Skip to main content

Home/ Sensorica Knowledge/ Group items tagged living

Rss Feed Group items tagged

Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools.ย 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Steve Bosserman

When Cities Run Themselves | WOUB - 0 views

  •  
    Machines talking to machines No doubt that the Olympics will have a profound effect in shaping London's future. By the time the Games begin, for instance, it will have Europe's largest free WiFi zone, with the city's iconic red phone booths converted, fittingly, into hotspots. But another opportunity London landed earlier this month could have just as much impact, perhaps more. A company called Living PlanIt announced that it will begin testing its "Urban Operating System" in the Greenwich section of the city. What does that mean? Put simply, London would have its own operating system, much as your PC runs on Windows or your Mac runs on Apple's IOS. This ties into the latest hot buzz phrase, "the internet of things," which describes a world where machines talk to other machines. No human interaction required. So, for a city, this means sensors in buildings would connect to sensors in water treatment plants which would connect to sensors in stoplights. It would be one gigantic, computerized urban nervous system, which a lot of experts think is the only way cities can survive a future when they'll contain more than two out of every three people on Earth. Based on what sensors reveal about the location and movement of humans in a section of a city, for instance, buildings will automatically adjust their temperatures, streetlights will dim or brighten, water flow will increase or slow. Or, in the event of a disaster, emergency services would have real-time access to traffic data, trauma unit availability, building blueprints. And soon enough, our smart phones will be able to tap in to the Urban OS. So will our household appliances. This is not some 21st century analogue of the personal jet pack. The Urban OS is the driving force behind a smart city being built from the ground up in northern Portugal. Construction is scheduled to be completed in three years; eventually it will have about 150,000 residents. It will also have more than 100 million sen
Francois Bergeron

Displacement | Microstrain - 0 views

  • MicroStrain offers a range of miniature displacement sensors.  These include contact sensors, non-contact sensors, and signal conditioners. Within our contact sensors, we offer gauging, non-gauging, sub-miniature (very small) and micro-miniature (smallest available on the market) displacement sensor designs.  MicroStrain displacement/position sensors are known as DVRTs (Differential Variable Reluctance Transducers) which are half-bridge LVDTs (Linear Variable Differential Transformers).  Our DVRTs deliver a very high linear stroke range to body length ratio, and can be used in environments where traditional LVDTs are too large.  MicroStrainโ€™s miniature displacement transducers are extremely robust, capable of operating at temperatures up to 175ยฐC in corrosive media such as saline, oil, and brake fluid.  The near frictionless design enables sensors to operate over millions of cycles without wear or degradation in signal quality.
  • croStrain offers a range of miniature displacement sensors.  These include contact sensors, non-contact sensors, and signal conditioners. Within our contact sensors, we offer gauging, non-gauging, sub-miniature (very small) and micro-miniature (smallest available on the market) displacement sensor designs.  MicroStrain displacement/position sensors are known as DVRTs (Differential Variable Reluctance Transducers) which are half-bridge LVDTs (Linear Variable Differential Transformers).  Our DVRTs deliver a very high linear stroke range to body length ratio, and can be used in environments where traditional LVDTs are too large.  MicroStrainโ€™s miniature displacement transducers are extremely robust, capable of operating at temperatures up to 175ยฐC in corrosive media such as saline, oil, and brake fluid.  The near frictionless design enables sensors to operate over millions of cycles without wear or degradation in signal quality. MicroStrainโ€™s displacement sensing products including transducers, signal conditioners, and motherboards. These systems provide highly precise measurement solutions. MicroStrainโ€™s contact displacement transducers deliver highly precise linear measurements with an extremely small, miniature design.  Both gauging and non-gauging displacement transducers are available. Our non-contact displacement transducers are designed to measure the displacement and proximity of a metal target without physical contact. MicroStrain offers wireless, analog, and digital output DVRT signal conditioners. Signal conditioners are required for use with MicroStrain DVRT displacement sensors.   .familyNav1, .familyNav2, .familyNav3, .familyNav4 { background: none repeat scroll 0 0 #CCCCCC; color: #FFFFFF; display: block; font-size: 14px; margin: 1px 0; padding: 6px 0 3px 6px; text-decoration: none; } .familyNav1:hover, .familyNav2:hover, .familyNav3:hover, .familyNav4:hover { opacity:1.0; filter:alpha(opacity=100); } .familyNav1:hover, .familyNav1.live { background:#0468AD; } .familyNav2:hover, .familyNav2.live{ background:#32641E; } .familyNav3:hover, .familyNav3.live{ background:#B55A11; } .familyNav4:hover, .familyNav4.live{ background:#76285D; } .familySub { margin: -1px 0 0; opacity:0.7; filter:alpha(opacity=80); font-size:12px; } .familySub img { width: 22px; } WIRELESS SENSOR NETWORKS
Kurt Laitner

Guidelines on Measuring Subjective Well-being.pdf - 0 views

  • such as interest,engagement and meaning,
  • subjective well-being is taken to be:2Good mental states, including all of the various evaluations, positive and negative, that peoplemake of their lives, and the affective reactions of people to their experiences
  • โ€œsubjective well-being is an umbrella term for the different valuationspeople make regarding their lives, the events happening to them, their bodies and minds,and the circumstances in which they liveโ€.
  • ...16 more annotations...
  • In measuring overall human well-being then, subjective well-being should be placedalongside measures of non-subjective outcomes, such as income, health, knowledge andskills, safety, environmental quality and social connections
  • Inparticular, a distinction is commonly made between life evaluations, which involve acognitive evaluation of the respondentโ€™s life as a whole (or aspects of it), and measures ofaffect, which capture the feelings experienced by the respondent at a particular point in time(Diener, 1984; Kahneman et al., 1999
  • eudaimonic aspect ofsubjective well-being, reflecting peopleโ€™s sense of purpose and engagement
  • The framework used here covers all three concepts of well-being:โ—Life evaluation.โ—Affect.โ—Eudaimonia (psychological โ€œflourishingโ€)
  • the result of a judgement by the individual rather than thedescription of an emotional state.
  • Elements of subjective well-beingLife evaluation
  • making an evaluation of this sort as involving the individual constructing a โ€œstandardโ€ thatthey perceive as appropriate for themselves, and then comparing the circumstances oftheir life to that standard
  • Life evaluations are based on how people remember their experiences (Kahneman et al.,1999) and can differ significantly from how they actually experienced things at the time
  • It is for this reason that life evaluations are sometimes characterised as measures ofโ€œdecision utilityโ€ in contrast to โ€œexperienced utilityโ€
  • One of the mostwell documented measures of life evaluation โ€“ thePersonal Wellbeing Indexโ€“ consists of eightquestions, covering satisfactions with eight different aspects of life, which are summedusing equal weights to calculate an overall index (International Wellbeing Group, 2006)
  • (job satisfaction, financial satisfaction, house satisfaction, healthsatisfaction, leisure satisfaction and environmental satisfaction),
  • AffectAffect is the term psychologists use to describe a personโ€™s feelings. Measures of affectcan be thought of as measures of particular feelings or emotional states, and they aretypically measured with reference to a particular point in time.
  • Such measures capturehow people experience life rather than how they remember it (Kahneman and Krueger,2006
  • While an overall evaluation of life can be captured in a single measure, affect has atleast two distinct hedonic dimensions: positive affect and negative affect (Kahneman et al.,1999; Diener et al., 1999
  • positive affect is thought to be largely uni-dimensional
  • negative affect may be more multi-dimensional.
Kurt Laitner

