Skip to main content

Home/ Sensorica Knowledge/ Group items tagged knowledge

Rss Feed Group items tagged

Kurt Laitner

Towards a Material Commons | Guerrilla Translation! - 0 views

  • the modes of communication we use are very tightly coupled with the modes of production that finance them
  • I’m focused on the policy formation around this transition to a new, open knowledge and commons-based economy, and that’s the research work I’m doing here
  • The problem is I can only make a living by still working for capital.
  • ...88 more annotations...
  • We now have a technology which allows us to globally scale small group dynamics, and to create huge productive communities, self-organized around the collaborative production of knowledge, code, and design. But the key issue is that we are not able to live from that, right
  • A lot of co-ops have been neo-liberalizing, as it were, have become competitive enterprises competing against other companies but also against other co-ops, and they don’t share their knowledge
  • We cannot create our own livelihood within that sphere
  • instead of having a totally open commons, which allows multinationals to use our commons and reinforce the system of capital, the idea is to keep the accumulation within the sphere of the commons.
  • The result would be a type of open cooperative-ism, a kind of synthesis or convergence between peer production and cooperative modes of production
  • then the material work, the work of working for clients and making a livelihood, would be done through co-ops
  • But it hasn’t had much of a direct connection to this emerging commons movement, which shares so many of the values and  principles of the traditional cooperative movement.
  • There’s also a lot of peer-to-peer work going on, but it’s not very well versed around issues like cooperative organization, formal or legal forms of ownership, which are based on reciprocity and cooperation, and how to interpret the commons vision with a structure, an organizational structure and a legal structure that actually gives it economic power, market influence, and a means of connecting it to organizational forms that have durability over the long-term.
  • The young people, the developers in open source or free software, the people who are in co-working centers, hacker spaces, maker spaces. When they are thinking of making a living, they think startups
  • They have a kind of generic reaction, “oh, let’s do a startup”, and then they look for venture funds. But this is a very dangerous path to take
  • Typically, the venture capital will ask for a controlling stake, they have the right to close down your start up whenever they feel like it, when they feel that they’re not going to make enough money
  • Don’t forget that with venture capital, only 1 out of 10 companies will actually make it, and they may be very rich, but it’s a winner-take-all system
  • we don’t have what Marx used to call social reproduction
  • I would like John to talk about the solidarity co-ops, and how that integrates the notion of the commons or the common good in the very structure of the co-op
  • They don’t have a commons of design or code, they privatize and patent, just like private competitive enterprise, their knowledge
  • Cooperatives, which are basically a democratic and collective form of enterprise where members have control rights and democratically direct the operations of the co-op, have been the primary stakeholders in any given co-op – whether it’s a consumer co-op, or a credit union, or a worker co-op.
  • Primarily, the co-op is in the service of its immediate members
  • What was really fascinating about the social co-ops was that, although they had members, their mission was not only to serve the members but also to provide service to the broader community
  • In the city of Bologna, for example, over 87% of the social services provided in that city are provided through contract with social co-ops
  • democratically run
  • much more participatory, and a much more engaged model
  • The difference, however, is that the structure of social co-ops is still very much around control rights, in other words, members have rights of control and decision-making within how that organization operates
  • And it is an incorporated legal structure that has formal recognition by the legislation of government of the state, and it has the power, through this incorporated power, to negotiate with and contract with government for the provision of these public services
  • In Québec they’re called Solidarity co-ops
  • So, the social economy, meaning organizations that have a mutual aim in their purpose, based on the principles of reciprocity, collective benefit, social benefit, is emerging as an important player for the design and delivery of public services
  • This, too, is in reaction to the failure of the public market for provision of services like affordable housing or health care or education services
  • This is a crisis in the role of the state as a provider of public services. So the question has emerged: what happens when the state fails to provide or fulfill its mandate as a provider or steward of public goods and services, and what’s the role of civil society and the social economy in response?
  • we have commonses of knowledge, code and design. They’re more easily created, because as a knowledge worker, if you have access to the network and some means, however meager, of subsistence, through effort and connection you can actually create knowledge. However, this is not the case if you move to direct physical production, like the open hardware movement
  • I originally encountered Michel after seeing some talks by Benkler and Lessig at the Wizard of OS 4, in 2006, and I wrote an essay criticizing that from a materialist perspective, it was called “The creative anti-commons and the poverty of networks”, playing on the terms that both those people used.
  • In hardware, we don’t see that, because you need to buy material, machines, plastic, metal.
  • Some people have called the open hardware community a “candy” economy, because if you’re not part of these open hardware startups, you’re basically not getting anything for your efforts
  • democratic foundations like the Apache foundation
  • They conceive of peer production, especially Benkler, as being something inherently immaterial, a form of production that can only exist in the production of immaterial wealth
  • From my materialist point of view, that’s not a mode of production, because a mode of production must, in the first place, reproduce its productive inputs, its capital, its labor, and whatever natural wealth it consumes
  • From a materialist point of view, it becomes  obvious that the entire exchange value produced in these immaterial forms would be captured by the same old owners of materialist wealth
  • different definition of peer production
  • independent producers collectively sharing a commons of productive assets
  • I wanted to create something like a protocol for the formation and allocation of physical goods, the same way we have TCP/IP and so forth, as a way to allocate immaterial goods
  • share and distribute and collectively create immaterial wealth, and become independent producers based on this collective commons.
  • One was the Georgist idea of using rent, economic rent, as a fundamental mutualizing source of wealth
  • Mutualizing unearned income
  • So, the unearned income, the portion of income derived from ownership of productive assets is evenly distributed
  • This protocol would seek to normalize that, but in a way that doesn’t require administration
  • typical statist communist reaction to the cooperative movement is saying that cooperatives can exclude and exploit one another
  • But then, as we’ve seen in history, there’s something that develops called an administrative class,  which governs over the collective of cooperatives or the socialist state, and can become just as counterproductive and often exploitive as capitalist class
  • So, how do we create cooperation among cooperatives, and distribution of wealth among cooperatives, without creating this administrative class?
  • This is why I borrowed from the work of Henry George and Silvio Gesell in created this idea of rent sharing.
  • This is not done administratively, this is simply done as a protocol
  • The idea is that if a cooperative wants an asset, like, an example is if one of the communes would like to have a tractor, then essentially the central commune is like a bond market. They float a bond, they say I want a tractor, I am willing to pay $200 a month for this tractor in rent, and other members of the cooperative can say, hey, yeah, that’s a good idea,we think that’s a really good allocation of these productive assets, so we are going to buy these bonds. The bond sale clears, the person gets the tractor, the money from the rent of the tractor goes back to clear the bonds, and  after that, whatever further money is collected through the rent on this tractor – and I don’t only mean tractors, same would be applied to buildings, to land, to any other productive assets – all this rent that’s collected is then distributed equally among all of the workers.
  • The idea is that people earn income not only by producing things, but by owning the means of production, owning productive assets, and our society is unequal because the distribution of productive assets is unequal
  • This means that if you use your exact per capita share of property, no more no less than what you pay in rent and what you received in social dividend, will be equal
  • But if you’re not working at that time, because you’re old, or otherwise unemployed, then obviously the the productive assets that you will be using will be much less than the mean and the median, so what you’ll receive as dividend will be much more than what you pay in rent, essentially providing a basic income
  • venture communism doesn’t seek to control the product of the cooperatives
  • It doesn’t seek to limit, control, or even tell them how they should distribute it, or under what means; what they produce is entirely theirs, it’s only the collective management of the commons of productive assets
  • On paper this would seem to work, but the problem is that this assumes that we have capital to allocate in this way, and that is not the case for most of the world workers
  • how do we get to that stage?
  • other two being counter politics and insurrectionary finance
  • do we express our activism through the state, or do we try to achieve our goals by creating the alternative society outside
  • pre-figurative politics, versus statist politics
  • My materialist background tells me that when you sell your labor on the market, you have nothing more than your subsistence costs at the end of it, so where is this wealth meant to come from
  • I believe that the only reason that we have any extra wealth beyond subsistence is because of organized social political struggle; because we have organized in labor movements, in the co-op movement, and in other social forms
  • To create the space for prefiguring presupposes engagement with the state, and struggle within parliaments, and struggle within the public social forum
  • Instead, we should think that no, we must engage in the state in order to protect our ability to have alternative societies
  • We can only get rid of the state in these areas once we have alternative, distributed, cooperative means to provide those same functions
  • We can only eliminate the state from these areas once they actually exist, which means we actually have to build them
  • What I mean by insurrectionary finance is that we have to acknowledge that it’s not only forming capital and distributing capital, it’s also important how intensively we use capital
  • I’m not proposing that the cooperative movement needs to engage in the kind of derivative speculative madness that led to the financial crisis, but at the same time we can’t… it can’t be earn a dollar, spend a dollar
  • We have to find ways to create liquidity
  • to deal with economic cycles
  • they did things the organized left hasn’t been able to do, which is takeover industrial means of production
  • if they can take over these industrial facilities, just in order to shut them down and asset strip them, why can’t we take them over and mutualize them?
  • more ironic once you understand that the source of investment that Milken and his colleagues were working with were largely workers pension funds
  • idea of venture communism
  • pooling, based on the capture of unearned income
  • in Québec, there is a particular form of co-op that’s been developed that allows small or medium producers to pool their capital to purchase machinery and to use it jointly
  • The other idea I liked was trying to minimize a management class
  • much more lean and accountable because they are accountable to boards of directors that represent the interests of the members
  • I’ve run into this repeatedly among social change activists who immediately recoil at the notion of thinking about markets and capital, as part of their change agenda
  • I had thought previously, like so many, that economics is basically a bought discipline, and that it serves the interests of existing elites. I really had a kind of reaction against that
  • complete rethinking of economics
  • recapture the initiative around vocabulary, and vision, with respect to economics
  • reimagining and reinterpreting, for a popular and common good, the notion of market and capital
  • advocating for a vision of social change that isn’t just about politics, and isn’t just about protest, it has to be around how do we reimagine and reclaim economics
  • markets actually belong to communities and people
  • capital wasn’t just an accumulated wealth for the rich
  • I think what we’re potentially  talking about here is to make the social economy hyper-productive, hyper-competitive, hyper-cooperative
  • The paradox is that capital already knows this. Capital is investing in these peer production projects
  • Part of the proposal of the FLOK society project in Ecuador will be to get that strategic reorganization to make the social economy strategic
  •  
    A lot of really interesting points of discussion in here.
Tiberius Brastaviceanu

