Skip to main content

Home/ Sensorica Knowledge/ Group items tagged cell

Rss Feed Group items tagged

Francois Bergeron

Cell Tester Opens the Window of Discovery | Product Information | Articles - 0 views

  • Written by Lisa J Fulghum    Physiologic Mechanisms in Cardiac Myocytes and Skeletal Muscle Cells The revolutionary Cell Tester SI-CTS200 is a new research tool for cellular investiga
  • The revolutionary Cell Tester SI-CTS200 is a new research tool for cellular investigation that can (without any changes) be used for one single living cell, for a small multi-cellular preparation and for single or larger skinned muscle strip preparations. Translational experiments from the single living cells to the intact multi-cellular level can be accomplished.
  • The Cell Tester offers: Integral microtweezer apparatus that facilitates cellular attachment Two integrated piezo manipulators are included Bio-compatible adhesive (MyoTak™) included Unique rotational stage that allows for easy cellular alignment, improved experimental throughput (shown in the image above) Ultra-quiet force transducer included Linear displacement motor stretches or compresses cells with 25nm precision Fits ANY inverted microscope Use native cuvette or ANY 35mm glass bottom dish
  •  
    The revolutionary Cell Tester SI-CTS200 is a new research tool
Steve Bosserman

Fuel Cell Taps Into Roach Power | Chemical & Engineering News - 2 views

  • Their cockroach biofuel cell is a bundle of thin carbon wires sealed inside a glass capillary tube.
  •  
    Their cockroach biofuel cell is a bundle of thin carbon wires sealed inside a glass capillary tube. The cell is about 0.05 cm in diameter and a few centimeters long. To make up the cell's anode, Scherson and his team coated the wires with two enzymes: trehalase to break the sugar trehalose into two glucose molecules and glucose oxidase to extract electrons from the glucose. To create the cathode, the researchers coated the wires with the enzyme bilirubin oxidase to shuttle the generated electrons to oxygen to produce water. Because the enzymes alone can't efficiently transfer electrons to and from the electrode, the researchers also added an osmium complex to the carbon wires to act as an electron shuttle. The researchers selected trehalose, says Scherson, because of its high concentration in cockroach blood, 30 mM.
Tiberius Brastaviceanu

Google Apps Script - introduction - 0 views

  • Use the Script Editor to write and run scripts, to set triggers, and to perform other actions such as sharing scripts.
  • start the Script Editor from a Google Site
  • declares a function called myFunction()
  • ...69 more annotations...
  • You can perform the following tasks from the Script Editor.
  • pening, deleting, renaming, and saving scripts
  • Cutting, copying, and pasting text
  • Find and replace
  • Setting a time zone
  • scripts with time-based triggers
  • Running functions
  • Viewing log messages
  • revision history
  • write pseudocode first
  • When you're planning a script
  • narrative version of what the script needs to do.
  • A particular script is associated with one and only one Google Spreadsheet.
  • If you make a copy of the Spreadsheet, the script is also copied.
  • A particular Spreadsheet can have multiple scripts associated with it.
  • use the onOpen event handler in more than one script associated with a particular Spreadsheet, all scripts begin to execute when you open the Spreadsheet and the order in which the scripts are executed is indeterminate.
  • event handler is a function executed when a particular event takes place.
  • see Running Scripts in Response to an Event.
  • A script cannot currently call or create another script and cannot call functions in another script.
  • If you want to store the results of a function, you must copy them into a spreadsheet cell.
  • You can trigger Apps Script events from links that are embedded in a Google Site. For information about how to do this, see Using Apps Scrip in Your Ssite.
  • You can insert a script into a Site as a gadget.
  • you must grant permission for the script to run as a service.
  • You also designate whether only you can invoke the service or whether all members of your domain can invoke the service.
  • you can assign functions within the script any arbitrary name.
  • The instructions in a function must be enclosed within curly braces.
  • event handler
  • when a spreadsheet is opened,
  • when a script is installed
  • when a spreadsheet is edited
  • at times you choose
  • menu item
  • Using a drawing or button embedded in a Spreadsheet
  • Using a custom function that is referenced as a Spreadsheet function
  • Clicking the Run button
  • object-oriented programming languages
  • Google Apps Script uses the JavaScript language.
  • Operations
  • are performed using the objects and methods described in the API documentation.
  • An API provides pre-packaged code for standard tasks you need to accomplish in scripts or programs.
  • API includes objects that you use to accomplish tasks such as sending email, creating calendar entries
  • A method describes the behavior of an object and is a function attached to an object.
  • MailApp
  • use to create and send email
  • To send email, you invoke the sendEmail method and provide values for the method arguments.
  • Google Apps Script can access or retrieve data in different formats in different ways.
  • A custom function
  • is called directly from a cell in a Spreadsheet using the syntax =myFunctionName()
  • they cannot set values outside the cells
  • have some restrictions not shared by other functions
  • cannot send email
  • cannot operate on a Google Site
  • cannot perform any operations that require user authorization
  • cannot perform any operations that require knowledge of who the user
  • onInstall function
  • onOpen function
  • Other functions run when you run them manually or when they are triggered by clicking
  • Custom functions and formulas in the spreadsheet execute any time the entire Spreadsheet is evaluated or when the data changes in the function or formula's cell.
  • share the Spreadsheet
  • publish the script to the Script Gallery
  • spreadsheet template
  • the color coding for that line will not be correct
  • A script with incorrect syntax or other errors does not run.
  • The Script Editor includes a debugger.
  • view the current state of variables and objects created by a script while that script runs.
  • step through the code line by line as it executes or set breakpoints
  • The debugger does not work with custom functions, onEdit functions, event triggers, or scripts running as a service.
  • use the debugger to find errors in scripts that are syntactically correct but still do not function correctly.
  • Functions ending in an underscore (_), for example, internalStuff_(), are treated differently from other functions. You do not see these function in the Run field in the Script Editor and they do not appear in the Script Manager in the Spreadsheet. You can use the underscore to indicate that users should not attempt to run the function and the function is available only to other functions.
Tiberius Brastaviceanu