The Dead Are Wealthier Than the Living: Capital in the 21st Century - Pacific Standard:... - 0 views

  • you needed at least 20 to 30 times the income of the average person, and the most lucrative professions paid only half that
  • Consequently, โ€œsocietyโ€ (i.e., the rich) consisted almost entirely of rentiers living off inherited wealth
  • In recent memory, the way to get rich has been to do it yourself
  • ...11 more annotations...
  • But itโ€™s income that mostly interests us, not wealth, because income is the currency of the modern economy. Gone are the days when the only way to acquire an upper-class income was to marry into a family fortune.
  • Being born into or marrying wealth never stopped being the easiest path to acquiring a fortune
  • A fanatical miser, Getty was ever-fearful that his fortune would dissipate.
  • The return on capital (r) almost always exceeds economic growth (g).
  • โ€œa very large share, perhaps a majority, of corporate profit hinges on rules and regulations that could in principle be altered.โ€
  • The clearest such pattern is that r really was, at most points in history, greater than g, if only because g was seldom much to write home about, especially back when economies were primarily agricultural. (Inflation, I learned from reading this book, didnโ€™t really exist before the 20th century.)
  • The big driver of income inequality, Piketty says, isnโ€™t labor income. Itโ€™s capital.
  • Only when you add in capital income does the gap widen to 15 percentage points
  • really, the 0.01 percent, a cohort Piketty dubs โ€œsupermanagersโ€โ€”to receive much of its remuneration in the form of stock options and other capital holdings.
  • Typically, r is four to five times g, but the ratio gets larger as capital accumulates across generations
  • Baker also suggests that the tendency for large amounts of capital to realize a higher return isnโ€™t solely attributable to the superior financial instruments they have access to; it may also have something to do with rampant insider trading, which could be policed more closely.
  •  
    just in case we get too caught up in determining incomes, disrupting private capital and inheritance needs to be on the agenda. ย Private goods tend to eventually become public goods (paid a royalty for paper lately?) but the rate at which private goods become public needs to increase (patent reform, inheritance tax etc)
Kurt Laitner

Value Creating Service Systems: From Service Systems to Digital Lives - 0 views

  •  
    "Service dominant logic suggest that value is always co-created in context of use and experience. Co-creation is not an option (Vargo and Lusch, 2004, 2008). "Moving things along meant a focus on 2 key aspects. philosophy and methods. "An SD logic approach is not one that you can run a survey of attitude, behaviours or intentions. The person is embedded in his actions and practices of value creation. The focus on context means the unit of analysis is in the sociology of real life behaviours. A sociological approach makes methods a problem because we've inherited a world where we have created tools from analysing water in a bucket, not by looking at its behaviour in a river. "GD logic is compelling not only because it is entrenched for over 500 years, but also because you could measure its constructs. GDP, sales, revenues, CPI - they are all constructs of a GD logic society. What SD logic needed was better methods and new constructs. "To that end, and rather ironically, I found an ally in digital technology. Here was a world of sensors and actuators with an enthusiastic community looking for novel ways of deploying them into homes and buildings i.e. the internet-of-things. "I also found, as an ally, the thinking around new economic and business models. Here was another strand of literature largely marginalised by mainstream business literature because it was (the way I interpreted it) taking a systemic view of value proposition, value creation and value capture (ie, change one, change all) and the way the organisation had to be agile and transformed for it - which sat very nicely with SD logic. "Customised products are firm centric. Personalised products are customer initiated and empowering. Personalised products also tend to move the product into becoming platforms to afford co-creation, which advanced the notion of symmetry in value co-creation further. Finally, with the advent of platforms, the economics of 2 or multi-sided markets completed my set of theoretica
  •  
    an interesting starting point for research
Kurt Laitner