What is an ontology and why we need it - 1 views

  • an ontology designer makes these decisions based on the structural properties of a class.
  • an ontology is a formal explicit description of concepts in a domain of discourse (classes (sometimes called concepts)), properties of each concept describing various features and attributes of the concept (slots (sometimes called roles or properties)), and restrictions on slots (facets (sometimes called role restrictions)). An ontology together with a set of individual instances of classes constitutes a knowledge base. In reality, there is a fine line where the ontology ends and the knowledge base begins.
  • Classes describe concepts in the domain
  • ...16 more annotations...
  • A class can have subclasses that represent concepts that are more specific than the superclass.
  • Here we discuss general issues to consider and offer one possible process for developing an ontology. We describe an iterative approach to ontology development: we start with a rough first pass at the ontology. We then revise and refine the evolving ontology and fill in the details. Along the way, we discuss the modeling decisions that a designer needs to make, as well as the pros, cons, and implications of different solutions.
  • In practical terms, developing an ontology includes: �         defining classes in the ontology, �         arranging the classes in a taxonomic (subclass–superclass) hierarchy, �         defining slots and describing allowed values for these slots, �         filling in the values for slots for instances.
  • We can then create a knowledge base by defining individual instances of these classes filling in specific slot value information and additional slot restrictions.
  • Slots describe properties of classes and instances:
  • some fundamental rules in ontology design
  • There is no one correct way to model a domain— there are always viable alternatives. The best solution almost always depends on the application that you have in mind and the extensions that you anticipate. 2)      Ontology development is necessarily an iterative process. 3)      Concepts in the ontology should be close to objects (physical or logical) and relationships in your domain of interest. These are most likely to be nouns (objects) or verbs (relationships) in sentences that describe your domain.
  • how detailed or general the ontology is going to be
  • what we are going to use the ontology for
  • concepts in the ontology must reflect this reality
  • We suggest starting the development of an ontology by defining its domain and scope. That is, answer several basic questions: �         What is the domain that the ontology will cover? �         For what  we are going to use the ontology? �         For what types of questions the information in the ontology should provide answers? �         Who will use and maintain the ontology?
  • plan to use
  • domain
  • If the people who will maintain the ontology describe the domain in a language that is different from the language of the ontology users, we may need to provide the mapping between the languages.
  • One of the ways to determine the scope of the ontology is to sketch a list of questions that a knowledge base based on the ontology should be able to answer, competency questions
  • These competency questions are just a sketch and do not need to be exhaustive.
Steve Bosserman

Scale of Social Structures - Tibi's Philosophy - 3 views

  •  
    "In April 2015 I was asked by Christine Koehler to write an article on value. She contacted me because she come across my work on open value networks, about a new organizational model that may be well-adapted to support large scale peer production of material goods. I accepted the challenge as an exercise to formalize the tacit knowledge that I have accumulated since 2008, when I became interested in the relation between the new digital technology and the shift of power structures in our modern society. I advise the reader not to consider this paper as a theoretical essay. This is only my effort to bring to my own consciousness the tacit knowledge that I am using in my efforts to help the development of the open value network model, and of the SENSORICA.co network/community, which is an instantiation of this model. As I get better at surfacing and formalizing these ideas, I also invite the reader to understand the heuristics behind my work. I let the reader place a judgment on the success of my work, which will make these heuristics and models that I am trying to expose here more or less interesting. Start with Scale of social structures and follow the links. "
Tiberius Brastaviceanu

Science and Technology Consultation - Industry Canada - 0 views

  • Under this strategy
    • Yasir Siddiqui
       
      Testing
    • Yasir Siddiqui
       
      testing
  • Genome Canada, the Canadian Institute for Advanced Research and the Canada Foundation for Innovation.
  • Still, Canadian businesses continue to underperform when it comes to innovation—a primary driver of productivity growth—when compared to other competing nations. The performance of business R&D is one oft-cited measure used to gauge the level of innovative activity in a country's business sector.
  • ...38 more annotations...
  • Canadians have reached top tier global performance in reading, mathematics, problem solving and science, and Canada has rising numbers of graduates with doctoral degrees in science and engineering.
  • This valuable resource of highly qualified and skilled individuals needs to be better leveraged.
  • The ease and ability of the academic community to collaborate, including through research networks, is also well-recognized.
  • to develop technologies, products and services that add value and create high-paying jobs.
  • Canada has an impressive record when it comes to research and the quality of its knowledge base.
  • Still, the innovative performance of Canada's firms and the productivity growth continue to lag behind competing nations.
  • The government is also committed to moving forward with a new approach to promoting business innovation—one that emphasizes active business-led initiatives and focuses resources on better fostering the growth of innovative firms.
  • Achieving this requires the concerted effort of all players in the innovation system—to ensure each does what one does best and to leverage one another's strengths.
  • the government has invested more to support science, technology and innovative companies than ever before
  • Canada must become more innovative
    • Kurt Laitner
       
      problem statement
  • providing a new framework to guide federal ST&I investments and priorities. That is why the Government of Canada stated its intention to release an updated ST&I Strategy in the October 2013 Speech from the Throne.
    • Kurt Laitner
       
      exercise
  • seeking the views of stakeholders from all sectors of the ST&I system—including universities, colleges and polytechnics, the business community, and Canadians
  • written submissions from all Canadians on the policy issues and questions presented in this paper.
  • The government remains focused on creating jobs, growth and long-term prosperity for Canadians
  • encouraging partnerships with industry, attracting highly skilled researchers, continuing investments in discovery-driven research, strengthening Canada's knowledge base, supporting research infrastructure and providing incentives to private sector innovation.
  • has transformed the National Research Council, doubled its investment
  • supported research collaborations through the federal granting councils
  • created the new Venture Capital Action Plan
  • helping to promote greater commercialization of research and development
  • Our country continues to lead the G7 in spending on R&D
  • Canada has a world-class post-secondary education system that embraces and successfully leverages collaboration with the private sector, particularly through research networks
  • destination for some of the world's brightest minds
  • global race
  • businesses that embrace innovation-based strategies
  • post-secondary and research institutions that attract and nurture highly qualified and skilled talent
  • researchers who push the frontiers of knowledge
  • governments that provide the support
    • Tiberius Brastaviceanu
       
      Why a race? We need to change the way we see this!!! We need to open up. See the European Commission Horizon 2020 program  http://ec.europa.eu/programmes/horizon2020/en/ They are acknowledging that Europe cannot do it alone, and are spending money on International collaboration. 
    • Tiberius Brastaviceanu
       
      There is nothing about non-institutionalized innovation, i.e. open source! There is nothing about the public in this equation like the Europeans do in the Digital Era for Europe program  https://ec.europa.eu/digital-agenda/node/66731 
  • low taxes, strong support for new businesses, a soundly regulated banking system, and ready availability of financial services
  • reducing red tape
  • expanding training partnerships and improving access to venture capital.
  • Collaboration is key to mobilizing innovation
  • invest in partnerships between businesses and colleges and universities
    • Tiberius Brastaviceanu
    • Tiberius Brastaviceanu
       
      But the public and in people is still not in sight of the fed gov. 
  • Economic Action Plans (EAP) 2012 and 2013
  • provide incentive for innovative activity in firms, improved access to venture capital, augmented and more coordinated direct support to firms, and deeper partnerships and connections between the public and private sectors.
Tiberius Brastaviceanu

Evolving Towards a Partner State in an Ethical Economy - 0 views

  • In the  emerging institutional model of peer production
  • we can distinguish an interplay between three partners
  • a community of contributors that create a commons of knowledge, software or design;
  • ...46 more annotations...
  • There is a clear institutional division of labour between these three players
  • a set of "for-benefit institutions' which manage the 'infrastructure of cooperation'
  • an enterpreneurial coalition that creates market value on top of that commons;
  • Can we also learn something about the politics of this new mode of value creation
  • Is there perhaps a new model of power and democracy co-evolving out of these new social practices, that may be an answer to the contemporary crisis of democracy
  • we are witnessing a new model for the state. A 'P2P' state, if you will.
  • The post-democratic logic of community
  • these communities are not democracies
  • because democracy, and the market, and hierarchy, are modes of allocation of scarce resources
  • Such communities are truly poly-archies and the type of power that is held in them is meritocratic, distributed, and ad hoc.
  • Everyone can contribute without permission, but such a priori permissionlessness is  matched with mechanisms for 'a posteriori'  communal validation, where those with recognized expertise and that are accepted by the community, the so-called 'maintainers' and the 'editors',  decide
  • These decisions require expertise, not communal consensus
  • tension between inclusiveness of participation and selection for excellence
  • allowing for maximum human freedom compatible with the object of cooperation. Indeed, peer production is always a 'object-oriented' cooperation, and it is the particular object that will drive the particular form chosen for its 'peer governance' mechanisms
  • The main allocation mechanism in such project, which replaces the market, the hierarchy and democracy,  is a 'distribution of tasks'
  • no longer a division of labor between 'jobs', and the mutual coordination works through what scientist call 'stigmergic signalling'
  • work environment is designed to be totally open and transparent
  • every participating individual can see what is needed, or not and decide accordingly whether to undertake his/her particular contribution
  • this new model
  • has achieved capacities both for global coordination, and for the small group dynamics that are characteristic of human tribal forms and that it does this without 'command and control'! In fact, we can say that peer production has enabled the global scaling of small-group dynamics.
  • And they have to be, because an undemocratic institution would also discourage contributions by the community of participants.
    • Kurt Laitner
       
      disagree, there are many ways to ethically distribute governance, not just democracy
  • Hence, an increased exodus of productive  capacities, in the form of direct use value production, outside the existing system of monetization, which only operates at its margins.
  • Where there is no tension between supply and demand, their can be no market, and no capital accumulation
  • Facebook and Google users create commercial value for their platforms, but only very indirectly and they are not at all rewarded for their own value creation.
  • Since what they are creating is not what is commodified on the market for scarce goods, there is no return of income for these value creators
  • This means that social media platforms are exposing an important fault line in our system
  • If you did not contribute, you had no say, so engagement was and is necessary.
    • Kurt Laitner
       
      key divergence from birth/process citizenship driven democracy
  • ⁃   At the core of value creation are various commons, where the innovations are deposited for all humanity to share and to build on ⁃   These commons are enabled and protected through nonprofit civic associations, with as national equivalent the Partner State, which empowers and enables that social production ⁃   Around the commons emerges a vibrant commons-oriented economy undertaken by different kinds of ethical companies, whose legal structures ties them to the values and goals of the commons communities, and not absentee and private shareholders intent of maximising profit at any cost
  • the citizens deciding on the optimal shape of their provisioning systems.
    • Kurt Laitner
       
      ie value equations..?
  • Today, it is proto-mode of production which is entirely inter-dependent with the system of capital
  • Is there any possibility to create a really autonmous model of peer production, that could create its own cycle of reproduction?
  • contribute
    • Kurt Laitner
       
      defined as?
    • Tiberius Brastaviceanu
       
      "ad hoc": perhaps based on context, needs and everyone's understanding of the situation
  • and whose mission is the support of the commons and its contributors
  • In this way, the social reproduction of commoners would no longer depend on the accumulation cycle of capital, but on its own cycle of value creation and realization
  • Phyles are mission-oriented, purpose-driven, community-supportive entities that operate in the market, on a global scale, but work for the commons.
  • peer production license, which has been proposed by Dmytri Kleiner.
  • Thijs Markus writes  so eloquently about Nike in the Rick Falkvinge blog, if you want to sell $5 shoes for $150 in the West, you better have one heck of a repressive IP regime in place.
  • Hence the need for SOPA/PIPA , ACTA'S and other attempts to criminalize the right to share.
  • An economy of scope exists between the production of two goods when two goods which share a CommonCost are produced together such that the CommonCost is reduced.
  • shared infrastructure costs
  • 2) The current system beliefs that innovations should be privatized and only available by permission or for a hefty price (the IP regime), making sharing of knowledge and culture a crime; let's call this feature, enforced 'artificial scarcity'.
  • 1) Our current system is based on the belief of infinite growth and the endless availability of resources, despite the fact that we live on a finite planet; let's call this feature, runaway 'pseudo-abundance'.
  • So what are the economies of scope of the new p2p age? They come in two flavours: 1) the mutualizing of knowledge and immaterial resources 2) the mutualizing of material productive resources
  • how does global governance look like in P2P civilization?
  • conflicts between contributors
  • are not decided by authoritarian fiat, but by 'negotiated coordination'.
Tiberius Brastaviceanu