Beyond Blockchain: Simple Scalable Cryptocurrencies - The World of Deep Wealth - Medium - 0 views

  • I clarify the core elements of cryptocurrency and outline a different approach to designing such currencies rooted in biomimicry
  • This post outlines a completely different strategy for implementing cryptocurrencies with completely distributed chains
  • Rather than trying to make one global, anonymous, digital cash
  • ...95 more annotations...
  • we are interested in the resilience that comes from building a rich ecosystem of interoperable currencies
  • What are the core elements of a modern cryptocurrency?
  • Digital
  • Holdings are electronic and only exist and operate by virtue of a community’s agreement about how to interpret digital bits according to rules about operation and accounting of the currency.
  • Trustless
  • don’t have to trust a 3rd party central authority
  • Decentralized
  • Specifically, access, issuance, transaction accounting, rules & policies, should be collectively visible, known, and held.
  • Cryptographic
  • This cryptographic structure is used to enable a variety of people to host the data without being able to alter it.
  • Identity
  • there must be a way to associate these bits with some kind of account, wallet, owner, or agent who can use them
  • Other things that many take for granted in blockchains may not be core but subject to decisions in design and implementation, so they can vary between implementations
  • It does not have to be stored in a synchronized global ledger
  • does not have to be money. It may be a reputation currency, or data used for identity, or naming, etc
  • Its units do not have to be cryptographic tokens or coins
  • It does not have to protect the anonymity of users, although it may
  • if you think currency is only money, and that money must be artificially scarce
  • Then you must tackle the problem of always tracking which coins exist, and which have been spent. That is one approach — the one blockchain takes.
  • You might optimize for anonymity if you think of cryptocurrency as a tool to escape governments, regulations, and taxes.
  • if you want to establish and manage membership in new kinds of commons, then identity and accountability for actions may turn out to be necessary ingredients instead of anonymity.
  • In the case of the MetaCurrency Project, we are trying to support many use cases by building tools to enable a rich ecosystem of communities and current-sees (many are non-monetary) to enhance collective intelligence at all scales.
  • Managing consensus about a shared reality is a central challenge at the heart of all distributed computing solutions.
  • If we want to democratize money by having cryptocurrencies become a significant and viable means of transacting on a daily basis, I believe we need fundamentally more scalable approaches that don’t require expensive, dedicated hardware just to participate.
  • We should not need system wide consensus for two people to do a transaction in a cryptocurrency
  • Blockchain is about managing a consensus about what was “said.” Ceptr is about distributing a consensus about how to “speak.”
  • how nature gets the job done in massively scalable systems which require coordination and consistency
  • Replicate the same processes across all nodes
  • Empower every node with full agency
  • Hold this transformed state locally and reliably
  • Establish protocols for interaction
  • Each speaker of a language carries the processes to understand sentences they hear, and generate sentences they need
  • we certainly don’t carry some kind of global ledger of everything that’s ever been said, or require consensus about what has been said
  • Language IS a communication protocol we learn by emulating the processes of usage.
  • Dictionaries try to catch up when the usage
  • there is certainly no global ledger with consensus about the state of trillions of cells. Yet, from a single zygote’s copy of DNA, our cells coordinate in a highly decentralized manner, on scales of trillions, and without the latency or bottlenecks of central control.
  • Imagine something along the lines of a Java Virtual Machine connected to a distributed version of Github
  • Every time this JVM runs a program it confirms the hash of the code it is about to execute with the hash signed into the code repository by its developers
  • This allows each node that intends to be honest to be sure that they’re running the same processes as everyone else. So when two parties want to do a transaction, and each can have confidence their own code, and the results that your code produces
  • Then you treat it as authoritative and commit it to your local cryptographically self-validating data store
  • Allowing each node to treat itself as a full authority to process transactions (or interactions via shared protocols) is exactly how you empower each node with full agency. Each node runs its copy of the signed program/processes on its own virtual machine, taking the transaction request combined with the transaction chains of the parties to the transaction. Each node can confirm their counterparty’s integrity by replaying their transactions to produce their current state, while confirming signatures and integrity of the chain