Towards a Material Commons | Guerrilla Translation! - 0 views

  • the modes of communication we use are very tightly coupled with the modes of production that finance them
  • Iโ€™m focused on the policy formation around this transition to a new, open knowledge and commons-based economy, and thatโ€™s the research work Iโ€™m doing here
  • The problem is I can only make a living by still working for capital.
  • ...88 more annotations...
  • We now have a technology which allows us to globally scale small group dynamics, and to create huge productive communities, self-organized around the collaborative production of knowledge, code, and design. But the key issue is that we are not able to live from that, right
  • A lot of co-ops have been neo-liberalizing, as it were, have become competitive enterprises competing against other companies but also against other co-ops, and they donโ€™t share their knowledge
  • We cannot create our own livelihood within that sphere
  • instead of having a totally open commons, which allows multinationals to use our commons and reinforce the system of capital, the idea is to keep the accumulation within the sphere of the commons.
  • The result would be a type of open cooperative-ism, a kind of synthesis or convergence between peer production and cooperative modes of production
  • then the material work, the work of working for clients and making a livelihood, would be done through co-ops
  • But it hasnโ€™t had much of a direct connection to this emerging commons movement, which shares so many of the values and  principles of the traditional cooperative movement.
  • Thereโ€™s also a lot of peer-to-peer work going on, but itโ€™s not very well versed around issues like cooperative organization, formal or legal forms of ownership, which are based on reciprocity and cooperation, and how to interpret the commons vision with a structure, an organizational structure and a legal structure that actually gives it economic power, market influence, and a means of connecting it to organizational forms that have durability over the long-term.
  • The young people, the developers in open source or free software, the people who are in co-working centers, hacker spaces, maker spaces. When they are thinking of making a living, they think startups
  • They have a kind of generic reaction, โ€œoh, letโ€™s do a startupโ€, and then they look for venture funds. But this is a very dangerous path to take
  • Typically, the venture capital will ask for a controlling stake, they have the right to close down your start up whenever they feel like it, when they feel that theyโ€™re not going to make enough money
  • Donโ€™t forget that with venture capital, only 1 out of 10 companies will actually make it, and they may be very rich, but itโ€™s a winner-take-all system
  • we donโ€™t have what Marx used to call social reproduction
  • I would like John to talk about the solidarity co-ops, and how that integrates the notion of the commons or the common good in the very structure of the co-op
  • They donโ€™t have a commons of design or code, they privatize and patent, just like private competitive enterprise, their knowledge
  • Cooperatives, which are basically a democratic and collective form of enterprise where members have control rights and democratically direct the operations of the co-op, have been the primary stakeholders in any given co-op โ€“ whether itโ€™s a consumer co-op, or a credit union, or a worker co-op.
  • Primarily, the co-op is in the service of its immediate members
  • What was really fascinating about the social co-ops was that, although they had members, their mission was not only to serve the members but also to provide service to the broader community
  • In the city of Bologna, for example, over 87% of the social services provided in that city are provided through contract with social co-ops
  • democratically run
  • much more participatory, and a much more engaged model
  • The difference, however, is that the structure of social co-ops is still very much around control rights, in other words, members have rights of control and decision-making within how that organization operates
  • And it is an incorporated legal structure that has formal recognition by the legislation of government of the state, and it has the power, through this incorporated power, to negotiate with and contract with government for the provision of these public services
  • In Quรฉbec theyโ€™re called Solidarity co-ops
  • So, the social economy, meaning organizations that have a mutual aim in their purpose, based on the principles of reciprocity, collective benefit, social benefit, is emerging as an important player for the design and delivery of public services
  • This, too, is in reaction to the failure of the public market for provision of services like affordable housing or health care or education services
  • This is a crisis in the role of the state as a provider of public services. So the question has emerged: what happens when the state fails to provide or fulfill its mandate as a provider or steward of public goods and services, and whatโ€™s the role of civil society and the social economy in response?
  • we have commonses of knowledge, code and design. Theyโ€™re more easily created, because as a knowledge worker, if you have access to the network and some means, however meager, of subsistence, through effort and connection you can actually create knowledge. However, this is not the case if you move to direct physical production, like the open hardware movement
  • I originally encountered Michel after seeing some talks by Benkler and Lessig at the Wizard of OS 4, in 2006, and I wrote an essay criticizing that from a materialist perspective, it was called โ€œThe creative anti-commons and the poverty of networksโ€, playing on the terms that both those people used.
  • In hardware, we donโ€™t see that, because you need to buy material, machines, plastic, metal.
  • Some people have called the open hardware community a โ€œcandyโ€ economy, because if youโ€™re not part of these open hardware startups, youโ€™re basically not getting anything for your efforts
  • democratic foundations like the Apache foundation
  • They conceive of peer production, especially Benkler, as being something inherently immaterial, a form of production that can only exist in the production of immaterial wealth
  • From my materialist point of view, thatโ€™s not a mode of production, because a mode of production must, in the first place, reproduce its productive inputs, its capital, its labor, and whatever natural wealth it consumes
  • From a materialist point of view, it becomes  obvious that the entire exchange value produced in these immaterial forms would be captured by the same old owners of materialist wealth
  • different definition of peer production
  • independent producers collectively sharing a commons of productive assets
  • I wanted to create something like a protocol for the formation and allocation of physical goods, the same way we have TCP/IP and so forth, as a way to allocate immaterial goods
  • share and distribute and collectively create immaterial wealth, and become independent producers based on this collective commons.
  • One was the Georgist idea of using rent, economic rent, as a fundamental mutualizing source of wealth
  • Mutualizing unearned income
  • So, the unearned income, the portion of income derived from ownership of productive assets is evenly distributed
  • This protocol would seek to normalize that, but in a way that doesnโ€™t require administration
  • typical statist communist reaction to the cooperative movement is saying that cooperatives can exclude and exploit one another
  • But then, as weโ€™ve seen in history, thereโ€™s something that develops called an administrative class,  which governs over the collective of cooperatives or the socialist state, and can become just as counterproductive and often exploitive as capitalist class
  • So, how do we create cooperation among cooperatives, and distribution of wealth among cooperatives, without creating this administrative class?
  • This is why I borrowed from the work of Henry George and Silvio Gesell in created this idea of rent sharing.
  • This is not done administratively, this is simply done as a protocol
  • The idea is that if a cooperative wants an asset, like, an example is if one of the communes would like to have a tractor, then essentially the central commune is like a bond market. They float a bond, they say I want a tractor, I am willing to pay $200 a month for this tractor in rent, and other members of the cooperative can say, hey, yeah, thatโ€™s a good idea,we think thatโ€™s a really good allocation of these productive assets, so we are going to buy these bonds. The bond sale clears, the person gets the tractor, the money from the rent of the tractor goes back to clear the bonds, and  after that, whatever further money is collected through the rent on this tractor โ€“ and I donโ€™t only mean tractors, same would be applied to buildings, to land, to any other productive assets โ€“ all this rent thatโ€™s collected is then distributed equally among all of the workers.
  • The idea is that people earn income not only by producing things, but by owning the means of production, owning productive assets, and our society is unequal because the distribution of productive assets is unequal
  • This means that if you use your exact per capita share of property, no more no less than what you pay in rent and what you received in social dividend, will be equal
  • But if youโ€™re not working at that time, because youโ€™re old, or otherwise unemployed, then obviously the the productive assets that you will be using will be much less than the mean and the median, so what youโ€™ll receive as dividend will be much more than what you pay in rent, essentially providing a basic income
  • venture communism doesnโ€™t seek to control the product of the cooperatives
  • It doesnโ€™t seek to limit, control, or even tell them how they should distribute it, or under what means; what they produce is entirely theirs, itโ€™s only the collective management of the commons of productive assets
  • On paper this would seem to work, but the problem is that this assumes that we have capital to allocate in this way, and that is not the case for most of the world workers
  • how do we get to that stage?
  • other two being counter politics and insurrectionary finance
  • do we express our activism through the state, or do we try to achieve our goals by creating the alternative society outside
  • pre-figurative politics, versus statist politics
  • My materialist background tells me that when you sell your labor on the market, you have nothing more than your subsistence costs at the end of it, so where is this wealth meant to come from
  • I believe that the only reason that we have any extra wealth beyond subsistence is because of organized social political struggle; because we have organized in labor movements, in the co-op movement, and in other social forms
  • To create the space for prefiguring presupposes engagement with the state, and struggle within parliaments, and struggle within the public social forum
  • Instead, we should think that no, we must engage in the state in order to protect our ability to have alternative societies
  • We can only get rid of the state in these areas once we have alternative, distributed, cooperative means to provide those same functions
  • We can only eliminate the state from these areas once they actually exist, which means we actually have to build them
  • What I mean by insurrectionary finance is that we have to acknowledge that itโ€™s not only forming capital and distributing capital, itโ€™s also important how intensively we use capital
  • Iโ€™m not proposing that the cooperative movement needs to engage in the kind of derivative speculative madness that led to the financial crisis, but at the same time we canโ€™tโ€ฆ it canโ€™t be earn a dollar, spend a dollar
  • We have to find ways to create liquidity
  • to deal with economic cycles
  • they did things the organized left hasnโ€™t been able to do, which is takeover industrial means of production
  • if they can take over these industrial facilities, just in order to shut them down and asset strip them, why canโ€™t we take them over and mutualize them?
  • more ironic once you understand that the source of investment that Milken and his colleagues were working with were largely workers pension funds
  • idea of venture communism
  • pooling, based on the capture of unearned income
  • in Quรฉbec, there is a particular form of co-op thatโ€™s been developed that allows small or medium producers to pool their capital to purchase machinery and to use it jointly
  • The other idea I liked was trying to minimize a management class
  • much more lean and accountable because they are accountable to boards of directors that represent the interests of the members
  • Iโ€™ve run into this repeatedly among social change activists who immediately recoil at the notion of thinking about markets and capital, as part of their change agenda
  • I had thought previously, like so many, that economics is basically a bought discipline, and that it serves the interests of existing elites. I really had a kind of reaction against that
  • complete rethinking of economics
  • recapture the initiative around vocabulary, and vision, with respect to economics
  • reimagining and reinterpreting, for a popular and common good, the notion of market and capital
  • advocating for a vision of social change that isnโ€™t just about politics, and isnโ€™t just about protest, it has to be around how do we reimagine and reclaim economics
  • markets actually belong to communities and people
  • capital wasnโ€™t just an accumulated wealth for the rich
  • I think what weโ€™re potentially  talking about here is to make the social economy hyper-productive, hyper-competitive, hyper-cooperative
  • The paradox is that capital already knows this. Capital is investing in these peer production projects
  • Part of the proposal of the FLOK society project in Ecuador will be to get that strategic reorganization to make the social economy strategic
  •  
    A lot of really interesting points of discussion in here.
Steve Bosserman

Time to buy a 3D printer? | Tools content from Farm Industry News - 0 views

  •  
    3D Printing meets agricultural machinery. ย BTW, Bob Recker, one of our Greener Acres members, lives in Waterloo, IA. ย Small world, no?!
Francois Bergeron