Engaging For the Commons - Global Pull Platform - Helene Finidori - 0 views

  • "activating" human agency and political will and addressing the root causes for power unbalance and resistance to change is at the heart of tomorrow's paradigm shift.
  • action-oriented strategy and process methodology for generating engagement, accountability and outcomes in the political, economic, social and environmental spheres, which may contribute to enable this activation.
  • empowering individuals and communities, nurturing public wisdom
  • ...29 more annotations...
  • The platform is structured around commons, issues of social, environmental, economic nature,
  • treated as social objects: the nodes around which social networks are created, conversations and repeated interactions are initiated, new territories explored, meaning and intents shared, learning achieved.
  • ‘pinging of actors’ by ‘citizen-followers’ creates a pull dynamic
  • will yield conversations, knowledge flow, and feedback loops beneficial to learning, progress visualization, and evaluation
  • reate a context favorable to collaboration, exchange of ideas and know-how.
  • The process consists in letting people/organizations:
  • Select, follow,
  • Keep informed and track progress
  • Self assign actor role and communicate/report on self-activity and impact and status of issue.
  • Share
  • Find solutions and potential collaborators for action
  • Select or refer designated actors to acknowledge or request their engagement and action at various levels
  • participate in the conversation, report on activity and impact
  • evaluate and rate activity/impact of and trust toward actors' activity, impact and progress.
  • organize for collective action
  • garner follower participation
  • Initiate and participate in conversations, debates, deliberations
  • The ecosystem is composed of
  • Common’s spaces
  • Common’s graph
  • Progress & Impact or Situation Dashboard
  • The platform creates a context for the following
  • Curate the knowledge flow and increase learning
  • Connect and interrelate people, stakeholders, issues, and knowledge.
  • Help situate an issue
  • Define boundaries
  • Help situate self and others
  • Identify roles and interdependence between actors and issues.
  • Visualize the emergent bigger picture
Tiberius Brastaviceanu

James Grier Miller, Living Systems (1978) - 0 views

  • reality as an integrated hierarchy of organizations of matter and energy
  • General living systems theory is concerned with a special subset of all systems, the living ones
  • a space is a set of elements which conform to certain postulate
  • ...266 more annotations...
  • s. Euclidean space
  • metric space
  • topological space
  • Physical space is the extension surrounding a point
  • My presentation of a general theory of living systems will employ two sorts of spaces in which they may exist, physical or geographical space and conceptual or abstracted spaces
  • Physical or geographical space
  • Euclidean space
  • distance
  • moving
  • maximum speed
  • objects moving in such space cannot pass through one another
  • friction
  • The characteristics and constraints of physical space affect the action of all concrete systems, living and nonliving.
  • information can flow worldwide almost instantly
  • Physical space is a common space
  • Most people learn that physical space exists, which is not true of many spaces
  • They can give the location of objects in it
  • Conceptual or abstracted spaces
  • Peck order
  • Social class space
  • Social distance
  • Political distance
  • life space
  • semantic space
  • Sociometric space
  • A space of time costs of various modes of transportation
  • space of frequency of trade relations among nations.
  • A space of frequency of intermarriage among ethnic groups.
  • These conceptual and abstracted spaces do not have the same characteristics and are not subject to the same constraints as physical space
  • Social and some biological scientists find conceptual or abstracted spaces useful because they recognize that physical space is not a major determinant of certain processes in the living systems they study
  • interpersonal relations
  • one cannot measure comparable processes at different levels of systems, to confirm or disconfirm cross-level hypotheses, unless one can measure different levels of systems or dimensions in the same spaces or in different spaces with known transformations among them
  • It must be possible, moreover, to make such measurements precisely enough to demonstrate whether or not there is a formal identity across levels
  • fundamental "fourth dimension" of the physical space-time continuum
  • is the particular instant at which a structure exists or a process occurs
  • or the measured or measurable period over which a structure endures or a process continues.
  • durations
  • speeds
  • rates
  • accelerations
  • irreversible unidirectionality of time
  • thermodynamics
  • negentropy
  • "time's arrow."
  • Matter and energy
  • Matter is anything which has mass (m) and occupies physical space.
  • Energy (E) is defined in physics as the ability to do work.
  • kinetic energy
  • potential energy
  • rest mass energy
  • Mass and energy are equivalent
  • Living systems need specific types of matter-energy in adequate amounts
  • Energy for the processes of living systems is derived from the breakdown of molecules
  • Any change of state of matter-energy or its movement over space, from one point to another, I shall call action.
  • It is one form of process.
  • information (H)
  • Transmission of Information
  • Meaning is the significance of information to a system which processes it: it constitutes a change in that system's processes elicited by the information, often resulting from associations made to it on previous experience with it
  • Information is a simpler concept: the degrees of freedom that exist in a given situation to choose among signals, symbols, messages, or patterns to be transmitted.
  • The set of all these possible categories (the alphabet) is called the ensemble or repertoire
  • .) The unit is the binary digit, or bit of information
  • . The amount of information is measured as the logarithm to the base 2 of the number of alternate patterns
  • Signals convey information to the receiving system only if they do not duplicate information already in the receiver. As Gabor says:
  • [The information of a message can] be defined as the 'minimum number of binary decisions which enable the receiver to construct the message, on the basis of the data already available to him.'
  • meaning cannot be precisely measured
  • Information is the negative of uncertainty.
  • information is the amount of formal patterning or complexity in any system.
  • The term marker was used by von Neumann to refer to those observable bundles, units, or changes of matter-energy whose patterning bears or conveys the informational symbols from the ensemble or repertoire.
  • If a marker can assume n different states of which only one is present at any given time, it can represent at most log2n bits of information. The marker may be static, as in a book or in a computer's memory
  • Communication of almost every sort requires that the marker move in space, from the transmitting system to the receiving system, and this movement follows the same physical laws as the movement of any other sort of matter-energy. The advance of communication technology over the years has been in the direction of decreasing the matter-energy costs of storing and transmitting the markers which bear information.
  • There are, therefore, important practical matter-energy constraints upon the information processing of all living systems exerted by the nature of the matter-energy which composes their markers.
  • organization is based upon the interrelations among parts.
  • If two parts are interrelated either quantitatively or qualitatively, knowledge of the state of one must yield some information about the state of the other. Information measures can demonstrate when such relationships exist
  • The disorder, disorganization, lack of patterning, or randomness of organization of a system is known as its entropy (S)
  • the statistical measure for the negative of entropy is the same as that for information
  • entropy becomes a measure of the probability
  • Increase of entropy was thus interpreted as the passage of a system from less probable to more probable states.
  • according to the second law, a system tends to increase in entropy over time, it must tend to decrease in negentropy or information.
  • therefore no principle of the conservation of information
  • The total information can be decreased in any system without increasing it elsewhere
  • but it cannot be increased without decreasing it elsewhere
  • . Making one or more copies of a given informational pattern does not increase information overall, though it may increase the information in the system which receives the copied information.
  • transforms information into negative entropy
  • smallest possible amount of energy used in observing one bit of information
  • calculations of the amount of information accumulated by living systems throughout growth.
  • the concept of Prigogine that in an open system (that is one in which both matter and energy can be exchanged with the environment) the rate of entropy production within the system, which is always positive, is minimized when the system is in a steady state.
  • in systems with internal feedbacks, internal entropy production is not always minimized when the system is in a stationary state. In other words, feedback couplings between the system parameters may cause marked changes in the rate of development of entropy. Thus it may be concluded that the "information flow" which is essential for this feedback markedly alters energy utilization and the rate of development of entropy, at least in some such special cases which involve feedback control. While the explanation of this is not clear, it suggests an important relationship between information and entropy
  • amount of energy actually required to transmit the information in the channel is a minute part of the total energy in the system, the "housekeeping energy" being by far the largest part of it
  • In recent years systems theorists have been fascinated by the new ways to study and measure information flows, but matter-energy flows are equally important. Systems theory is more than information theory, since it must also deal with energetics - such matters as
  • the flow of raw materials through societies
  • Only a minute fraction of the energy used by most living systems is employed for information processing
  • I have noted above that the movement of matter-energy over space, action, is one form of process. Another form of process is information processing or communication, which is the change of information from one state to another or its movement from one point to another over space
  • Communications, while being processed, are often shifted from one matter-energy state to another, from one sort of marker to another
  • transformations go on in living systems
  • One basic reason why communication is of fundamental importance is that informational patterns can be processed over space and the local matter-energy at the receiving point can be organized to conform to, or comply with, this information
  • the delivery of "flowers by telegraph."
  • Matter-energy and information always flow together
  • Information is always borne on a marker
  • . Conversely there is no regular movement in a system unless there is a difference in potential between two points, which is negative entropy or information
  • If the receiver responds primarily to the material or energic aspect, I shall call it, for brevity, a matter-energy transmission; if the response is primarily to the information, I shall call it an information transmission
  • Moreover, just as living systems must have specific forms of matter-energy, so they must have specific patterns of information
  • example
  • example
  • develop normally
  • have appropriate information inputs in infancy
  • pairs of antonyms
  • one member of which is associated with the concept of information (H)
  • the other member of which is associated with its negative, entropy (S)
  • System
  • A system is a set of interacting units with relationships among them
  • .The word "set" implies that the units have some common properties. These common properties are essential if the units are to interact or have relationships. The state of each unit is constrained by, conditioned by, or dependent on the state of other units. The units are coupled. Moreover, there is at least one measure of the sum of its units which is larger than the sum of that measure of its units.
  • Conceptual system
  • Units
  • terms
  • Relationships
  • a set of pairs of units, each pair being ordered in a similar way
  • expressed by words
  • or by logical or mathematical symbols
  • operations
  • The conceptual systems of science
  • observer
  • selects
  • particular sets to study
  • Variable
  • Each member of such a set becomes a variable of the observer's conceptual system
  • conceptual system may be loose or precise, simple or elaborate
  • Indicator
  • an instrument or technique used to measure fluctuations of variables in concrete systems
  • Function
  • a correspondence between two variables, x and y, such that for each value of x there is a definite value of y, and no two y's have the same x, and this correspondence is: determined by some rule
  • Any function is a simple conceptual system
  • Parameter
  • An independent variable through functions of which other functions may be expressed
  • The state of a conceptual system
  • the set of values on some scale, numerical or otherwise, which its variables have at a given instant
  • Formal identity
  • variables
  • varies comparably to a variable in another system
  • If these comparable variations are so similar that they can be expressed by the same function, a formal identity exists between the two systems
  • Relationships between conceptual and other sorts of systems
  • Science advances as the formal identity or isomorphism increases between a theoretical conceptual system and objective findings about concrete or abstracted systems
  • A conceptual system may be purely logical or mathematical, or its terms and relationships may be intended to have some sort of formal identity or isomorphism with units and relationships empirically determinable by some operation carried out by an observer
  • Concrete system
  • a nonrandom accumulation of matter-energy, in a region in physical space-time, which is organized into interacting interrelated subsystems or components.
  • Units
  • are also concrete systems
  • Relationships
  • spatial
  • temporal
  • spatiotemporal
  • causal
  • Both units and relationships in concrete systems are empirically determinable by some operation carried out by an observer
  • patterns of relationships or processes
  • The observer of a concrete system
  • distinguishes a concrete system from unorganized entities in its environment by the following criteria
  • physical proximity of its units
  • similarity of its units
  • common fate of its units
  • distinct or recognizable patterning of its units.
  • Their boundaries are discovered by empirical operations available to the general scientific community rather than set conceptually by a single observer
  • Variable of a concrete system
  • Any property of a unit or relationship within a system which can be recognized by an observer
  • which can potentially change over time, and whose change can potentially be measured by specific operations, is a variable of a concrete system
  • Examples
  • number of its subsystems or components, its size, its rate of movement in space, its rate of growth, the number of bits of information it can process per second, or the intensity of a sound to which it responds
  • A variable is intrasystemic
  • not to be confused with intersystemic variations which may be observed among individual systems, types, or levels.
  • The state of a concrete system
  • its structure
  • represented by the set of values on some scale which its variables have at that instant
  • Open system
  • Most concrete systems have boundaries which are at least partially permeable, permitting sizable magnitudes of at least certain sorts of matter-energy or information transmissions to pass them. Such a system is an open system. In open systems entropy may increase, remain in steady state, or decrease.
  • Closed system
  • impermeable boundaries through which no matter-energy or information transmissions of any sort can occur is a closed system
  • special case
  • No actual concrete system is completely closed
  • In closed systems, entropy generally increases, exceptions being when certain reversible processes are carried on which do not increase it. It can never decrease.
  • Nonliving system
  • the general case of concrete systems, of which living systems are a very special case. Nonliving systems need not have the same critical subsystems as living systems, though they often have some of them
  • Living system
  • a special subset of the set of all possible concrete systems
  • They all have the following characteristics:
  • open systems
  • inputs
  • throughputs
  • outputs
  • of various sorts of matter-energy and information.
  • maintain a steady state of negentropy even though entropic changes occur in them as they do everywhere else
  • by taking in inputs
  • higher in complexity or organization or negentropy
  • than their outputs
  • The difference permits them to restore their own energy and repair breakdowns in their own organized structure.
  • In living systems many substances are produced as well as broken down
  • To do this such systems must be open and have continual inputs of matter-energy and information
  • entropy will always increase in walled-off living systems
  • They have more than a certain minimum degree of complexity
  • They either contain genetic material composed of deoxyribonucleic acid (DNA)
  • or have a charter
  • blueprint
  • program
  • of their structure and process from the moment of their origin
  • may also include nonliving components.
  • They have a decider, the essential critical sub-system which controls the entire system, causing its subsystems and components to interact. Without such interaction under decider control there is no system.
  • other specific critical sub-systems or they have symbiotic or parasitic relationships with other living or nonliving systems
  • Their subsystems are integrated together to form actively self-regulating, developing, unitary systems with purposes and goals
  • They can exist only in a certain environment
  • change in their environment
  • produces stresses
  • Totipotential system
  • capable of carrying out all critical subsystem processes necessary for life is totipotential
  • Partipotential system
  • does not itself carry out all critical subsystem processes is partipotential
  • A partipotential system must interact with other systems that can carry out the processes which it does not, or it will not survive
  • parasitic
  • symbiotic
    • Tiberius Brastaviceanu
       