  • If both nodes are in an appropriate state which allows the current transaction, then they countersign the transaction and append to their respective chains. When you encounter a corrupted or dishonest node (as evidenced by a breach of integrity of their chain — passing through an invalid state, broken signatures, or broken links), your node can reject the transaction you were starting to process. Countersigning allows consensus at the appropriate scale of the decision (two people transacting in this case) to lock data into a tamper-proof state so it can be stored in as many parallel chains as you need.
  • When your node appends a mutually validated and signed transaction to its chain, it has updated its local state and is able to represent the integrity of its data locally. As long as each transaction (link in the chain) has valid linkages and countersignatures, we can know that it hasn’t been tampered with.
  • If you can reliably embody the state of the node in the node itself using Intrinsic Data Integrity, then all nodes can interact in parallel, independent of other interactions to maximize scalability and simultaneous processing. Either the node has the credits or it doesn’t. I don’t have to refer to a global ledger to find out, the state of the node is in the countersigned, tamper-proof chain.
  • Just like any meaningful communication, a protocol needs to be established to make sure that a transaction carries all the information needed for each node to run the processes and produce a new signed and chained state. This could be debits or credits to an account which modify the balance, or recoding courses and grades to a transcript which modify a Grade Point Average, or ratings and feedback contributing to a reputation score, and so on.
  • By distributing process at the foundation, and leveraging Intrinsic Data Integrity, our approach results in massive improvements in throughput (from parallel simultaneous independent processing), speed, latency, efficiency, and cost of hardware.
  • You also don’t need to incent people to hold their own record — they already want it.
  • Another noteworthy observation about humans, cells, and atoms, is that each has a general “container” that gets configured to a specific use.
  • Likewise, the Receptors we’ve built are a general purpose framework which can load code for different distributed applications. These Receptors are a lightweight processing container for the Ceptr Virtual Machine Host
  • Ceptr enables a developer to focus on the rules and transactions for their use case instead of building a whole framework for distributed applications.
  • how units in a currency are issued
  • Most people think that money is just money, but there are literally hundreds of decisions you can make in designing a currency to target particular needs, niches, communities or patterns of flow.
  • Blockchain cryptocurrencies are fiat currencies. They create tokens or coins from nothing
  • These coins are just “spoken into being”
  • the challenging task of
  • ensure there is no counterfeiting or double-spending
  • Blockchain cryptocurrencies are fiat currencies
  • These coins are just “spoken into being”
  • the challenging task of tracking all the coins that exist to ensure there is no counterfeiting or double-spending
  • You wouldn’t need to manage consensus about whether a cryptocoin is spent, if your system created accounts which have normal balances based on summing their transactions.
  • In a mutual credit system, units of currency are issued when a participant extends credit to another user in a standard spending transaction
  • Alice pays Bob 20 credits for a haircut. Alice’s account now has -20, and Bob’s has +20.
  • Alice spent credits she didn’t have! True
  • Managing the currency supply in a mutual credit system is about managing credit limits — how far people can spend into a negative balance
  • Notice the net number units in the system remains zero
  • One elegant approach to managing mutual credit limits is to set them based on actual demand.
  • concerns about manufacturing fake accounts to game credit limits (Sybil Attacks)
  • keep in mind there can be different classes of accounts. Easy to create, anonymous accounts may get NO credit limit
  • What if I alter my code to give myself an unlimited credit limit, then spend as much as I want? As soon as you pass the credit limit encoded in the shared agreements, the next person you transact with will discover you’re in an invalid state and refuse the transaction.
  • If two people collude to commit an illegal transaction by both hacking their code to allow a normally invalid state, the same still pattern still holds. The next person they try to transact with using untampered code will detect the problem and decline to transact.
  • Most modern community currency systems have been implemented as mutual credit,
  • Hawala is a network of merchants and businessmen, which has been operating since the middle ages, performing money transfers on an honor system and typically settling balances through merchandise instead of transferring money