Cell Tester Opens the Window of Discovery | Product Information | Articles - 0 views

  • Written by Lisa J Fulghum    Physiologic Mechanisms in Cardiac Myocytes and Skeletal Muscle Cells The revolutionary Cell Tester SI-CTS200 is a new research tool for cellular investiga
  • The revolutionary Cell Tester SI-CTS200 is a new research tool for cellular investigation that can (without any changes) be used for one single living cell, for a small multi-cellular preparation and for single or larger skinned muscle strip preparations. Translational experiments from the single living cells to the intact multi-cellular level can be accomplished.
  • The Cell Tester offers: Integral microtweezer apparatus that facilitates cellular attachment Two integrated piezo manipulators are included Bio-compatible adhesive (MyoTakโ„ข) included Unique rotational stage that allows for easy cellular alignment, improved experimental throughput (shown in the image above) Ultra-quiet force transducer included Linear displacement motor stretches or compresses cells with 25nm precision Fits ANY inverted microscope Use native cuvette or ANY 35mm glass bottom dish
  •  
    The revolutionary Cell Tester SI-CTS200 is a new research tool
Tiberius Brastaviceanu

WebProtรฉgรฉ - 3 views

  •  
    I am using Protege to build a living systems ontology applied to SNESORICA. This ontology will constitute the backbone of value networks'infrastructure, modeled as living systems. If you want to contribute to the elaboration of this ontology please contact me, this web application is collaborative. I am also using it to build our Projects ontology. If you want to contribute to the elaboration of this ontology please contact me, this web application is collaborative.
Kurt Laitner

Inequality: Why egalitarian societies died out - opinion - 30 July 2012 - New Scientist - 0 views

  • FOR 5000 years, humans have grown accustomed to living in societies dominated by the privileged few. But it wasn't always this way. For tens of thousands of years, egalitarian hunter-gatherer societies were widespread. And as a large body of anthropological research shows, long before we organised ourselves into hierarchies of wealth, social status and power, these groups rigorously enforced norms that prevented any individual or group from acquiring more status, authority or resources than others.*
  • How, then, did we arrive in the age of institutionalised inequality? That has been debated for centuries. Philosopher Jean-Jacques Rousseau reasoned in 1754 that inequality was rooted in the introduction of private property. In the mid-19th century, Karl Marx and Friedrich Engels focused on capitalism and its relation to class struggle. By the late 19th century, social Darwinists claimed that a society split along class lines reflected the natural order of things - as British philosopher Herbert Spencer put it, "the survival of the fittest". (Even into the 1980s there were some anthropologists who held this to be true - arguing that dictators' success was purely Darwinian, providing estimates of the large numbers of offspring sired by the rulers of various despotic societies as support.)
  • But by the mid-20th century a new theory began to dominate. Anthropologists including Julian Steward, Leslie White and Robert Carneiro offered slightly different versions of the following story: population growth meant we needed more food, so we turned to agriculture, which led to surplus and the need for managers and specialised roles, which in turn led to corresponding social classes.
  • ...8 more annotations...
  • One line of reasoning suggests that self-aggrandising individuals who lived in lands of plenty ascended the social ranks by exploiting their surplus - first through feasts or gift-giving, and later by outright dominance
  • At the group level, argue anthropologists Peter Richerson and Robert Boyd, improved coordination and division of labour allowed more complex societies to outcompete the simpler, more equal societies
  • From a mechanistic perspective, others argued that once inequality took hold - as when uneven resource-distribution benefited one family more than others - it simply became ever more entrenched. The advent of agriculture and trade resulted in private property, inheritance, and larger trade networks, which perpetuated and compounded economic advantages.
  • Many theories about the spread of stratified society begin with the idea that inequality is somehow a beneficial cultural trait that imparts efficiencies, motivates innovation and increases the likelihood of survival. But what if the opposite were true?
  • In a demographic simulation that Omkar Deshpande, Marcus Feldman and I conducted at Stanford University, California, we found that, rather than imparting advantages to the group, unequal access to resources is inherently destabilising and greatly raises the chance of group extinction in stable environments.
  • Counterintuitively, the fact that inequality was so destabilising caused these societies to spread by creating an incentive to migrate in search of further resources. The rules in our simulation did not allow for migration to already-occupied locations, but it was clear that this would have happened in the real world, leading to conquests of the more stable egalitarian societies - exactly what we see as we look back in history.
  • In other words, inequality did not spread from group to group because it is an inherently better system for survival, but because it creates demographic instability, which drives migration and conflict and leads to the cultural - or physical - extinction of egalitarian societies.
  • Egalitarian societies may have fostered selection on a group level for cooperation, altruism and low fertility (which leads to a more stable population), while inequality might exacerbate selection on an individual level for high fertility, competition, aggression, social climbing and other selfish traits.
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. Theyโ€™re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocksโ€”conducting, insulating, semiconducting, magnetic, dielectricโ€”you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, itโ€™s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIXโ€”which all modern operating systems descend fromโ€”because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programmingโ€” technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computationโ€”computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineeringโ€”the character of MITโ€”but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average personโ€”not the people who write for Edge, but just an average person workingโ€”you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Thingsโ€”not the garbled senseโ€”plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurshipโ€”figuring out how you live, learn, work, playโ€”is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
sebastianklemm

Deutsche Gesellschaft fรผr Internationale Zusammenarbeit (GIZ) GmbH - 2 views

  •  
    GIZ working to achieve sustainable development every day: As a service provider in the field of international cooperation for sustainable development and international education work, we are dedicated to shaping a future worth living around the world. Together with our commissioning parties and partners, we generate and implement ideas for political, social and economic change. GIZ works flexibly to deliver effective and efficient solutions that offer people better prospects and sustainably improve their living conditions. For GIZ, the 2030 Agenda is the overarching framework that guides its work, which it implements in close cooperation with its partners and commissioning parties.
Tiberius Brastaviceanu

