration of productivity over these years has been due to ICT
  • economists have developed a number of proxy metrics for innovation, such as research and development expenditures.
  • Atkinson believes that economists both underestimate and overestimate the scale and scope of innovation.
  • Calculating the magnitude of innovation is also difficult because many innovations now require less capital than they did previously.
  • Others scholars
  • see innovation as going in cycles, not steady trajectories.
  • A conventional approach is to see innovation as a linear, exponential phenomenon
  • leads to gross errors
  • Atkinson
  • believes that technological innovation follows the path of an “S-curve,” with a gradual increase accelerating to a rapid, steep increase, before it levels out at a higher level. One implication of this pattern, he said, is that “you maximize the ability to improve technology as it becomes more diffused.” This helps explain why it can take several decades to unlock the full productive potential of an innovation.
  • innovation keeps getting harder. It was pretty easy to invent stuff in your garage back in 1895. But the technical and scientific challenges today are huge.”
  • costs of innovation have plummeted, making it far easier and cheaper for more people to launch their own startup businesses and pursue their unconventional ideas
  • innovation costs are plummeting
  • Atkinson conceded such cost-efficiencies, but wonders if “the real question is that problems are getting more complicated more quickly than the solutions that might enable them.
  • we may need to parse the different stages of innovation: “The cost of innovation generally hasn’t dropped,” he argued. “What has become less expensive is the replication and diffusion of innovation.”
  • what is meant by “innovation,”
  • “invention plus implementation.”
  • A lot of barriers to innovation can be found in the lack of financing, organizational support systems, regulation and public policies.
  • 90 percent of innovation costs involve organizational capital,”
  • there is a serious mismatch between the pace of innovation unleashed by Moore’s Law and our institutional and social capacity to adapt.
  • This raises the question of whether old institutions can adapt—or whether innovation will therefore arise through other channels entirely. “Existing institutions are often run by followers of conventional wisdom,”
  • The best way to identify new sources of innovation, as Arizona State University President Michael Crow has advised, is to “go to the edge and ignore the center.”
  • Paradoxically, one of the most potent barriers to innovation is the accelerating pace of innovation itself.
  • Institutions and social practice cannot keep up with the constant waves of new technologies
  • “We are moving into an era of constant instability,”
  • “and the half-life of a skill today is about five years.”
  • Part of the problem, he continued, is that our economy is based on “push-based models” in which we try to build systems for scalable efficiencies, which in turn demands predictability.
  • The real challenge is how to achieve radical institutional innovations that prepare us to live in periods of constant two- or three-year cycles of change. We have to be able to pick up new ideas all the time.”
  • pace of innovation is a major story in our economy today.
  • The App Economy consists of a core company that creates and maintains a platform (such as Blackberry, Facebook or the iPhone), which in turn spawns an ecosystem of big and small companies that produce apps and/or mobile devices for that platform
  • tied this success back to the open, innovative infrastructure and competition in the U.S. for mobile devices
  • standard
  • The App Economy illustrates the rapid, fluid speed of innovation in a networked environment
  • crowdsourcing model
  • winning submissions are
  • globally distributed in an absolute sense
  • problem-solving is a global, Long Tail phenomenon
  • As a technical matter, then, many of the legacy barriers to innovation are falling.
  • small businesses are becoming more comfortable using such systems to improve their marketing and lower their costs; and, vast new pools of personal data are becoming extremely useful in sharpening business strategies and marketing.
  • Another great boost to innovation in some business sectors is the ability to forge ahead without advance permission or regulation,
  • “In bio-fabs, for example, it’s not the cost of innovation that is high, it’s the cost of regulation,”
  • This notion of “permissionless innovation” is crucial,
  • “In Europe and China, the law holds that unless something is explicitly permitted, it is prohibited. But in the U.S., where common law rather than Continental law prevails, it’s the opposite
Tiberius Brastaviceanu