  • Let’s look at building a minimum viable cryptocurrency with the hawala network as our use case
  • To minimize key management infrastructure, each hawaladar’s public key is their address or identity on the network. To join the network you get a copy of the software from another hawaladar, generate your public and private keys, and complete your personal profile (name, location, contact info, etc.). You call, fax, or email at least 10 hawaladars who know you, and give them your IP address and ask them to vouch for you.
  • Once 10 other hawaladars have vouched for you, you can start doing other transactions because the protocol encoded in every node will reject a transaction chain that doesn’t start with at least 10 vouches
  • seeding your information with those other peers so you can be found by the rest of the network.
  • As described in the Mutual Credit section, at the time of transaction each party audits the counterparty’s transaction chain.
  • Our hawala crypto-clearinghouse protocol has two categories of transactions: some used for accounting and others for routing. Accounting transactions change balances. Routing transactions maintain network integrity by recording information about hawaladar
  • Accounting Transactions create signed data that changes account balances and contains these fields:
  • The final hash of all of the above fields is used as a unique transaction ID and is what each of party signs with their private keys. Signing indicates a party has agreed to the terms of the transaction. Only transactions signed by both parties are considered valid. Nodes can verify signatures by confirming that decryption of the signature using the public key yields a result which matches the transaction ID.
  • Routing Transactions sign data that changes the peers list and contain these fields:
  • As with accounting transactions, the hash of the above fields is used as the transaction’s unique key and the basis for the cryptographic signature of both counterparties.
  • Remember, instead of making changes to account balances, routing transactions change a node’s local list of peers for finding each other and processing.
  • a distributed network of mutual trust
  • operates across national boundaries
  • everyone already keeps and trusts their own separate records
  • Hawaladars are not anonymous
  • “double-spending”
  • It would be possible for someone to hack the code on their node to “forget” their most recent transaction (drop the head of their chain), and go back to their previous version of the chain before that transaction. Then they could append a new transaction, drop it, and append again.
  • After both parties have signed the agreed upon transaction, each party submits the transaction to separate notaries. Notaries are a special class of participant who validate transactions (auditing each chain, ensuring nobody passes through an invalid state), and then they sign an outer envelope which includes the signatures of the two parties. Notaries agree to run high-availability servers which collectively manage a Distributed Hash Table (DHT) servicing requests for transaction information. As their incentive for providing this infrastructure, notaries get a small transaction fee.
  • This approach introduces a few more steps and delays to the transaction process, but because it operates on independent parallel chains, it is still orders of magnitude more efficient and decentralized than reaching consensus on entries in a global ledger
  • millions of simultaneous transactions could be getting processed by other parties and notaries with no bottlenecks.
  • There are other solutions to prevent nodes from dropping the head of their transaction chain, but the approach of having notaries serve out a DHT solves a number of common objections to completely distributed accounting. Having access to reliable lookups in a DHT provides a similar big picture view that you get from a global ledger. For example, you may want a way to look up transactions even when the parties to that transaction are offline, or to be able to see the net system balance at a particular moment in time, or identify patterns of activity in the larger system without having to collect data from everyone individually.
  • By leveraging Intrinsic Data Integrity to run numerous parallel tamper-proof chains you can enable nodes to do various P2P transactions which don’t actually require group consensus. Mutual credit is a great way to implement cryptocurrencies to run in this peered manner. Basic PKI with a DHT is enough additional infrastructure to address main vulnerabilities. You can optimize your solution architecture by reserving reserve consensus work for tasks which need to guarantee uniqueness or actually involve large scale agreement by humans or automated contracts.
  • It is not only possible, but far more scalable to build cryptocurrencies without a global ledger consensus approach or cryptographic tokens.
  •  
    Article written by Arthur Brook, founder of Metacurrency project and of Ceptr.
Steve Bosserman