The Baffler - 0 views

  • This tendency to view questions of freedom primarily through the lens of economic competition, to focus on the producer and the entrepreneur at the expense of everyone else, shaped Oโ€™Reillyโ€™s thinking about technology.
  • the Oโ€™Reilly brand essence is ultimately a story about the hacker as hero, the kid who is playing with technology because he loves it, but one day falls into a situation where he or she is called on to go forth and change the world,
  • His true hero is the hacker-cum-entrepreneur, someone who overcomes the insurmountable obstacles erected by giant corporations and lazy bureaucrats in order to fulfill the American Dream 2.0: start a company, disrupt an industry, coin a buzzword.
  • ...139 more annotations...
  • gospel of individualism, small government, and market fundamentalism
  • innovation is the new selfishness
  • mastery of public relations
  • making it seem as if the language of economics was, in fact, the only reasonable way to talk about the subject
  • memes are for losers; the real money is in epistemes.
  • โ€œOpen source softwareโ€ was also the first major rebranding exercise overseen by Team Oโ€™Reill
  • Itโ€™s easy to forget this today, but there was no such idea as open source software before 1998; the conceptโ€™s seeming contemporary coherence is the result of clever manipulation and marketing.
  • ideological cleavage between two groups
  • Richard Stallman
  • Free Software Foundation, preoccupied with ensuring that users had rights with respect to their computer programs. Those rights werenโ€™t manyโ€”users should be able to run the program for any purpose, to study how it works, to redistribute copies of it, and to release their improved version (if there was one) to the public
  • โ€œfree software.โ€
  • association with โ€œfreedomโ€ rather than โ€œfree beerโ€
  • copyleft
  • profound critique of the role that patent law had come to play in stifling innovation and creativity.
  • Plenty of developers contributed to โ€œfree softwareโ€ projects for reasons that had nothing to do with politics. Some, like Linus Torvalds, the Finnish creator of the much-celebrated Linux operating system, did so for fun; some because they wanted to build more convenient software; some because they wanted to learn new and much-demanded skills.
  • Stallmanโ€™s rights-talk, however, risked alienating the corporate types
  • he was trying to launch a radical social movement, not a complacent business association
  • By early 1998 several business-minded members of the free software community were ready to split from Stallman, so they masterminded a coup, formed their own advocacy outletโ€”the Open Source Initiativeโ€”and brought in Oโ€™Reilly to help them rebrand.
  • โ€œopen sourceโ€
  • The label โ€œopen sourceโ€ may have been new, but the ideas behind it had been in the air for some time.
  • In those early days, the messaging around open source occasionally bordered on propaganda
  • This budding movement prided itself on not wanting to talk about the ends it was pursuing; except for improving efficiency and decreasing costs, those were left very much undefined.
  • extremely decentralized manner, using Internet platforms, with little central coordination.
  • In contrast to free software, then, open source had no obvious moral component.
  • โ€œopen source is not particularly a moral or a legal issue. Itโ€™s an engineering issue. I advocate open source, because . . . it leads to better engineering results and better economic results
  • While free software was meant to force developers to lose sleep over ethical dilemmas, open source software was meant to end their insomnia.
  • Stallman the social reformer could wait for decades until his ethical argument for free software prevailed in the public debate
  • Oโ€™Reilly the savvy businessman had a much shorter timeline: a quick embrace of open source software by the business community guaranteed steady demand for Oโ€™Reilly books and events
  • The coup succeeded. Stallmanโ€™s project was marginalized. But Oโ€™Reilly and his acolytes didnโ€™t win with better arguments; they won with better PR.
  • A decade after producing a singular vision of the Internet to justify his ideas about the supremacy of the open source paradigm, Oโ€™Reilly is close to pulling a similar trick on how we talk about government reform.
  • much of Stallmanโ€™s efforts centered on software licenses
  • Oโ€™Reillyโ€™s bet wa
  • the โ€œcloudโ€
  • licenses would cease to matter
  • Since no code changed hands
  • So what did matter about open source? Not โ€œfreedomโ€
  • Oโ€™Reilly cared for only one type of freedom: the freedom of developers to distribute software on whatever terms they fancied.
  • the freedom of the producer
  • who must be left to innovate, undisturbed by laws and ethics.
  • The most important freedom,
  • is that which protects โ€œmy choice as a creator to give, or not to give, the fruits of my work to you, as a โ€˜userโ€™ of that work, and for you, as a user, to accept or reject the terms I place on that gift.โ€
  • Oโ€™Reilly opposed this agenda: โ€œI completely support the right of Richard [Stallman] or any individual author to make his or her work available under the terms of the GPL; I balk when they say that others who do not do so are doing something wrong.โ€
  • The right thing to do, according to Oโ€™Reilly, was to leave developers alone.
  • According to this Randian interpretation of open source, the goal of regulation and public advocacy should be to ensure that absolutely nothingโ€”no laws or petty moral considerationsโ€”stood in the way of the open source revolution
  • Any move to subject the fruits of developersโ€™ labor to public regulation
  • must be opposed, since it would taint the reputation of open source as technologically and economically superior to proprietary software
  • the advent of the Internet made Stallmanโ€™s obsession with licenses obsolete
  • Many developers did stop thinking about licenses, and, having stopped thinking about licenses, they also stopped thinking about broader moral issues that would have remained central to the debates had โ€œopen sourceโ€ not displaced โ€œfree softwareโ€ as the paradigm du jour.
  • Profiting from the termโ€™s ambiguity, Oโ€™Reilly and his collaborators likened the โ€œopennessโ€ of open source software to the โ€œopennessโ€ of the academic enterprise, markets, and free speech.
  • โ€œopen to intellectual exchangeโ€
  • โ€œopen to competitionโ€
  • โ€œFor me, โ€˜open sourceโ€™ in the broader sense means any system in which open access to code lowers the barriers to entry into the marketโ€).
  • โ€œOpenโ€ allowed Oโ€™Reilly to build the largest possible tent for the movement.
  • The language of economics was less alienating than Stallmanโ€™s language of ethics; โ€œopennessโ€ was the kind of multipurpose term that allowed one to look political while advancing an agenda that had very little to do with politics
  • highlight the competitive advantages of openness.
  • the availability of source code for universal examination soon became the one and only benchmark of openness
  • What the code did was of little importanceโ€”the market knows best!โ€”as long as anyone could check it for bugs.
  • The new paradigm was presented as something that went beyond ideology and could attract corporate executives without losing its appeal to the hacker crowd.
  • What Raymond and Oโ€™Reilly failed to grasp, or decided to overlook, is that their effort to present open source as non-ideological was underpinned by a powerful ideology of its ownโ€”an ideology that worshiped innovation and efficiency at the expense of everything else.
  • What they had in common was disdain for Stallmanโ€™s moralizingโ€”barely enough to justify their revolutionary agenda, especially among the hacker crowds who were traditionally suspicious of anyone eager to suck up to the big corporations that aspired to dominate the open source scene.
  • linking this new movement to both the history of the Internet and its future
  • As long as everyone believed that โ€œopen sourceโ€ implied โ€œthe Internetโ€ and that โ€œthe Internetโ€ implied โ€œopen source,โ€ it would be very hard to resist the new paradigm
  • Telling a coherent story about open source required finding some inner logic to the history of the Internet
  • โ€œIf you believe me that open source is about Internet-enabled collaboration, rather than just about a particular style of software license,โ€
  • everything on the Internet was connected to everything elseโ€”via open source.
  • The way Oโ€™Reilly saw it, many of the key developments of Internet culture were already driven by what he called โ€œopen source behavior,โ€ even if such behavior was not codified in licenses.
  • No moralizing (let alone legislation) was needed; the Internet already lived and breathed open source
  • apps might be displacing the browser
  • the openness once taken for granted is no more
  • Openness as a happenstance of market conditions is a very different beast from openness as a guaranteed product of laws.
  • One of the key consequences of linking the Internet to the world of open source was to establish the primacy of the Internet as the new, reinvented desktop
  • This is where the now-forgotten language of โ€œfreedomโ€ made a comeback, since it was important to ensure that Oโ€™Reillyโ€™s heroic Randian hacker-entrepreneurs were allowed to roam freely.
  • Soon this โ€œfreedom to innovateโ€ morphed into โ€œInternet freedom,โ€ so that what we are trying to preserve is the innovative potential of the platform, regardless of the effects on individual users.
  • Lumping everything under the label of โ€œInternet freedomโ€ did have some advantages for those genuinely interested in promoting rights such as freedom of expression
  • Forced to choose between preserving the freedom of the Internet or that of its users, we were supposed to choose the formerโ€”because โ€œthe Internetโ€ stood for progress and enlightenment.
  • infoware
  • Yahoo
  • their value proposition lay in the information they delivered, not in the software function they executed.
  • The โ€œinfowareโ€ buzzword didnโ€™t catch on, so Oโ€™Reilly turned to the work of Douglas Engelbart
  • to argue that the Internet could help humanity augment its โ€œcollective intelligenceโ€ and that, once again, open source software was crucial to this endeavor.
  • Now it was all about Amazon learning from its customers and Google learning from the sites in its index.