Action (Stanford Encyclopedia of Philosophy) - 0 views

  • intentionally
  • questions about the nature, variety, and identity of action
  • Should we think of the consequences, conventional or causal, of physical behavior as constituents of an action distinct from but ‘generated by’ the movement? Or should we think that there is a single action describable in a host of ways?
  • ...22 more annotations...
  • Donald Davidson
  • an action
  • is something an agent does that was ‘intentional under some description,’
  • there have been many attempts to map the relations between intentions for the future, acting intentionally, and acting with a certain intention.
  • There has been a notable or notorious debate about whether the agent's reasons in acting are causes of the action
  • rendered the action intelligible in his eyes
  • things that merely happen
  • things they genuinely do
  • distinction between
  • the doings, are the acts or actions of the agent
  • what distinguishes an action from a mere happening or occurrence?
  • An agent performs activity that is directed at a goal
  • adopted on the basis of an overall practical assessment of his options and opportunities
  • awareness
  • that he is performing the activity
  • and that the activity is aimed by him at such-and-such a chosen end
  • It is frequently noted that the agent has some sort of immediate awareness of his physical activity and of the goals that the activity is aimed at realizing.
  • ‘knowledge without observation.’
  • It is also important to the concept of ‘goal directed action’ that agents normally implement a kind of direct control or guidance over their own behavior.
  • For many years, the most intensely debated topic in the philosophy of action concerned the explanation of intentional actions in terms of the agent's reasons for acting
  • Davidson and other action theorists defended the position that reason explanations are causal explanations
  • In the foregoing, reference has been made to explanations of actions in terms of reasons, but recent work on agency has questioned whether contemporary frameworks for the philosophy of action have really articulated the way in which an agent's desires and other pro-attitudes have the distinctive force of reasons in the setting of these ordinary explanations
Tiberius Brastaviceanu

4.1.D. Peer governance in peer production? - P2P Foundation - 0 views

  • quality control
  • access and the workflow
  • The free-form model, which Wikipedia employs, allows anyone to edit any entry at any time.
  • ...13 more annotations...
  • the owner-centric model
  • permission of a specific ‘owner’ who has to defend the integrity of his module.
  • different assumptions and effects.
  • The free-form model connotes more of a sense that all users are on the “same level," and that expertise will be universally recognized and deferred to
  • the creator of an entry is spared the trouble of reviewing every change before it is integrated, as well as the need to perform the integration
  • the owner-centric authority model assumes the owner is the de facto expert in the topic at hand,
  • and all others must defer to them.
  • the owner must review all modification proposals, and take the time to integrate the good ones.
  • The owner-centric model is better for quality, but takes more time, while the free-form model increases scope of coverage and is very fast.
  • 'equipotentiality'
  • rules are generated within the community itself, though mostly in the early phases. After a while, they tend to consolidate and they are a given for the new participants who come later
  • a process of socialization is crucial to eventual acceptance . The process is akin to the tradition of artisanship, which has been used in the three-degree system of original freemasonry as well: apprentice, companion (fellow craft), master. But it is implied rather than formalized.
  • Crucial to the success of many collaborative projects is their implementation of the reputation schemes.
Tiberius Brastaviceanu

Food Security and Climate Change ISIB-11-2014 - 0 views

  •  
    "Topic: Coordination action in support of the implementation by participating States of a Joint Programming Initiative on Agriculture, Food Security and Climate Change"
Tiberius Brastaviceanu

Innovative schemes for open innovation and science 2.0 INSO-4-2015 - 0 views

  • Topic: Innovative schemes for open innovation and science 2.0 INSO-4-2015
  • open innovation and science 2.0
  • assist universities to become open innovation centres for their region in cooperation with companies, realising the ERA priorities, and to enable public administrations to drive innovation in and through the public sector.
  • ...16 more annotations...
  • help universities, companies and public authorities to enhance their capacity to engage in science 2.0 and open innovation.
  • effective linkages for innovation between universities and companies and other employment sectors, and provide freely accessible innovation training platforms, including digital platforms. 
  • consortia
  • adopt innovative ways to create new knowledge, new jobs and promote economic growth
  • a). Inter-sectoral mobility
  • b) Academia- Business knowledge co-creation
  • c) Innovation leadership programme for public administrations and researchers
  • a policy of double nominations
  • a policy to further and recognise inter-sectoral mobility
  • This challenge can be addressed through different sets of actions:
    • Tiberius Brastaviceanu
       