A blood test without needles: Optical microscopy looks directly at blood cells through ... - 0 views

  •  
    spectrally encoded confocal microscopy (SECM)
Steve Bosserman

Xth Sense | Res, a matter. - 0 views

  •  
    The music of a single cell?
Francois Bergeron

Automatic Micro Manipulation System for Cell Manipulation - 1 views

  • Here, we applied piezo impact drive mechanism, which utilizes rapid deformation of piezoelectric element, to realize smooth insertion of the micro pipette into the cytoplasm without deformation. This mechanism had already been commercialized and being used in many institutes.
  •  
    that may be nice to add force feedback control
Tiberius Brastaviceanu

Google Apps Script - introduction - 0 views

  • script that you want to run every day at a specific time
  • script that should run after a user submits a data-collection form.
  • Google Apps Script provides simple event handlers and installable event handlers, which are easy ways for you to specify functions to run at a particular time or in response to an event.
  • ...39 more annotations...
  • let's consider the terminology we use for events
  • event triggers
  • triggers
  • in response
  • event handler
  • event
  • onInstall function
  • onOpen function.
  • onEdit function
  • the simple event handlers are restricted in what they are permitted to do:
  • The spreadsheet containing the script must be opened for editing
  • cannot determine the current user
  • cannot access any services that require authentication as that user
  • Calendar, Mail and Site are not anonymous and the simple event handlers cannot access those services.
  • can only modify the current spreadsheet. Access to other spreadsheets is forbidden.
  • see Understanding Permissions and Script Execution.
  • The onOpen function runs automatically when a user opens a spreadsheet.
  • add custom menu items to the spreadsheet's menu bar.
  • onEdit function runs automatically when any cell of the spreadsheet is edited.
  • record the last modified time in a comment on the cell that was edited.
  • The onInstall function is called when a script is installed from the Script Gallery.
  • setting up custom menus for the user.
  • the script can call onOpen from onInstall.
  • Installable event handlers are set on the Triggers menu within the Script Editor, and they're called triggers in this document.
  • When a specific time is reached
  • When a form is submitted
  • When a Spreadsheet is edited
  • When a Spreadsheet is opened.
  • They can potentially access all services available to the user who installed the handler.
  • are fully-capable scripts with none of the access limitations of simple event handlers
  • may not be able to determine which user triggered the event being handled
  • The spreadsheet containing the script does not have to be open for the event to be triggered and the script to run.
  • You can connect triggers to one or more functions in a script. Any function can have multiple triggers attached. In addition, you can add trigger attributes to a function to further refine how the trigger behaves.
  • When a script runs because of a trigger, the script runs using the identity of the person who installed the trigger, not the identity of the user whose action triggered the event. This is for security reasons.
  • Installing an event handler may prompt for authorization to access
  • An event is passed to every event handler as the argument (e). You can add attributes to the (e) argument that further define how the trigger works or that capture information about how the script was triggered.
  • an example of a function that sends email to a designated individual containing information captured by a Spreadsheet when a form is submitted.
  • With Google Apps, forms have the option to automatically record the submitter's username, and this is available to the script as e.namedValues["Username"]. Note: e.namedValues are only available for Google Apps domains and not for consumer Google accounts.
  • The available attributes for triggers are described in the following tables.
  •  
    script that you want to run every day at a specific time
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
a-alonso

Traditional Methods of Cell Lysis | Thermo Fisher Scientific - US - 0 views

  •  
    The protein extraction
Philippe Comtois

BIOLAB, EPU and EMCS for cell culture e - PubMed Mobile - 1 views

  •  
    CSA to read
Philippe Comtois

Effects of chronic electrical stimulation on... [Differentiation. 1994] - PubMed - NCBI - 0 views

  • Our results suggest that enhanced contractile activity promotes the expression of the slow phenotype predetermined in satellite cells of slow-twitch, type I fibers.
  • stimulation enhanced the mRNA and protein expression of a developmental isoform of slow myosin (MHCI).
Philippe Comtois

A Comparison of Commercially-Available Human Skeletal Muscle Cells and Media for Resear... - 2 views

  •  
    IVAN: interesting for CSA project
Francois Bergeron

MyoStretcher - 0 views

  • IonOptix is proud to announce the release of the MyoStretcher, our new cardiomyocyte force measurement system.  Facilitated by the arrival of IonOptix MyoTak, our bio-compatible cell adhesive, we've developed the MyoStretcher with a focus on simplicity, ease-of-use and reliability.  The MyoStretcher includes all of the necessary components to stretch as well as record force in isolated myocytes.  In addition to the sensitive force transducer, motorized micro-manipulators and all component fittings, we also offer an optional piezo-electric translator for programmable stretching and a kit to facilitate attachment of glass rods to the MyoStretcher arms.
Tiberius Brastaviceanu

X-ROS paper - 1 views

  •  
    for the myotak glue, needed to glue the muscle cells to the transducer.
Francois Bergeron

World Precision Instruments - Welcome! - 0 views

shared by Francois Bergeron on 14 Jun 11 - Cached
  • You can measure force in a single muscle cell!
1 - 20 of 25 Next ›
Showing 20 items per page