  • The idea of the Internet as both a repository and incubator of โ€œcollective intelligenceโ€
  • in 2004, Oโ€™Reilly and his business partner Dale Dougherty hit on the idea of โ€œWeb 2.0.โ€ What did โ€œ2.0โ€ mean, exactly?
  • he primary goal was to show that the 2001 market crash did not mean the end of the web and that it was time to put the crash behind us and start learning from those who survived.
  • Tactically, โ€œWeb 2.0โ€ could also be much bigger than โ€œopen sourceโ€; it was the kind of sexy umbrella term that could allow Oโ€™Reilly to branch out from boring and highly technical subjects to pulse-quickening futurology
  • Oโ€™Reilly couldnโ€™t improve on a concept as sexy as โ€œcollective intelligence,โ€ so he kept it as the defining feature of this new phenomenon.
  • What set Web 2.0 apart from Web 1.0, Oโ€™Reilly claimed, was the simple fact that those firms that didnโ€™t embrace it went bust
  • find a way to harness collective intelligence and make it part of their business model.
  • By 2007, Oโ€™Reilly readily admitted that โ€œWeb 2.0 was a pretty crappy name for whatโ€™s happening.โ€
  • Oโ€™Reilly eventually stuck a 2.0 label on anything that suited his business plan, running events with titles like โ€œGov 2.0โ€ and โ€œWhere 2.0.โ€ Today, as everyone buys into the 2.0 paradigm, Oโ€™Reilly is quietly dropping it
  • assumption that, thanks to the coming of Web 2.0, we are living through unique historical circumstances
  • Take Oโ€™Reillyโ€™s musings on โ€œEnterprise 2.0.โ€ What is it, exactly? Well, itโ€™s the same old enterpriseโ€”for all we know, it might be making widgetsโ€”but now it has learned something from Google and Amazon and found a way to harness โ€œcollective intelligence.โ€
  • tendency to redescribe reality in terms of Internet culture, regardless of how spurious and tenuous the connection might be, is a fine example of what I call โ€œInternet-centrism.โ€
  • โ€œOpen sourceโ€ gave us the โ€œthe Internet,โ€ โ€œthe Internetโ€ gave us โ€œWeb 2.0,โ€ โ€œWeb 2.0โ€ gave us โ€œEnterprise 2.0โ€: in this version of history, Tim Oโ€™Reilly is more important than the European Union
  • For Postman, each human activityโ€”religion, law, marriage, commerceโ€”represents a distinct โ€œsemantic environmentโ€ with its own tone, purpose, and structure. Stupid talk is relatively harmless; it presents no threat to its semantic environment and doesnโ€™t cross into other ones.
  • Since it mostly consists of falsehoods and opinions
  • it can be easily corrected with facts
  • to say that Tehran is the capital of Iraq is stupid talk
  • Crazy talk, in contrast, challenges a semantic environment, as it โ€œestablishes different purposes and assumptions from those we normally accept.โ€ To argue, as some Nazis did, that the German soldiers ended up far more traumatized than their victims is crazy talk.
  • For Postman, one of the main tasks of language is to codify and preserve distinctions among different semantic environments.
  • As he put it, โ€œWhen language becomes undifferentiated, human situations disintegrate: Science becomes indistinguishable from religion, which becomes indistinguishable from commerce, which becomes indistinguishable from law, and so on.
  • pollution
  • Some wordsโ€”like โ€œlawโ€โ€”are particularly susceptible to crazy talk, as they mean so many different things: from scientific โ€œlawsโ€ to moral โ€œlawsโ€ to โ€œlawsโ€ of the market to administrative โ€œlaws,โ€ the same word captures many different social relations. โ€œOpen,โ€ โ€œnetworks,โ€ and โ€œinformationโ€ function much like โ€œlawโ€ in our own Internet discourse today.
  • For Korzybski, the world has a relational structure that is always in flux; like Heraclitus, who argued that everything flows, Korzybski believed that an object A at time x1 is not the same object as object A at time x2
  • Our language could never properly account for the highly fluid and relational structure of our realityโ€”or as he put it in his most famous aphorism, โ€œthe map is not the territory.โ€
  • Korzybski argued that we relate to our environments through the process of โ€œabstracting,โ€ whereby our neurological limitations always produce an incomplete and very selective summary of the world around us.
  • nothing harmful in this per seโ€”Korzybski simply wanted to make people aware of the highly selective nature of abstracting and give us the tools to detect it in our everyday conversations.
  • Korzybski developed a number of mental tools meant to reveal all the abstracting around us
  • He also encouraged his followers to start using โ€œetc.โ€ at the end of their statements as a way of making them aware of their inherent inability to say everything about a given subject and to promote what he called the โ€œconsciousness of abstraction.โ€
  • There was way too much craziness and bad science in Korzybskiโ€™s theories
  • but his basic question
  • โ€œWhat are the characteristics of language which lead people into making false evaluations of the world around them?โ€
  • Tim Oโ€™Reilly is, perhaps, the most high-profile follower of Korzybskiโ€™s theories today.
  • Oโ€™Reilly openly acknowledges his debt to Korzybski, listing Science and Sanity among his favorite books
  • It would be a mistake to think that Oโ€™Reillyโ€™s linguistic interventionsโ€”from โ€œopen sourceโ€ to โ€œWeb 2.0โ€โ€”are random or spontaneous.
  • There is a philosophy to them: a philosophy of knowledge and language inspired by Korzybski. However, Oโ€™Reilly deploys Korzybski in much the same way that the advertising industry deploys the latest findings in neuroscience: the goal is not to increase awareness, but to manipulate.
  • Oโ€™Reilly, of course, sees his role differently, claiming that all he wants is to make us aware of what earlier commentators may have overlooked. โ€œA metaphor is just that: a way of framing the issues such that people can see something they might otherwise miss,
  • But Korzybskiโ€™s point, if fully absorbed, is that a metaphor is primarily a way of framing issues such that we donโ€™t see something we might otherwise see.
  • In public, Oโ€™Reilly modestly presents himself as someone who just happens to excel at detecting the โ€œfaint signalsโ€ of emerging trends. He does so by monitoring a group of รผberinnovators that he dubs the โ€œalpha geeks.โ€ โ€œThe โ€˜alpha geeksโ€™ show us where technology wants to go. Smart companies follow and support their ingenuity rather than trying to suppress it,
  • His own function is that of an intermediaryโ€”someone who ensures that the alpha geeks are heard by the right executives: โ€œThe alpha geeks are often a few years ahead of their time. . . . What we do at Oโ€™Reilly is watch these folks, learn from them, and try to spread the word by writing down (
  • The name of his companyโ€™s blogโ€”Oโ€™Reilly Radarโ€”is meant to position him as an independent intellectual who is simply ahead of his peers in grasping the obvious.
  • โ€œthe skill of writing is to create a context in which other people can thinkโ€
  • As Web 2.0 becomes central to everything, Oโ€™Reillyโ€”the worldโ€™s biggest exporter of crazy talkโ€”is on a mission to provide the appropriate โ€œcontextโ€ to every field.
  • In a fascinating essay published in 2000, Oโ€™Reilly sheds some light on his modus operandi.
  • The thinker who emerges there is very much at odds with the spirit of objectivity that Oโ€™Reilly seeks to cultivate in public
  • meme-engineering lets us organize and shape ideas so that they can be transmitted more effectively, and have the desired effect once they are transmitted
  • Oโ€™Reilly meme-engineers a nice euphemismโ€”โ€œmeme-engineeringโ€โ€”to describe what has previously been known as โ€œpropaganda.โ€
  • how one can meme-engineer a new meaning for โ€œpeer-to-peerโ€ technologiesโ€”traditionally associated with piracyโ€”and make them appear friendly and not at all threatening to the entertainment industry.
  • Oโ€™Reilly and his acolytes โ€œchanged the canonical list of projects that we wanted to hold up as exemplars of the movement,โ€ while also articulating what broader goals the projects on the new list served. He then proceeds to rehash the already familiar narrative: Oโ€™Reilly put the Internet at the center of everything, linking some โ€œfree softwareโ€ projects like Apache or Perl to successful Internet start-ups and services. As a result, the movementโ€™s goal was no longer to produce a completely free, independent, and fully functional operating system but to worship at the altar of the Internet gods.
  • Could it be that Oโ€™Reilly is right in claiming that โ€œopen sourceโ€ has a history that predates 1998?
  • Seen through the prism of meme-engineering, Oโ€™Reillyโ€™s activities look far more sinister.
  • His โ€œcorrespondentsโ€ at Oโ€™Reilly Radar donโ€™t work beats; they work memes and epistemes, constantly reframing important public issues in accordance with the templates prophesied by Oโ€™Reilly.
  • Or take Oโ€™Reillyโ€™s meme-engineering efforts around cyberwarfare.
  • Now, who stands to benefit from โ€œcyberwarfareโ€ being defined more broadly? Could it be those who, like Oโ€™Reilly, canโ€™t currently grab a share of the giant pie that is cybersecurity funding?
  • Frank Luntz lists ten rules of effective communication: simplicity, brevity, credibility, consistency, novelty, sound, aspiration, visualization, questioning, and context.
  • Thus, Oโ€™Reillyโ€™s meme-engineering efforts usually result in โ€œmeme maps,โ€ where the meme to be definedโ€”whether itโ€™s โ€œopen sourceโ€ or โ€œWeb 2.0โ€โ€”is put at the center, while other blob-like terms are drawn as connected to it.
  • The exact nature of these connections is rarely explained in full, but this is all for the better, as the reader might eventually interpret connections with their own agendas in mind. This is why the name of the meme must be as inclusive as possible: you never know who your eventual allies might be. โ€œA big part of meme engineering is giving a name that creates a big tent that a lot of people want to be under, a train that takes a lot of people where they want to go,โ€
  • News April 4 mail date March 29, 2013 Baffler party March 6, 2013 ลฝiลพek on seduction February 13, 2013 More Recent Press Iโ€™ve Seen the Worst Memes of My Generation Destroyed by Madness io9, April 02, 2013 The Bafflerโ€™s New Colors Imprint, March 21, 2013
  • There is considerable continuity across Oโ€™Reillyโ€™s memesโ€”over time, they tend to morph into one another.
Tiberius Brastaviceanu