      The Exchange fime is a symbiotic system to SENSORICA
  • Fully functioning system
  • when it
  • Partially functioning system
  • it must do its own deciding, or it is not a system
  • Abstracted system
  • Units
  • relationships abstracted or selected by an observer in the light of his interests, theoretical viewpoint, or philosophical bias.
  • Some relationships may be empirically determinable by some operation carried out by the observer, but others are not, being only his concepts
  • Relationships
  • The relationships mentioned above are observed to inhere and interact in concrete, usually living, systems
  • these concrete systems are the relationships of abstracted systems.
  • The verbal usages of theoretical statements concerning abstracted systems are often the reverse of those concerning concrete systems
  • An abstracted system differs from an abstraction, which is a concept
  • representing a class of phenomena all of which are considered to have some similar "class characteristic." The members of such a class are not thought to interact or be interrelated, as are the relationships in an abstracted system
  • Abstracted systems are much more common in social science theory than in natural science.
  • are oriented toward relationships rather than toward the concrete systems
  • spatial arrangements are not usually emphasized
  • their physical limits often do not coincide spatially with the boundaries of any concrete system, although they may.
  • important difference between the physical and biological hierarchies, on the one hand, and social hierarchies, on the other
  • Most physical and biological hierarchies are described in spatial terms
  • we propose to identify social hierarchies not by observing who lives close to whom but by observing who interacts with whom
  • intensity of interaction
  • in most biological and physical systems relatively intense interaction implies relative spatial propinquity
  • To the extent that interactions are channeled through specialized communications and transportation systems, spatial propinquity becomes less determinative of structure.
    • Tiberius Brastaviceanu
       
      This is the case of SENSORICA, built on web-based communication and coordination tools. 
  • PARSONS
  • the unit of a partial social system is a role and not the individual.
  • culture
  • cumulative body of knowledge of the past, contained in memories and assumptions of people who express this knowledge in definite ways
  • The social system is the actual habitual network of communication between people.
  • RUESCH
  • A social system is a behavioral system
  • It is an organized set of behaviors of persons interacting with each other: a pattern of roles.
  • The roles are the units of a social system
    • Tiberius Brastaviceanu
       
      That is why we need a role system in SENSORICA
  • On the other hand, the society is an aggregate of social subsystems, and as a limiting case it is that social system which comprises all the roles of all the individuals who participate.
  • What Ruesch calls the social system is something concrete in space-time, observable and presumably measurable by techniques like those of natural science
  • To Parsons the system is abstracted from this, being the set of relationships which are the form of organization. To him the important units are classes of input-output relationships of subsystems rather than the subsystems themselves
  • system is a system of relationship in action, it is neither a physical organism nor an object of physical perception
  • evolution
  • differentiation
  • growth
  • from earlier and simpler forms and functions
  • capacities for specializations and gradients
  • [action] is not concerned with the internal structure of processes of the organism, but is concerned with the organism as a unit in a set of relationships and the other terms of that relationship, which he calls situation
  • Abstracted versus concrete systems
  • One fundamental distinction between abstracted and concrete systems is that the boundaries of abstracted systems may at times be conceptually established at regions which cut through the units and relationships in the physical space occupied by concrete systems, but the boundaries of these latter systems are always set at regions which include within them all the units and internal relationships of each system
  • A science of abstracted systems certainly is possible and under some conditions may be useful.
  • If the diverse fields of science are to be unified, it would be helpful if all disciplines were oriented either to concrete or to abstracted systems.
  • It is of paramount importance for scientists to distinguish clearly between them
Kurt Laitner

