Skip to main content

Home/ Science Technology Society/ Group items tagged chemistry

Rss Feed Group items tagged

thinkahol *

Dr. Daniel G. Nocera - YouTube - 0 views

  •  
    The supply of secure, clean, sustainable energy is arguably the most important scientific and technical challenge facing humanity in the 21st century. Rising living standards of a growing world population will cause global energy consumption to double by mid-century and triple by the end of the century. Even in light of unprecedented conservation, the additional energy needed is simply not attainable from long discussed sources these include nuclear, biomass, wind, geothermal and hydroelectric. The global appetite for energy is simply too much. Petroleum-based fuel sources (i.e., coal, oil and gas) could be increased. However, deleterious consequences resulting from external drivers of economy, the environment, and global security dictate that this energy need be met by renewable and sustainable sources. The dramatic increase in global energy need is driven by 3 billion low-energy users in the non-legacy world and by 3 billion people yet to inhabit the planet over the next half century. The capture and storage of solar energy at the individual level personalized solar energy drives inextricably towards the heart of this energy challenge by addressing the triumvirate of secure, carbon neutral and plentiful energy. This talk will place the scale of the global energy issue in perspective and then discuss how personalized energy (especially for the non-legacy world) can provide a path to a solution to the global energy challenge. Daniel G. Nocera is the Henry Dreyfus Professor of Energy at the Massachusetts Institute of Technology, Director of the Solar Revolutions Project and Director of the Eni Solar Frontiers Center at MIT. His group pioneered studies of the basic mechanisms of energy conversion in biology and chemistry. He has recently accomplished a solar fuels process that captures many of the elements of photosynthesis outside of the leaf. This discovery sets the stage for a storage mechanism for the large scale, distributed, deployment of solar energy. He has b
Todd Suomela

Thatcher, Scientist - 0 views

  •  
    This paper has two halves. First, I piece together what we know about Margaret Thatcher's training and employment as a scientist. She took science subjects at school; she studied chemistry at Oxford, arriving during World War II and coming under the influence (and comment) of two excellent women scientists, Janet Vaughan and Dorothy Hodgkin. She did a fourth-year dissertation on X-ray crystallography of gramicidin just after the war. She then gathered four years' experience as a working industrial chemist, at British Xylonite Plastics and at Lyons. Second, my argument is that, having lived the life of a working research scientist, she had a quite different view of science from that of any other minister responsible for science. This is crucial in understanding her reaction to the proposals-associated with the Rothschild reforms of the early 1970s-to reinterpret aspects of science policy in market terms. Although she was strongly pressured by bodies such as the Royal Society to reaffirm the established place of science as a different kind of entity-one, at least at core, that was unsuitable to marketization-Thatcher took a different line.
thinkahol *

The future of metabolic engineering: Designer molecules, cells and microorganisms - 0 views

  •  
    ScienceDaily (Dec. 3, 2010) - Will we one day design and create molecules, cells and microorganisms that produce specific chemical products from simple, readily-available, inexpensive starting materials? Will the synthetic organic chemistry now used to produce pharmaceutical drugs, plastics and a host of other products eventually be surpassed by metabolic engineering as the mainstay of our chemical industries? Yes, according to Jay Keasling, chemical engineer and one of the world's foremost practitioners of metabolic engineering.
Erin Fitzpatrick

PhET: Free online physics, chemistry, biology, earth science and math simulations - 0 views

  •  
    Interactive Science Simulations Fun, interactive, research-based simulations of physical phenomena from the PhET project at the University of Colorado."
thinkahol *

DNA can discern between two quantum states, research shows - 0 views

  •  
    ScienceDaily (June 4, 2011) - Do the principles of quantum mechanics apply to biological systems? Until now, says Prof. Ron Naaman of the Institute's Chemical Physics Department (Faculty of Chemistry), both biologists and physicists have considered quantum systems and biological molecules to be like apples and oranges. But research he conducted together with scientists in Germany, which appeared recently in Science, shows that a biological molecule -- DNA -- can discern between quantum states known as spin.
1 - 5 of 5
Showing 20 items per page