      the sub-sections are not addressed at once.
  • develop or (further) implement open innovative schemes to strengthen linkages between academia, industry and community
  • Research institutions together with companies are expected to build sustainable structures which help to absorb needs of users and thereby become co-creators of new solutions.  SMEs should be encouraged to participate.
  • Gender aspects need to be taken into account.
    • Tiberius Brastaviceanu
       
      This is something that really fits SENSORICA. We've been working on this for 2 years now. 
  • developing curricula and providing freely through online platforms, possibly combined with other delivery mechanisms, innovation training for public administrations and researchers.
  •  
    "Topic: Innovative schemes for open innovation and science 2.0 INSO-4-2015"
Tiberius Brastaviceanu

INSO-5-2015 - 0 views

  • Scope:  The scope is that of creating a Community, involving social innovators, researchers, citizens, policy makers, which will bring together on the one hand research actions and results and on the other implementation actions, new initiatives, and policy developments.
  • help promote social innovation initiatives
  • increase relevance of policies and actions
  • ...13 more annotations...
  • development of a common understanding
  • evidence and methodologies that contribute to social innovation up-scaling
  • This does not concern only European but also international developments.
  • Such a social innovation community could be seen also as a “network of networks”.
  • Activities should include:
  • rganisation of brokerage events to enhance the networking
  • information and awareness activities t
  • design strategies/activities for ensuring the best possible use of the research results
  • the organisation of events aimed at identifying priorities for collaboration
  • supporting grassroots experiments, replication, incubation and policy uptake of research results
  • setting up of a network of 'Local Facilitators' for a better dissemination and uptake at all levels.
  • EUR 3 million
  • enable convergence towards a common understanding of social innovation as a tool and outcome.
  •  
    "Topic: Social innovation Community INSO-5-2015"
sebastianklemm

Binance Charity - 0 views

  •  
    Perhaps, this is a possibility to either fundraise Crypto for direct implementations of a device at a community in need OR raise follow-up funding for the current design phase. Binance Charity "Fight-Hunger-Worldwide" campaign*: https://www.binance.charity/fight-hunger-worldwide Perhaps, "Greens for Good" can connect with this campaign by Binance Charity.
sebastianklemm

TADAMON - Empowerment for Poverty Reduction - 1 views

  •  
    The IsDB-ISFD-NGO Empowerment for Poverty Reduction is a partnership program sponsored by The Islamic Solidarity Fund for Development (ISFD), managed by The Islamic Development Bank (IsDB) and implemented by United Nations Development program (UNDP) and other strategic partners. TADAMON platform is a tool for improving CSOs (Civil Society Organizations) in 57 OIC (Organization of Islamic Cooperation) Member Countries by providing visibility, funding, capacity building and knowledge.
Kurt Laitner

Ethereum whitepaper - 0 views

  • The general concept of a "decentralized autonomous organization" is that of a virtual entity that has a certain set of members or shareholders which, perhaps with a 67% majority, have the right to spend the entity's funds and modify its code. The members would collectively decide on how the organization should allocate its funds. Methods for allocating a DAO's funds could range from bounties, salaries to even more exotic mechanisms such as an internal currency to reward work. This essentially replicates the legal trappings of a traditional company or nonprofit but using only cryptographic blockchain technology for enforcement. So far much of the talk around DAOs has been around the "capitalist" model of a "decentralized autonomous corporation" (DAC) with dividend-receiving shareholders and tradable shared; an alternative, perhaps described as a "decentralized autonomous community", would have all members have an equal share in the decision making and require 67% of existing members to agree to add or remove a member. The requirement that one person can only have one membership would then need to be enforced collectively by the group.
    • Kurt Laitner
       