Smart Contracts - 0 views

  • Whether enforced by a government, or otherwise, the contract is the basic building block of a free market economy.
  • A smart contract is a set of promises, specified in digital form, including protocols within which the parties perform on the other promises.
  • The basic idea of smart contracts is that many kinds of contractual clauses (such as liens, bonding, delineation of property rights, etc.) can be embedded in the hardware and software we deal with, in such a way as to make breach of contract expensive (if desired, sometimes prohibitively so) for the breacher.
  • ...77 more annotations...
  • A broad statement of the key idea of smart contracts, then, is to say that contracts should be embedded in the world.
  • And where the vending machine, like electronic mail, implements an asynchronous protocol between the vending company and the customer, some smart contracts entail multiple synchronous steps between two or more parties
  • POS (Point of Sale)
  • EDI (Electronic Data Interchange
  • SWIFT
  • allocation of public network bandwidth via automated auctions
  • Smart contracts reference that property in a dynamic, proactively enforced form, and provide much better observation and verification where proactive measures must fall short.
  • The mechanisms of the world should be structured in such a way as to make the contracts (a) robust against naive vandalism, and (b) robust against sophisticated, incentive compatible (rational) breach.
  • A third category, (c) sophisticated vandalism (where the vandals can and are willing to sacrifice substantial resources), for example a military attack by third parties, is of a special and difficult kind that doesn't often arise in typical contracting, so that we can place it in a separate category and ignore it here.
  • The threat of physical force is an obvious way to embed a contract in the world -- have a judicial system decide what physical steps are to be taken out by an enforcement agency (including arrest, confiscation of property, etc.) in response to a breach of contract
  • It is what I call a reactive form of security.
  • The need to invoke reactive security can be minimized, but not eliminated, by making contractual arrangements verifiable
  • Observation of a contract in progress, in order to detect the first sign of breach and minimize losses, also is a reactive form of security
  • A proactive form of security is a physical mechanism that makes breach expensive
  • From common law, economic theory, and contractual conditions often found in practice, we can distill four basic objectives of contract design
  • observability
  • The disciplines of auditing and investigation roughly correspond with verification of contract performance
  • verifiability
  • The field of accounting is, roughly speaking, primarily concerned with making contracts an organization is involved in more observable
  • privity
  • This is a generalization of the common law principle of contract privity, which states that third parties, other than the designated arbitrators and intermediaries, should have no say in the enforcement of a contract
  • The field of security (especially, for smart contracts, computer and network security), roughly corresponds to the goal of privity.
  • enforceability
  • Reputation, built-in incentives, "self-enforcing" protocols, and verifiability can all play a strong part in meeting the fourth objective
  • Smart contracts often involve trusted third parties, exemplified by an intermediary, who is involved in the performance, and an arbitrator, who is invoked to resolve disputes arising out of performance (or lack thereof)
  • In smart contract design we want to get the most out of intermediaries and arbitrators, while minimizing exposure to them
  • Legal barriers are the most severe cost of doing business across many jurisdictions. Smart contracts can cut through this Gordian knot of jurisdictions
  • Where smart contracts can increase privity, they can decrease vulnerability to capricious jurisdictions
  • Secret sharing
  • The field of Electronic Data Interchange (EDI), in which elements of traditional business transactions (invoices, receipts, etc.) are exchanged electronically, sometimes including encryption and digital signature capabilities, can be viewed as a primitive forerunner to smart contracts
  • One important task of smart contracts, that has been largely overlooked by traditional EDI, is critical to "the meeting of the minds" that is at the heart of a contract: communicating the semantics of the protocols to the parties involved
  • There is ample opportunity in smart contracts for "smart fine print": actions taken by the software hidden from a party to the transaction.
  • Thus, via hidden action of the software, the customer is giving away information they might consider valuable or confidential, but the contract has been drafted, and transaction has been designed, in such a way as to hide those important parts of that transaction from the customer.
  • To properly communicate transaction semantics, we need good visual metaphors for the elements of the contract. These would hide the details of the protocol without surrendering control over the knowledge and execution of contract terms
  • Protocols based on mathematics, called cryptographic protocols, tre the basic building blocks that implement the improved tradeoffs between observability, verifiability, privity, and enforceability in smart contracts
  • secret key cryptography,
  • Public key cryptography
  • digital signatures
  • blind signature
  • Where smart contracts can increase observability or verifiability, they can decrease dependence on these obscure local legal codes and enforcement traditions
  • zero-knowledge interactive proof
  • digital mix
  • Keys are not necessarily tied to identities, and the task of doing such binding turns out to be more difficult than at first glance.
  • All public key operation are are done inside an unreadable hardware board on a machine with a very narrow serial-line connection (ie, it carries only a simple single-use protocol with well-verified security) to a dedicated firewall. Such a board is available, for example, from Kryptor, and I believe Viacrypt may also have a PGP-compatable board. This is economical for central sites, but may be less practical for normal users. Besides better security, it has the added advantage that hardware speeds up the public key computations.
  • If Mallet's capability is to physically sieze the machine, a weaker form of key protection will suffice. The trick is to hold the keys in volatile memory.
  • The data is still vulnerable to a "rubber hose attack" where the owner is coerced into revealing the hidden keys. Protection against rubber hose attacks might require some form of Shamir secret sharing which splits the keys between diverse phgsical sites.
  • How does Alice know she has Bob's key? Who, indeed, can be the parties to a smart contract? Can they be defined just by their keys? Do we need biometrics (such as autographs, typed-in passwords, retina scans, etc.)?
  • The public key cryptography software package "Pretty Good Privacy" (PGP) uses a model called "the web of trust". Alice chooses introducers whom she trusts to properly identify the map between other people and their public keys. PGP takes it from there, automatically validating any other keys that have been signed by Alice's designated introducers.
  • 1) Does the key actually belong to whom it appears to belong? In other words, has it been certified with a trusted signature?
  • 2) Does it belong to an introducers, someone you can trust to certify other keys?
  • 3) Does the key belong to someone you can trust to introduce other introducers? PGP confuses this with criterion (2). It is not clear that any single person has enough judgement to properly undertake task (3), nor has a reasonable institution been proposed that will do so. This is one of the unsolved problems in smart contracts.
  • PGP also can be given trust ratings and programmed to compute a weighted score of validity-- for example, two marginally trusted signatures might be considered as credible as one fully trusted signature
  • Notaries Public Two different acts are often called "notarization". The first is simply where one swears to the truth of some affidavit before a notary or some other officer entitled to take oaths. This does not require the notary to know who the affiant is. The second act is when someone "acknowledges" before a notary that he has executed a document as ``his own act and deed.'' This second act requires the notary to know the person making the acknowledgment.
  • "Identity" is hardly the only thing we might want map to a key. After all, physical keys we use for our house, car, etc. are not necessarily tied to our identity -- we can loan them to trusted friends and relatives, make copies of them, etc. Indeed, in cyberspace we might create "virtual personae" to reflect such multi-person relationships, or in contrast to reflect different parts of our personality that we do not want others to link. Here is a possible classification scheme for virtual personae, pedagogically presented:
  • A nym is an identifier that links only a small amount of related information about a person, usually that information deemed by the nym holder to be relevant to a particular organization or community
  • A nym may gain reputation within its community.
  • With Chaumian credentials, a nym can take advantage of the positive credentials of the holder's other nyms, as provably linked by the is-a-person credential
  • A true name is an identifier that links many different kinds of information about an person, such as a full birth name or social security number
  • As in magick, knowing a true name can confer tremendous power to one's enemies
  • A persona is any perstient pattern of behavior, along with consistently grouped information such as key(s), name(s), network address(es), writing style, and services provided
  • A reputable name is a nym or true name that has a good reputation, usually because it carries many positive credentials, has a good credit rating, or is otherwise highly regarded
  • Reputable names can be difficult to transfer between parties, because reputation assumes persistence of behavior, but such transfer can sometimes occur (for example, the sale of brand names between companies).
  • Blind signatures can be used to construct digital bearer instruments, objects identified by a unique key, and issued, cleared, and redeemed by a clearing agent.
  • The clearing agent prevents multiple clearing of particular objects, but can be prevented from linking particular objects one or both of the clearing nyms who transferred that object
  • These instruments come in an "online" variety, cleared during every transfer, and thus both verifiable and observable, and an "offline" variety, which can be transfered without being cleared, but is only verifiable when finally cleared, by revealing any the clearing nym of any intermediate holder who transfered the object multiple times (a breach of contract).
  • To implement a full transaction of payment for services, we need more than just the digital cash protocol; we need a protocol that guarantees that service will be rendered if payment is made, and vice versa
  • A credential is a claim made by one party about another. A positive credential is one the second party would prefer to reveal, such as a degree from a prestigious school, while that party would prefer not to reveal a negative credential such as a bad credit rating.
  • A Chaumian credential is a cryptographic protocol for proving one possesses claims made about onself by other nyms, without revealing linkages between those nyms. It's based around the is-a-person credential the true name credential, used to prove the linkage of otherwise unlinkable nyms, and to prevent the transfer of nyms between parties.
  • Another form of credential is bearer credential, a digital bearer instrument where the object is a credential. Here the second party in the claim refers to any bearer -- the claim is tied only to the reputable name of issuing organization, not to the nym or true name of the party holding the credential.
  • Smart Property We can extend the concept of smart contracts to property. Smart property might be created by embedding smart contracts in physical objects. These embedded protocols would automatically give control of the keys for operating the property to the party who rightfully owns that property, based on the terms of the contract. For example, a car might be rendered inoperable unless the proper challenge-response protocol is completed with its rightful owner, preventing theft. If a loan was taken out to buy that car, and the owner failed to make payments, the smart contract could automatically invoke a lien, which returns control of the car keys to the bank. This "smart lien" might be much cheaper and more effective than a repo man. Also needed is a protocol to provably remove the lien when the loan has been paid off, as well as hardship and operational exceptions. For example, it would be rude to revoke operation of the car while it's doing 75 down the freeway.
  • Smart property is software or physical devices with the desired characteristics of ownership embedded into them; for example devices that can be rendered of far less value to parties who lack possesion of a key, as demonstrated via a zero knowledge interactive proof
  • One method of implementing smart property is thru operation necessary data (OND): data necessary to the operation of smart property.
  • A smart lien is the sharing of a smart property between parties, usually two parties called the owner and the lienholder.
  • Many parties, especially new entrants, may lack this reputation capital, and will thus need to be able to share their property with the bank via secure liens
  • What about extending the concept of contract to cover agreement to a prearranged set of tort laws? These tort laws would be defined by contracts between private arbitration and enforcement agencies, while customers would have a choice of jurisdictions in this system of free-market "governments".
  • If these privately practiced law organizations (PPLs for short) bear ultimate responsibility for the criminal activities of their customers, or need to insure lack of defection or future payments on the part of customers, they may in turn ask for liens against their customers, either in with contractual terms allowing arrest of customers under certain conditions
  • Other important areas of liability include consumer liability and property damage (including pollution). There need to mechanisms so that, for example, pollution damage to others' persons or property can be assessed, and liens should exist so that the polluter can be properly charged and the victims paid. Where pollution is quantifiable, as with SO2 emissions, markets can be set up to trade emission rights. The PPLs would have liens in place to monitor their customer's emissions and assess fees where emission rights have been exceeded.
Kurt Laitner

Goodbye, Dilbert: 'The Rise of the Naked Economy' » Knowledge@Wharton - 2 views

  • “teaming”: bringing together a team of professionals for a specific task
  • The old cubicle-based, static company is increasingly being replaced by a more fluid and mobile model: “the constant assembly, disassembly, and reassembly of people, talent, and ideas around a range of challenges and opportunities.”
  • Therefore, the new economy and its “seminomadic workforce” will require “new places to gather, work, live, and interact.”
  • ...17 more annotations...
  • The consumer electronics company Plantronics, for example, knowing that on any given day 40% of its workforce will be working elsewhere, designed its corporate campus to only 60% capacity
  • Their joint enterprise, NextSpace, became their first venture into what they call “coworking,” or the creation of “shared collaborative workspaces.”
  • also nurtures what the authors call “managed serendipity” — ad hoc collaboration between people with diverging but complementary skills
  • the number of coworking spaces worldwide has shot up from 30 in 2006 to 1,130 in 2011
  • someone needs to keep an eye on the big picture, to “connect the dots.”
  • workspaces are designed on a flexible, on-demand and as-needed basis
  • Coonerty and Neuner found that the most productive collaborations tended to pair highly specialized experts with big-picture thinkers
  • they were struck by the number of entrepreneurs and freelancers working at coffee shops in the area
  • Business Talent Group
  • Clients get the specialized help they need at a cost below that of a full-time employee or traditional consulting firm, and specialists are well compensated and rewarded with flexible schedules and a greater degree of choice about which projects to take.
  • This has produced a new market dynamic in which the headhunter of yesteryear has been replaced by “talent brokers” who connect highly specialized talent with companies on a project-by-project basis
  • Matthew Mullenweg, doesn’t have much faith in traditional office buildings or corporate campuses: “I would argue that most offices are full of people not working.”
  • On the other hand, Mullenweg is a big believer in face-to-face collaboration and brainstorming, and flies his teams all over the globe to do so.
  • He also set up an informal workspace in San Francisco called the Lounge
  • Additionally, a 2010 Kauffman-Rand study worried that employer-based health insurance, by discouraging risk-taking, will be an ongoing drag on entrepreneurship
  • the problem of payroll taxes for freelancers
  • up to 44% of independent workers encounter difficulty getting paid fully for their work
Tiberius Brastaviceanu

Innovation Canada: A Call to Action - Review of Federal Support to Research and Develop... - 1 views