Co-Creating as Disruption to the Dominant Cultural Framework ยป Wirearchy - 0 views

  • more open people processes
  • Participative processes like Open Space, World Cafes, Unconferences, Peer Circles
  • Barcamps, Wordcamps, Govcamps, Foo Camps, Unconferences, high-end celebrity-and-marketing-and venture-capital โ€˜experienceโ€™ markets, new cultural and artistic festivals with technology-and-culture-making themes
  • ...45 more annotations...
  • maker faires
  • community-and-consensus building, organizing for activism and fundraising
  • The impetus behind this explosion is both technological and sociological
  • Technological
  • information technology and the creation and evolution of the Internet and the Web
  • appearance, development and evolution of social tools, web services, massive storage, and the ongoing development of computer-and-smart-devices development
  • Sociological
  • People are searching for ways to find others with similar interests and motivations so that they can engage in activities that help them learn, find work, grow capabilities and skills, and tackle vexing social and economic problems
  • get informed and take action
  • Developing familiarity and practice with open and collaborative processes
  • play and work together
  • rules about self-management, operate democratically, and produce results grounded in ownership and the responsibilities that have been agreed upon by the โ€˜communityโ€™
  • The relationships and flows of information can be transferred to online spaces and often benefit from wider connectivity.
  • Today, our culture-making activities are well engaged in the early stages of cultural mutation
  • Whatโ€™s coming along next ?  โ€œSmartโ€ devices and Internet everywhere in our lives ?  Deep(er) changes to the way things are conceived, carried out, managed and used ?  New mental models ?  Or, will we discover real societal limits to what can be done given the current framework of laws, institutions and established practices with which people are familiar and comfortable ?
  • Shorter cycle-based development and release
  • Agile development
  • It is clear evidence that the developmental and learning dynamics generated by continuous or regular feedback loops are becoming the norm in areas of activity in which change and short cycles of product development are constants.
  • The Internet of Things (IoT)
  • clothes, homes, cars, buildings, roads, and a wide range of other objects that have a place in peoplesโ€™ daily life activities
  • experiencing major growth, equally in terms of hardware, software and with respect to the way the capabilities are configured and used
  • The IoT concept is being combined with the new-ish concepts of Open Data and Big Data
  • ethical, political and social impact policy decisions
  • that key opportunities associated with widespread uptake of the IoT are derived from the impact upon peoplesโ€™ activities and lives
  • โ€˜weโ€™ are on our way towards more integrated eco-systems of issues, people and technologies
  • participation and inclusion enabled by interconnectedness are quickly becoming the โ€˜new rulesโ€™
  • What the Future May Hold
  • the โ€˜scenario planningโ€™ approach
  • worldโ€™s politics, economics, anthropology, technology, psychology, sociology and philosophy
  • A scenario planning exercise carried out by the Rockefeller Foundation
  • Clearly these early (and now not-so-weak) signals and patterns tell us that the core assumptions and principles that have underpinned organized human activities for most of the past century
  • are being changed by the combinations and permutations of new, powerful, inexpensive and widely accessible information-processing technologies
  • The short description of each scenario reinforces the perception that we are both individually and collectively in transition from a linear, specialized, efficiency-driven paradigm towards a paradigm based on continuous feedback loops and principles of participation, both large and small in scope.
  • cultural โ€˜mutationโ€™
  • Wirearchy
  • a dynamic two-way flow of power and authority based on knowledge, trust, credibility and a focus on results, enabled by interconnected people and technology.
  • the role of social media and smart mobile devices in the uprisings in Egypt, Libya and elsewhere in the Middle East
  • The roots of organizational development (OD) are in humanistic psychology and sociology action and ethnographic and cybernetic/ socio-technical systems theory.  Itโ€™s a domain that emerged essentially as a counter-balance to the mechanistic and machine-metaphor-based core assumptions about the organized activities in our society.
  • Organizational development principles are built upon some basic assumptions about human motivations, engagement and activities.
  • Participative Work Design โ€“ The Six Criteria
  • in recent years created models that help clarify how to evaluate and respond to the continuous turbulence and ambiguity generated by participating in interconnected flows of information.
  • contexts characterized by either Simple, Complicated or Chaotic dynamics (from complexity theory fundamentals). Increasingly, Complexity is emerging as a key definer of the issues, problems and opportunities faced by our societies.
  • peer-to-peer movement(s) unfolding around the world
  • Co-creating in a wide range of forms, processes and purpose may become an effective and important antidote to the spreading enclosure of human creative activity.
  • But .. the dominant models of governance, commercial ownership and the use and re-use of that which is co-created by people are going to have to undergo much more deep change in order to disrupt the existing paradigm of proprietary commercial creation and the model of socio-economic power that this paradigm enables and carries today.
Tiberius Brastaviceanu