      key application for OVNs
  • Note that the design relies on the randomness of addresses and hashes for data integrity; the contract will likely get corrupted in some fashion after about 2^128 uses
  • This implements the "egalitarian" DAO model where members have equal shares. One can easily extend it to a shareholder model by also storing how many shares each owner holds and providing a simple way to transfer shares.
    • Kurt Laitner
       
      interesting...
  • ...5 more annotations...
  • DAOs and DACs have already been the topic of a large amount of interest among cryptocurrency users as a future form of economic organization, and we are very excited about the potential that DAOs can offer. In the long term, the Ethereum fund itself intends to transition into being a fully self-sustaining DAO.
  • In Bitcoin, there are no mandatory transaction fees.
  • In Ethereum, because of its Turing-completeness, a purely voluntary fee system would be catastrophic. Instead, Ethereum will have a system of mandatory fees, including a transaction fee and six fees for contract computations.
  • The coefficients will be revised as more hard data on the relative computational cost of each operation becomes available. The hardest part will be setting the value of
  • There are currently two main solutions that we are considering: Make x inversely proportional to the square root of the difficulty, so x = floor(10^21 / floor(difficulty ^ 0.5)). This automatically adjusts fees down as the value of ether goes up, and adjusts fees down as computers get more powerful due to Moore's Law. Use proof of stake voting to determine the fees. In theory, stakeholders do not benefit directly from fees going up or down, so their incentives would be to make the decision that would maximize the value of the network.
Tiberius Brastaviceanu

Business models for Open Hardware - 1 views

  • guidelines for the development and evaluation of licenses for Open Source Hardware
  • Open Hardware is “a term for tangible artifacts — machines, devices, or other physical things — whose design has been released to the public in such a way that anyone can make, modify, distribute, and use those things“.
  • Open Hardware is derivative: here a fork is the rule, not the exception.
  • ...35 more annotations...
  • hardware hacking community
  • overviews of Open Hardware can be found on Make Magazine’s Blog, MIT Technology Review, Computerworld, O’Reilly Radar.
  • Lists of existing Open Hardware projects can be found on the GOpen Hardware 2009 website, on the P2P Foundation website (here and here), on Make Magazine’s Blog, Open Innovation Projects and Open Knowledge Foundation.
  • 4 possible levels of Openness in Open Hardware projects,
  • by SparkFun Electronics (USA)
  • Open Interface
  • Open Design
  • Open Implementation
  • Arduino
  • most popular Open Hardware project
  • open-source electronics prototyping platform based on flexible, easy-to-use hardware and software
  • ommercially produced
  • Most of Arduino official boards are manufactured by SmartProjects in Italy.
  • Arduino brand name
  • Gravitech (USA).
  • starting point
  • Closed
  • ecosystem
  • community
  • mature and simple
  • Creative Commons license
  • produce
  • redesign
  • sell boards
  • you just have to credit the original Arduino group and use the same CC license
  • without paying a license fee or even ask permission
  • the name Arduino
  • is trademarked
  • cheap and durable enough
  • two different business model
  • sharing open hardware to sell expertise, knowledge and custom services and projects around it;
  • hardware is becoming a commodity
  • selling the hardware but trying to keep ahead of competition with better products
  • companies that are selling open source hardware
  • the open source hardware community to reach $ 1 billion by 2015
mayssamd

An Implementation of Smart Contracts by Integrating BIM and Blockchain - 0 views

  •  
    Integrating Blockchain to the Banking System in the construction industry - Resolving disputes: "The proposed framework doesnot utilize the cryptocurrency aspect of the blockchain as the payment form.Instead, it discusses the integration of the current banking system and the use offiat currencies in transactions. The results show that blockchain is a viablesystem for governing construction project contracts by automating the conse-quences of each transaction and maintaining a tamper proof record of projectprogress, which would be valuable in any kind of dispute resolution"
1 - 20 of 22 Next ›
Showing 20 items per page