  • Canada has a solid foundation on which to build success as a leader in the knowledge economy of tomorrow
  • innovation in Canada lags behind other highly developed countries
  • innovation is the ultimate source of the long-term competitiveness of businesses and the quality of life of Canadians
  • ...28 more annotations...
  • We heard that the government should be more focussed on helping innovative firms to grow and, particularly, on serving the needs of small and medium-sized enterprises (SMEs)
  • greater cooperation with provincial programs
  • innovation support is too narrowly focussed on R&D – more support is needed for other activities along the continuum from ideas to commercially useful innovation
  • more productive and internationally competitive economy
  • whole-of-government program delivery vehicle – the Industrial Research and Innovation Council (IRIC)
  • SR&ED program should be simplified
  • includes non-labour costs, such as materials and capital equipment, the calculation of which can be highly complex
  • the base for the tax credit should be labour-related costs, and the tax credit rate should be adjusted upward
  • fund direct support measures for SMEs
  • promoting the growth of firms
  • facilitating access by such firms to an increased supply of risk capital at both the start-up and later stages of their growth.
  • building public–private research collaborations
  • National Research Council (NRC) should become independent collaborative research organizations
  • become affiliates of universities
  • create opportunity and demand for leading-edge goods
  • encouragement of innovation in the Canadian economy should become a stated objective of procurement policies and programs.
  • the government needs to establish business innovation as a whole-of-government priority
  • put innovation at the centre of the government's economic strategy
  • Innovation Advisory Committee (IAC) – a body with a whole-of-government focus that would oversee the realization of our proposed action plan, as well as serve as a permanent mechanism to promote the refinement and improvement of the government's business innovation programs going forward.
  • focus resources where market forces are unlikely to operate effectively or efficiently and, in that context, address the full range of business innovation activities, including research, development, commercialization and collaboration with other key actors in the innovation ecosystem
  • the closer the activity being supported is to market, and therefore the more likely it is that the recipient firm will capture most of the benefit for itself.
  • specific sectors
  • of strategic importance
  • concentrated in particular regions
  • succeed in the arena of global competition
    • Tiberius Brastaviceanu
       
      They don't go beyond the firm
    • Tiberius Brastaviceanu
       
      they are still stuck in the competitive paradigm
    • Tiberius Brastaviceanu
       
      Still stack with the old paradigm of the "knowledge economy"  http://en.wikipedia.org/wiki/Knowledge_economy  My opinion is that we're moving into a know-how economy. 
Francois Bergeron

CMC Microsystems - 0 views

  •  
    For the past 25 years, CMC Microsystems has been proudly supporting research excellence at Canadian universities. CMC Microsystems enables and supports the creation and application of micro- and nano-system knowledge by providing a national infrastructure for excellence in research and a path to commercialization of related devices, components and systems. CMC delivers innovative and cost-effective services to a growing community of microsystems researchers that connect 45 universities across Canada, and presently involves 760 faculty members and over 2,000 graduate students and other researchers.
Tiberius Brastaviceanu

Innovative schemes for open innovation and science 2.0 INSO-4-2015 - 0 views

  • Topic: Innovative schemes for open innovation and science 2.0 INSO-4-2015
  • open innovation and science 2.0
  • assist universities to become open innovation centres for their region in cooperation with companies, realising the ERA priorities, and to enable public administrations to drive innovation in and through the public sector.
  • ...16 more annotations...
  • help universities, companies and public authorities to enhance their capacity to engage in science 2.0 and open innovation.
  • effective linkages for innovation between universities and companies and other employment sectors, and provide freely accessible innovation training platforms, including digital platforms. 
  • consortia
  • adopt innovative ways to create new knowledge, new jobs and promote economic growth
  • a). Inter-sectoral mobility
  • b) Academia- Business knowledge co-creation
  • c) Innovation leadership programme for public administrations and researchers
  • a policy of double nominations
  • a policy to further and recognise inter-sectoral mobility
  • This challenge can be addressed through different sets of actions:
    • Tiberius Brastaviceanu
       
      the sub-sections are not addressed at once.
  • develop or (further) implement open innovative schemes to strengthen linkages between academia, industry and community
  • Research institutions together with companies are expected to build sustainable structures which help to absorb needs of users and thereby become co-creators of new solutions.  SMEs should be encouraged to participate.
  • Gender aspects need to be taken into account.
    • Tiberius Brastaviceanu
       
      This is something that really fits SENSORICA. We've been working on this for 2 years now. 
  • developing curricula and providing freely through online platforms, possibly combined with other delivery mechanisms, innovation training for public administrations and researchers.
  •  
    "Topic: Innovative schemes for open innovation and science 2.0 INSO-4-2015"
Tiberius Brastaviceanu

Collaborations: The rise of research networks : Nature : Nature Publishing Group - 0 views

  • Co-authorship has been increasing inexorably3, 4. Recently it has exploded.
  • Collaboration is normally a good thing from a wider public perspective. Knowledge is better transferred and combined by collaboration, and co-authored papers tend to be cited more frequently
  • The first paper with 1,000 authors was published in 2004
  • ...33 more annotations...
  • a paper with 3,000 authors came in 2008
  • By last year, a total of 120 physics papers had more than 1,000 authors and 44 had more than 3,000
  • independent contributions to joint efforts, usually in the form of data, that involve only weak intellectual interaction
  • Papers with hundreds of co-authors contribute to the apparent pervasiveness of collaboration between countries.
  • Consequently, distinguishing Malta's own science performance is already impossible. This blurring of national distinctiveness could be a growing issue.
  • The rapid growth of each nation's research base and regional links, driven by relatively strong economies investing in innovation, will undoubtedly produce a regional research labour force to be reckoned with by 2020
  • China's rapid growth since 2000 is leading to closer research collaboration with Japan
  • Taiwan
  • South Korea
  • Australia
  • Asia-Pacific region
  • India has a growing research network with Japan, South Korea and Taiwan, although it is not as frequent a collaborator with China as one might expect
  • Middle East, Egypt and Saudi Arabia have a strong research partnership that is drawing in neighbours including Tunisia and Algeria.
  • Latin America has an emerging research network focused around Brazil,
  • has doubled its collaboration with Argentina, Chile and Mexico in the past five years
  • Africa has three distinct networks: in southern Africa, in French-speaking countries in West Africa and in English-speaking nations in East Africa.
  • proximity is just one of several factors in networks
  • use paths of least resistance to partnership, rather than routes that might provide other strategic gains
  • Commonwealth countries
  • have adopted similar research structures
  • Students
  • proximity
  • lower cost of living
  • generous government scholarships
  • Job opportunities
  • countries in science's old guard must drop their patrician tendencies, open up clear communication channels and join in with new alliances as equal participants before they find themselves the supplicants.
  • Collaboration between the public and private sectors has become more apparent because of government interest in exploiting research for economic competitiveness. Some data show that industrial investment in research seems to be dropping — perhaps a reaction to the recession, but the trend seems to be long term, at least in the United Kingdom9
  • Incentives for collaborative innovation investment that draws directly on the science base would be a good start.
  • So what are the costs and benefits of collaboration? It provides access to resources, including funding, facilities and ideas. It will be essential for grand challenges in physics, environment and health to have large, international teams supported by major facilities and rich data, which encourage the rapid spread of knowledge.
  • Research networks are a tool of international diplomacy.
  • As for costs, collaboration takes time and travel and means a shared agenda
  • The risk is that international, national and institutional agendas may become driven by the same bland establishment consensus.
  • The iconoclastic, the maverick and the marginal may find a highly collaborative world a difficult place to flourish
  •  
    "Co-authorship has been increasing inexorably3, 4. Recently it has exploded."
Kurt Laitner

Digital Reality | Edge.org - 0 views

  • When you snap the bricks together, you don't need a ruler to play Lego; the geometry comes from the parts
  • first attribute is metrology that comes from the parts
  • digitizing composites into little linked loops of carbon fiber instead of making giant pieces
  • ...75 more annotations...
  • In a 3D printer today, what you can make is limited by the size of the machine. The geometry is external
  • is the Lego tower is more accurate than the child because the constraint of assembling the bricks lets you detect and correct errors
  • That's the exponential scaling for working reliably with unreliable parts
  • Because the parts have a discrete state, it means in joining them you can detect and correct errors
  • detect and correct state to correct errors to get an exponential reduction in error, which gives you an exponential increase in complexity
  • The next one is you can join Lego bricks made out of dissimilar materials.
  • The last one is when you're done with Lego you don't put it in the trash; you take it apart and reuse it because there's state in the materials. In a forest there's no trash; you die and your parts get disassembled and you're made into new stuff. When you make a 3D print or laser cut, when you're done there's recycling attempts but there's no real notion of reusing the parts
  • The metrology coming from the parts, detecting and correcting errors, joining dissimilar materials, disconnecting, reusing the components
  • On the very smallest scale, the most exciting work on digital fabrication is the creation of life from scratch. The cell does everything we're talking about. We've had a great collaboration with the Venter Institute on microfluidic machinery to load designer genomes into cells. One step up from that we're developing tabletop chip fab instead of a billion dollar fab, using discrete assembly of blocks of electronic materials to build things like integrated circuits in a tabletop process
  • a child can make a Lego structure bigger than themself
  • There's a series of books by David Gingery on how to make a machine shop starting with charcoal and iron ore.
  • There are twenty amino acids. With those twenty amino acids you make the motors in the molecular muscles in my arm, you make the light sensors in my eye, you make my neural synapses. The way that works is the twenty amino acids don't encode light sensors, or motors. They’re very basic properties like hydrophobic or hydrophilic. With those twenty properties you can make you. In the same sense, digitizing fabrication in the deep sense means that with about twenty building blocks—conducting, insulating, semiconducting, magnetic, dielectric—you can assemble them to create modern technology
  • By discretizing those three parts we can make all those 500,000 resistors, and with a few more parts everything else.
  • Now, there's a casual sense, which means a computer controls something to make something, and then there's the deep sense, which is coding the materials. Intellectually, that difference is everything but now I'm going to explain why it doesn't matter.
  • Then in turn, the next surprise was they weren't there for research, they weren't there for theses, they wanted to make stuff. I taught additive, subtractive, 2D, 3D, form, function, circuits, programming, all of these skills, not to do the research but just using the existing machines today
  • What they were answering was the killer app for digital fabrication is personal fabrication, meaning, not making what you can buy at Walmart, it’s making what you can't buy in Walmart, making things for a market of one person
  • The minicomputer industry completely misread PCs
  • the Altair was life changing for people like me. It was the first computer you could own as an individual. But it was almost useless
  • It was hard to use but it brought the cost from a million dollars to 100,000 and the size from a warehouse down to a room. What that meant is a workgroup could have one. When a workgroup can have one it meant Ken Thompson and Dennis Ritchie at Bell Labs could invent UNIX—which all modern operating systems descend from—because they didn't have to get permission from a whole corporation to do it
  • At the PC stage what happened is graphics, storage, processing, IO, all of the subsystems got put in a box
  • To line that up with fabrication, MIT's 1952 NC Mill is similar to the million-dollar machines in my lab today. These are the mainframes of fab. You need a big organization to have them. The fab labs I'll tell you about are exactly analogous to the cost and complexity of minicomputers. The machines that make machines I'll tell you about are exactly analogous to the cost and complexity of the hobbyist computers. The research we're doing, which is leading up to the Star Trek Replicator, is what leads to the personal fabricator, which is the integrated unit that makes everything
  • conducting, resistive, insulating.
  • The fab lab is 2 tons, a $100,000 investment. It fills a few thousand square feet, 3D scanning and printing, precision machining, you can make circuit boards, molding and casting tooling, computer controlled cutting with a knife, with a laser, large format machining, composite layup, surface mount rework, sensors, actuators, embedded programming— technology to make technology.
  • Ten years you can just plot this doubling. Today, you can send a design to a fab lab and you need ten different machines to turn the data into something. Twenty years from now, all of that will be in one machine that fits in your pocket.
  • We've been living with this notion that making stuff is an illiberal art for commercial gain and it's not part of the means of expression. But, in fact, today, 3D printing, micromachining, and microcontroller programming are as expressive as painting paintings or writing sonnets but they're not means of expression from the Renaissance. We can finally fix that boundary between art and artisans
  • You don't go to a fab lab to get access to the machine; you go to the fab lab to make the machine.
  • Over the next maybe five years we'll be transitioning from buying machines to using machines to make machines. Self-reproducing machines
  • But they still have consumables like the motors, and they still cut or squirt. Then the interesting transition comes when we go from cutting or printing to assembling and disassembling, to moving to discretely assembled materials
  • because if anybody can make anything anywhere, it challenges everything
    • Kurt Laitner
       