Welcome to the new reputation economy (Wired UK) - 1 views

  • banks take into account your online reputation alongside traditional credit ratings to determine your loan
  • headhunters hire you based on the expertise you've demonstrated on online forums
  • reputation data becomes the window into how we behave, what motivates us, how our peers view us and ultimately whether we can or can't be trusted.
  • ...37 more annotations...
  • But this wealth of data raises an important question -- who owns our reputation? Shouldn't our hard-earned online status be portable? If you're a SuperHost on Airbnb, shouldn't you be able to use that reputation to, say, get a loan, or start selling on Etsy?
  • The difference today is our ability to capture data from across an array of digital services. With every trade we make, comment we leave, person we "friend", spammer we flag or badge we earn, we leave a trail of how well we can or can't be trusted.
  • An aggregated online reputation having a real-world value holds enormous potential
  • peer-to-peer marketplaces, where a high degree of trust is required between strangers; and where a traditional approach based on disjointed information sources is currently inefficient, such as recruiting.
  • opportunity to reinvent the way people found jobs through online reputation
  • "It's not about your credit, but your credibility," King says.
  • At the heart of Movenbank is a concept call CRED.
  • "People are currently underusing their networks and reputation," King says. "I want to help people to understand and build their influence and reputation, and think of it as capital they can put to good use."
  • Social scientists have long been trying to quantify the value of reputation.
  • Using functional magnetic resonance imaging, the researchers monitored brain activity
  • "The implication of our study is that different types of reward are coded by the same currency system." In other words, our brains neurologically compute personal reputation to be as valuable as money.
  • Personal reputation has been a means of making socioeconomic decisions for thousands of years. The difference today is that network technologies are digitally enabling the trust we used to experience face-to-face -- meaning that interactions and exchanges are taking place between total strangers.
  • Trust and reputation become acutely important in peer-to-peer marketplaces such as WhipCar and Airbnb, where members are taking a risk renting out their cars or their homes.
  • When you are trading peer-to-peer, you can't count on traditional credit scores. A different measurement is needed. Reputation fills this gap because it's the ultimate output of how much a community trusts you.
  • Welcome to the reputation economy, where your online history becomes more powerful than your credit history.
  • Presently, reputation data doesn't transfer between verticals.
  • A wave of startups, including Connect.Me, TrustCloud, TrustRank, Legit and WhyTrusted, are trying to solve this problem by designing systems that correlate reputation data. By building a system based on "reputation API" -- a combination of a user's activity, ratings and reviews across sites -- Legit is working to build a service that gives users a score from zero to 100. In trying to create a universal metric for a person's trustworthiness, they are trying to "become the credit system of the sharing economy", says Jeremy Barton, the 27-year-old San Francisco-based cofounder of Legit.
  • trusted to pay on time
  • PeerIndex, Kred and Klout,
  • are measuring social influence, not reputation. "Influence measures your ability to drag someone into action,"
  • "Reputation is an indicator of whether a person is good or bad and, ultimately, are they trustworthy?"
  • Early influence and reputation aggregators will undoubtedly learn by trial and error -- but they will also face the significant challenge of pioneering the use of reputation data in a responsible way. And there's a challenge beyond that: reputation is largely contextual, so it's tricky to transport it to other situations.
  • Many of the ventures starting to make strides in the reputation economy are measuring different dimensions of reputation.
  • reputation is a measure of knowledge
  • a measure of trust
  • a measure of propensity to pay
  • measure of influence
  • Reputation capital is not about combining a selection of different measures into a single number -- people are too nuanced and complex to be distilled into single digits or binary ratings.
  • It's the culmination of many layers of reputation you build in different places that genuinely reflect who you are as a person and figuring out exactly how that carries value in a variety of contexts.
  • The most basic level is verification of your true identity
  • reliability and helpfulness
  • do what we say we are going to do
  • respect another person's property
  • His company, and other reputation ventures, face some big challenges if they are to become, effectively, the PayPal of trust. The most obvious is coming up with algorithms that can't be easily gamed or polluted by trolls. And then there's the critical hurdle of convincing online marketplaces not just to open up their reputation vaults, but create a standardised format for how they frame and collect reputation data. "We think companies will share reputation data for the same reasons banks give credit data to credit bureaux," says Rob Boyle, Legit cofounder and CTO. "It is beneficial for one company to give up their slice of reputation data if in return they get access to the bigger picture: aggregated data from other companies."
  • we will be able to perform a Google- or Facebook-like search and see a picture of a person's behaviour in many different contexts, over a length of time. Slivers of data that have until now lived in secluded isolation online will be available in one place. Answers on Quora, reviews on TripAdvisor, comments on Amazon, feedback on Airbnb, videos posted on YouTube, social groups joined, or presentations on SlideShare; as well as a history and real-time stream of who has trusted you, when, where and why. The whole package will come together in your personal reputation dashboard, painting a comprehensive, definitive picture of your intentions, capabilities and values.
  • idea of global reputation
  • By the end of the decade, a good online reputation could be the most valuable currency in your possession.
Tiberius Brastaviceanu

GitHub Has Big Dreams for Open-Source Software, and More - NYTimes.com - 0 views

  • GitHub has no managers among its 140 employees, for example. โ€œEveryone has management interests,โ€ he said. โ€œPeople can work on things that are interesting to them. Companies should exist to optimize happiness, not money. Profits follow.โ€ He does, however, retain his own title and decides things like salaries.
  • Another member of GitHub has posted a talk that stresses how companies flourish when people want to work on certain things, not because they are told to.
  • Asana bases work on a series of to-do lists that people assign one another. Inside Asana there are no formal titles, though like GitHub there are bosses at the top who make final decisions.
  • ...8 more annotations...
  • Mr. Preston-Werner thinks the way open source requires a high degree of trust and collaboration among relative equals (plus a few high-level managers who define the scope of a job and make final decisions) can be extended more broadly, even into government.
  • GitHubโ€™s popularity has also made it an important way for companies to recruit engineers, because some of the best people in the business are showing their work or dissecting the work of others inside some of the public pull requests.
  • For all the happiness and sharing, real money is involved here. In July GitHub received $100 million from the venture capital firm Andreessen Horowitz. This early in most software companiesโ€™ lives, $20 million would be a fortune.
  • โ€œFor now this is about code, but we can make the burden of decision-making into an opportunity,โ€ he said. โ€œIt would be useful if you could capture the process of decision-making, and see who suggested the decisions that created a law or a bill.โ€
  • Can this really be extended across a large, complex organization, however?
  • As complex as an open-source project may be, it is also based on a single, well-defined outcome, and an engineering task that is generally free of concepts like fairness and justice, about which people can debate endlessly.
  • Google once prided itself on few managers and fast action, but has found that getting big can also involve lots more meetings.
  • Still, these fast-rising successes may be on to something more than simply universalizing the means of their own good fortune. An early guru of the Information Age, Peter Drucker, wrote often in the latter part of his career of the need for managers to define tasks, and for workers to seek fulfillment before profits.
Tiberius Brastaviceanu

Work Party 18 April 2012 - optical fiber coating - Picasa Web Albums - 0 views

  •  
    Tibi and Jonathan, fiber coating with live feedback
1 - 20 of 47 Next › Last »
Showing 20 items per page