      great quote (replace challenges with changes for effect)
  • Now, the biggest surprise for me in this is I thought the research was hard. It's leading to how to make the Star Trek Replicator. The insight now is that's an exercise in embodied computation—computation in materials, programming their construction. Lots of work to come, but we know what to do
  • And that's when you do tabletop chip fab or make airplanes. That's when technical trash goes away because you can disassemble. 
  • irritated by the maker movement for the failure in mentoring
  • At something like a Maker Faire, there's hall after hall of repeated reinventions of bad 3D printers and there isn't an easy process to take people from easy to hard
  • We started a project out of desperation because we kept failing to succeed in working with existing schools, called the Fab Academy. Now, to understand how that works, MIT is based on scarcity. You assume books are scarce, so you have to go there for the library; you assume tools are scarce, so you have to go there for the machines; you assume people are scarce, so you have to go there to see them; and geography is scarce. It adds up to we can fit a few thousand people at a time. For those few thousand people it works really well. But the planet is a few billion people. We're off by six orders of magnitude. 
  • Next year we're starting a new class with George Church that we've called "How to Grow Almost Anything", which is using fab labs to make bio labs and then teach biotech in it. What we're doing is we're making a new global kind of university
  • Amusingly, I went to my friends at Educause about accrediting the Fab Academy and they said, "We love it. Where are you located?" And I said, "Yes" and they said, "No." Meaning, "We're all over the earth." And they said, "We have no mechanism. We're not allowed to do that. There's no notion of global accreditation."
  • Then they said something really helpful: "Pretend."
  • Once you have a basic set of tools, you can make all the rest of the tools
  • The way the Fab Academy works, in computing terms, it's like the Internet. Students have peers in workgroups, with mentors, surrounded by machines in labs locally. Then we connect them globally by video and content sharing and all of that. It's an educational network. There are these critical masses of groups locally and then we connect them globally
  • You still have Microsoft or IBM now but, with all respect to colleagues there, arguably that's the least interesting part of software
  • To understand the economic and social implications, look at software and look at music to understand what's happening now for fabrication
  • There's a core set of skills a place like MIT can do but it alone doesn't scale to a billion people. This is taking the social engineering—the character of MIT—but now doing it on this global scale.
  • Mainframes didn't go away but what opened up is all these tiers of software development that weren't economically viable
  • If you look at music development, the most interesting stuff in music isn't the big labels, it's all the tiers of music that weren't viable before
  • You can make music for yourself, for one, ten, 100, 1,000, a million. If you look at the tracks on your device, music is now in tiers that weren't economically viable before. In that example it's a string of data and it becomes a sound. Now in digital fab, it's a string of data and it becomes a thing.
  • What is work? For the average person—not the people who write for Edge, but just an average person working—you leave home to go to a place you'd rather not be, doing a repetitive operation you'd rather not do, making something designed by somebody you don't know for somebody you'll never see, to get money to then go home and buy something. But what if you could skip that and just make the thing?
    • Kurt Laitner
       
      !!!
  • It took about ten years for the dot com industry to realize pretty much across the board you don't directly sell the thing. You sell the benefits of the thing
  • 2016 it's in Shenzhen because they're pivoting from mass manufacturing to enabling personal fabrication. We've set Shenzhen as the goal in 2016 for Fab Lab 2.0, which is fab labs making fab labs
  • To rewind now, you can send something to Shenzhen and mass manufacture it. There's a more interesting thing you can do, which is you go to market by shipping data and you produce it on demand locally, and so you produce it all around the world.
  • But their point was a lot of printers producing beautiful pages slowly scales if all the pages are different
  • In the same sense it scales to fabricate globally by doing it locally, not by shipping the products but shipping the data.
  • It doesn't replace mass manufacturing but mass manufacturing becomes the least interesting stuff where everybody needs the same thing. Instead, what you open up is all these tiers that weren't viable before
  • There, they consider IKEA the enemy because IKEA defines your taste. Far away they make furniture and flat pack it and send it to a big box store. Great design sense in Barcelona, but 50 percent youth unemployment. A whole generation can't work. Limited jobs. But ships come in from the harbor, you buy stuff in a big box store. And then after a while, trucks go off to a trash dump. They describe it as products in, trash out. Ships come in with products, trash goes out
    • Kurt Laitner
       
      worse actually.. the trash stays
  • The bits come and go, globally connected for knowledge, but the atoms stay in the city.
  • instead of working to get money to buy products made somewhere else, you can make them locally
    • Kurt Laitner
       
      this may solve greece's problem, walk away from debt, you can't buy other people's (country's) stuff anymore, so make it all yourself
  • The biggest tool is a ShotBot 4'x8'x1' NC mill, and you can make beautiful furniture with it. That's what furniture shops use
  • Anything IKEA makes you can make in a fab lab
  • it means you can make many of the things you consume directly rather than this very odd remote economic loop
  • the most interesting part of the DIY phone projects is if you're making a do-it-yourself phone, you can also start to make the things that the phones talk to. You can start to build your own telco providers where the users provide the network rather than spending lots of money on AT&T or whoever
  • Traditional manufacturing is exactly replaying the script of the computer companies saying, "That's a toy," and it's shining a light to say this creates entirely new economic activity. The new jobs don't come back to the old factories. The ability to make stuff on demand is creating entirely new jobs
  • To keep playing that forward, when I was in Barcelona for the meeting of all these labs hosted by the city architect and the city, the mayor, Xavier Trias, pushed a button that started a forty-year countdown to self-sufficiency. Not protectionism
  • I need high-torque efficient motors with integrated lead screws at low cost, custom-produced on demand. All sorts of the building blocks that let us do what I'm doing currently rest on a global supply chain including China's manufacturing agility
  • The short-term answer is you can't get rid of them because we need them in the supply chain. But the long-term answer is Shenzhen sees the future isn't mass producing for everybody. That's a transitional stage to producing locally
  • My description of MIT's core competence is it's a safe place for strange people
  • The real thing ultimately that's driving the fab labs ... the vacuum we filled is a technical one. The means to make stuff. Nobody was providing that. But in turn, the spaces become magnets. Everybody talks about innovation or knowledge economy, but then most things that label that strangle it. The labs become vehicles for bright inventive people who don't fit locally. You can think about the culture of MIT but on this global scale
  • My allegiance isn't to any one border, it's to the brainpower of the planet and this is building the infrastructure to scale to that brainpower
  • If you zoom from transistors to microcode to object code to a program, they don't look like each other. But if we take this room and go from city, state, country, it's hierarchical but you preserve geometry
  • Computation violates geometry unlike most anything else we do
  • The reason that's so important for the digital fabrication piece is once we build molecular assemblers to build arbitrary systems, you don't want to then paste a few lines of code in it. You need to overlay computation with geometry. It's leading to this complete do-over of computer science
  • If you take digital fab, plus the real sense of Internet of Things—not the garbled sense—plus the real future of computing aligning hardware and software, it all adds up to this ability to program reality
  • I run a giant video infrastructure and I have collaborators all over the world that I see more than many of my colleagues at MIT because we're all too busy on campus. The next Silicon Valley is a network, it's not a place. Invention happens in these networks.
  • When Edwin Land was kicked out of Polaroid, he made the Rowland Institute, which was making an ideal research institute with the best facilities and the best people and they could do whatever they want. But almost nothing came from it because there was no turnover of the gene pool, there was no evolutionary pressure.  
  • the wrong way to do research, which is to believe there's a privileged set of people that know more than anybody else and to create a barrier that inhibits communication from the inside to the outside
  • you need evolutionary pressure, you need traffic, you need to be forced to deal with people you don't think you need to encounter, and you need to recognize that to be disruptive it helps to know what people know
  • For me the hardest thing isn't the research. That's humming along nicely. It's that we're finding we have to build a completely new kind of social order and that social entrepreneurship—figuring out how you live, learn, work, play—is hard and there's a very small set of people who can do that kind of organizational creation.
    • Kurt Laitner
       
      our challenge in the OVN space
  •  
    what is heavy is local, what is light is global, and increasingly manufacturing is being recreated along this principle
Kurt Laitner

What do we need corporations for and how does Valve's management structure fit into tod... - 0 views

  • Valve’s management model; one in which there are no bosses, no delegation, no commands, no attempt by anyone to tell someone what to do
  • Every social order, including that of ants and bees, must allocate its scarce resources between different productive activities and processes, as well as establish patterns of distribution among individuals and groups of output collectively produced.
  • the allocation of resources, as well as the distribution of the produce, is based on a decentralised mechanism functioning by means of price signals:
  • ...18 more annotations...
  • Interestingly, however, there is one last bastion of economic activity that proved remarkably resistant to the triumph of the market: firms, companies and, later, corporations. Think about it: market-societies, or capitalism, are synonymous with firms, companies, corporations. And yet, quite paradoxically, firms can be thought of as market-free zones. Within their realm, firms (like societies) allocate scarce resources (between different productive activities and processes). Nevertheless they do so by means of some non-price, more often than not hierarchical, mechanism!
  • they are the last remaining vestiges of pre-capitalist organisation within… capitalism
  • The miracle of the market, according to Hayek, was that it managed to signal to each what activity is best for herself and for society as a whole without first aggregating all the disparate and local pieces of knowledge that lived in the minds and subconscious of each consumer, each designer, each producer. How does this signalling happen? Hayek’s answer (borrowed from Smith) was devastatingly simple: through the movement of prices
  • The idea of spontaneous order comes from the Scottish Enlightenment, and in particular David Hume who, famously, argued against Thomas Hobbes’ assumption that, without some Leviathan ruling over us (keeping us “all in awe”), we would end up in a hideous State of Nature in which life would be “nasty, brutish and short”
  • Hume’s counter-argument was that, in the absence of a system of centralised command, conventions emerge that minimise conflict and organise social activities (including production) in a manner that is most conducive to the Good Life
  • Hayek’s argument was predicated upon the premise that knowledge is always ‘local’ and all attempts to aggregate it are bound to fail. The world, in his eyes, is too complex for its essence to be distilled in some central node; e.g. the state.
  • The idea here is that, through this ever-evolving process, people’s capacities, talents and ideas are given the best chance possible to develop and produce synergies that promote the Common Good. It is as if an invisible hand guides Valve’s individual members to decisions that both unleash each person’s potential and serve the company’s collective interest (which does not necessarily coincide with profit maximisation).
  • Valve differs in that it insists that its employees allocate 100% of their time on projects of their choosing
  • In contrast, Smith and Hayek concentrate their analysis on a single passion: the passion for profit-making
  • Hume also believed in a variety of signals, as opposed to Hayek’s exclusive reliance on price signalling
  • One which, instead of price signals, is based on the signals Valve employees emit to one another by selecting how to allocate their labour time, a decision that is bound up with where to wheel their tables to (i.e. whom to work with and on what)
  • He pointed out simply and convincingly that the cost of subcontracting a good or service, through some market, may be much larger than the cost of producing that good or service internally. He attributed this difference to transactions costs and explained that they were due to the costs of bargaining (with contractors), of enforcing incomplete contracts (whose incompleteness is due to the fact that some activities and qualities cannot be fully described in a written contract), of imperfect monitoring and asymmetrically distributed information, of keeping trade secrets… secret, etc. In short, contractual obligations can never be perfectly stipulated or enforced, especially when information is scarce and unequally distributed, and this gives rise to transaction costs which can become debilitating unless joint production takes place within the hierarchically structured firm. Optimal corporation size corresponds, in Coase’s scheme of things, to a ‘point’ where the net marginal cost of contracting out a service or good (including transaction costs) tends to zero 
  • As Coase et al explained in the previous section, the whole point about a corporation is that its internal organisation cannot turn on price signals (for if it could, it would not exist as a corporation but would, instead, contract out all the goods and services internally produced)
  • Each employee chooses (a) her partners (or team with which she wants to work) and (b) how much time she wants to devote to various competing projects. In making this decision, each Valve employee takes into account not only the attractiveness of projects and teams competing for their time but, also, the decisions of others.
  • Hume thought that humans are prone to all sorts of incommensurable passions (e.g. the passion for a video game, the passion for chocolate, the passion for social justice) the pursuit of which leads to many different types of conventions that, eventually, make up our jointly produced spontaneous order
  • Valve is, at least in one way, more radical than a traditional co-operative firm. Co-ops are companies whose ownership is shared equally among its members. Nonetheless, co-ops are usually hierarchical organisations. Democratic perhaps, but hierarchical nonetheless. Managers may be selected through some democratic or consultative process involving members but, once selected, they delegate and command their ‘underlings’ in a manner not at all dissimilar to a standard corporation. At Valve, by contrast, each person manages herself while teams operate on the basis of voluntarism, with collective activities regulated and coordinated spontaneously via the operations of the time allocation-based spontaneous order mechanism described above.
  • In contrast, co-ops and Valve feature peer-based systems for determining the distribution of a firm’s surplus among employees.
  • There is one important aspect of Valve that I did not focus on: the link between its horizontal management structure and its ‘vertical’ ownership structure. Valve is a private company owned mostly by few individuals. In that sense, it is an enlightened oligarchy: an oligarchy in that it is owned by a few and enlightened in that those few are not using their property rights to boss people around. The question arises: what happens to the alternative spontaneous order within Valve if some or all of the owners decide to sell up?
Kurt Laitner

Crisis of Value Theory - P2P Foundation - 0 views

  • accumulation of knowledge assets
  • a new class has arisen which controls the vectors of information
  • In terms of knowledge creation, a vast new information commons is being created, which is increasingly out of the control of cognitive capitalism.
  • ...19 more annotations...
  • But notice that to do this, the system had to change, the core logic was no longer the same.
  • The emergence of the peer model of production, based on the non-rivalrous nature and virtually non-existent marginal cost of reproduction of digital information, and coupled with the increasing unenforceability of “intellectual property” laws, means that capital is incapable of realizing returns on ownership in the cognitive realm.
  • capital is becoming an a posteriori intervention in the realization of innovation, rather than a condition for its occurrence
  • 1) The creation of non-monetary value is exponential 2) The monetization of such value is linear
  • What this announces is a crisis of value, most such value is ‘beyond measure’, but also essentially a crisis of accumulation of capital.
  • more and more positive externalizations are created from the social field
  • “the core logic of the emerging experience economy, operating as it does in the world of non-rival exchange, is unlikely to have capitalism as its core logic.”
  • This takes the form both of “intellectual property” law, as well as direct subsidies from the taxpayer to the corporate economy
  • crisis of realization under state capitalism to capital’s growing dependence on the state to capture value from social production and redistribute it to private corporate owners
  • The state capitalist system will reach a point at which, thanks to the collapse of the portion of value comprised of rents on artificial property, the base of taxable value is imploding at the very time big business most needs subsidies to stay afloat.
  • We live in a political economy that has it exactly backwards. We believe that our natural world is infinite, and therefore that we can have an economic system based on infinite growth. But since the material world is finite, it is based on pseudo-abundance. And then we believe that we should introduce artificial scarcities in the world of immaterial production, impeding the free flow of culture and social innovation, which is based on free cooperation, by creating the obstacle of permissions and intellectual property rents protected by the state. What we need instead is a political economy based on a true notion of scarcity in the material realm, and a realization of abundance in the immaterial realm.
  • Brains and bodies still need others to produce value, but the others they need are not necessarily provided by capital and its capacities to organize production.
  • The household and informal economies have been allowed to function to the extent that they bear reproduction costs that would otherwise have to be internalized in wages; but they have been suppressed (as in the Enclosures) when they threaten to increase in size and importance to the point of offering a basis for independence from wage labor. “
  • increasing untenability of property rights in the information realm
  • there is no more outside.
  • one of intensive development, to grow in the immaterial field, and this is basically what the experience economy means
  • Innovation is becoming social and diffuse, an emergent property of the networks
  • failure of artificial abundance
  • failure of artificial scarcity
  •  
    the passing of the capitalist age
Tiberius Brastaviceanu

Open Collaboration - The Next Economic Paradigm - 0 views

  • we’re in the midst of a collapsing paradigm
  • to be replaced by something new
  • I will explain what the new paradigm
  • ...40 more annotations...
  • business
  • government
  • education
  • research
  • The old economic paradigm was a service economy built on the digital communications revolution that began in the early 1970′s.
  • financial capital has decoupled from productive capital
  • financial meltdown
  • major societal institutions have stalled
  • the funding models
  • no longer work properly
  • The new model is the Open Collaboration Paradigm
  • we will see a radical departure from old institutional models.
  • social capital is increasingly recognized
  • generating wealth for society
  • This will be a profoundly social economy, built on unprecedented capabilities to self-organize people and resources in the crowd.
  • Social media
  • connect ideas, people, and institutions
  • blur the inside/outside distinctions
  • Network connections
  • radical transparency will be the new norm
  • Another profound shift will occur in the realm of ownership
  • No longer
  • viable
  • to horde intellectual property
  •  Collaborative consumption will arise as a more robust business paradigm,
  • risk is distributed
  • implications for business
  •  Those who can leverage the wisdom of crowds for market research, product development, and efficient resource allocation will be more adept and agile in the face of rapid change.
  • Those who build walls around themselves will fail to tap into the flow of knowledge and resources running rampant in the crowd
  • governments will have to become more transparent and responsive to their citizens
  • information becomes more immersive and dynamic
  • Research has already begun to use open collaboration that goes beyond the halls of academia.
  • collaborative approach to research will become the norm,
  • The era of “user generated content” and “prosumption” — where consumers of goods and services co-create what they will consume — is now a decade along in its evolution.  We will increasingly see collaborative design and production of consumables across society.
  • In the education arena, we will see more curricula as shareware and an increased emphasis on multi-perspective teamwork as the necessary skills for engaging in collaborative projects.
  • Expert/amateur boundaries have already blurred to the point where individuals can acquire graduate-level knowledge through self-directed learning on the internet.
  • distance learning
  •  Lifetime learning
  • active pedagogy
  • So get ready for the new economic paradigm.
Tiberius Brastaviceanu

Business models for Open Hardware - 1 views

  • guidelines for the development and evaluation of licenses for Open Source Hardware
  • Open Hardware is “a term for tangible artifacts — machines, devices, or other physical things — whose design has been released to the public in such a way that anyone can make, modify, distribute, and use those things“.
  • Open Hardware is derivative: here a fork is the rule, not the exception.
  • ...35 more annotations...
  • hardware hacking community
  • overviews of Open Hardware can be found on Make Magazine’s Blog, MIT Technology Review, Computerworld, O’Reilly Radar.
  • Lists of existing Open Hardware projects can be found on the GOpen Hardware 2009 website, on the P2P Foundation website (here and here), on Make Magazine’s Blog, Open Innovation Projects and Open Knowledge Foundation.
  • 4 possible levels of Openness in Open Hardware projects,
  • by SparkFun Electronics (USA)
  • Open Interface
  • Open Design
  • Open Implementation
  • Arduino
  • most popular Open Hardware project
  • open-source electronics prototyping platform based on flexible, easy-to-use hardware and software
  • ommercially produced
  • Most of Arduino official boards are manufactured by SmartProjects in Italy.
  • Arduino brand name
  • Gravitech (USA).
  • starting point
  • Closed
  • ecosystem
  • community
  • mature and simple
  • Creative Commons license
  • produce
  • redesign
  • sell boards
  • you just have to credit the original Arduino group and use the same CC license
  • without paying a license fee or even ask permission
  • the name Arduino
  • is trademarked
  • cheap and durable enough
  • two different business model
  • sharing open hardware to sell expertise, knowledge and custom services and projects around it;
  • hardware is becoming a commodity
  • selling the hardware but trying to keep ahead of competition with better products
  • companies that are selling open source hardware
  • the open source hardware community to reach $ 1 billion by 2015
1 - 20 of 46 Next › Last »
Showing 20 items per page