Skip to main content

Home/ RIS IB Biology/ Contents contributed and discussions participated by nidthamsirisup

Contents contributed and discussions participated by nidthamsirisup

nidthamsirisup

Epigenetics Seeks Clues to Mental Illness in Genes' Life Story - Science in 2011 - NYTi... - 0 views

  • epigenetics, the study of how people’s experience and environment affect the function of their genes.
  • Studies suggest that such add-on, or epigenetic, markers develop as an animal adapts to its environment, whether in the womb or out in the world — and the markers can profoundly affect behavior.
  • In studies of rats, researchers have shown that affectionate mothering alters the expression of genes, allowing them to dampen their physiological response to stress. These biological buffers are then passed on to the next generation: rodents and nonhuman primates biologically primed to handle stress tend to be more nurturing to their own offspring, and the system is thought to work similarly in humans.
  • ...3 more annotations...
  • the offspring of parents who experience famine are at heightened risk for developing schizophrenia, some research suggests — perhaps because of the chemical signatures on the genes that parents pass on.
  • in some people with autism, epigenetic markers had silenced the gene which makes the receptor for the hormone oxytocin. Oxytocin oils the brain’s social circuits, and is critical in cementing relationships; a brain short on receptors for it would most likely struggle in social situations.
  • In one large study of people with schizophrenia, researchers at Johns Hopkins are analyzing blood and other data to see whether the degree of epigenetic variation is related to the inherited risk of developing the disorder. In another, researchers at Tufts are studying the genes of animals dependent on opiates to see how epigenetic alterations caused by drug exposure affect the opiate sensitivity of the animals’ offspring.
nidthamsirisup

Mysterious Noncoding DNA: 'Junk' or Genetic Power Player? | PBS NewsHour - 0 views

  • Genes represent only a tiny fraction -- 1 percent -- of our overall genetic material. Then there's the other 99 percent of our DNA -- the stuff that doesn't make protein
  • Researchers have found that some of this noncoding DNA is in fact essential to how our genes function and plays a role in how we look, how we act and the diseases that afflict us.
  • Embedded in this 99 percent is DNA responsible for the mechanics of gene behavior: regulatory DNA. Greg Wray of Duke University's Institute for Genome Sciences and Policy describes the regulatory DNA as the software for our genes, a set of instructions that tells the genome how to use the traditional coding genes.
  • ...5 more annotations...
  • "It's like a recipe book," Wray said. "It tells you how to make the meal. You need to know the amounts. You need to know the order. The noncoding DNA tells you how much to make, when to make it and under what circumstances."
  • common diseases are probably more influenced by regulatory differences, Harismendy said. These include Type 2 diabetes, Crohn's disease, Alzheimer's Disease and a variety of cancers, including breast, colon, ovarian, prostate and lung.
  • According to Wray, research has shown that diseases like bipolar syndrome and clinical depression may be associated with noncoding mutations that determine whether the brain is producing too much or not enough of a particular neurotransmitter. One noncoding mutation gives a person almost complete protection against the nasty malaria parasite, plasmodium vivax.
  • Another piece of noncoding DNA regulates the enzyme responsible for lactose tolerance, the ability to digest milk. Research by Wray and other scientists has shown that in four populations where dairy consumption is a vital part of the diet, new mutations have appeared that essentially keep the gene that produces the lactase enzyme from switching off.
  • And recent research done by evolutionary biologists suggests that differences in regulatory DNA may represent a major part of what separates us from chimpanzees.
nidthamsirisup

Epigenetics: DNA Isn't Everything - 0 views

  • Research into epigenetics has shown that environmental factors affect characteristics of organisms. These changes are sometimes passed on to the offspring.
  • A certain laboratory strain of the fruit fly Drosophila melanogaster has white eyes. If the surrounding temperature of the embryos, which are normally nurtured at 25 degrees Celsius, is briefly raised to 37 degrees Celsius, the flies later hatch with red eyes.
  • crossed the flies for six generations. In this experiment, they were able to prove that the temperature treatment changes the eye colour of this specific strain of fly, and that the treated individual flies pass on the change to their offspring over several generations. However, the DNA sequence for the gene responsible for eye colour was proven to remain the same for white-eyed parents and red-eyed offspring.
  • ...7 more annotations...
  • Epigenetics examines the inheritance of characteristics that are not set out in the DNA sequence.
  • important factors are the histones, a kind of packaging material for the DNA, in order to store DNA in an ordered and space-saving way. It is now clear that these proteins have additional roles to play. Depending on the chemical group they carry, if they are acetylated or methylated, they permanently activate or deactivate genes.
  • New methods now allow researchers to sometimes directly show which genes have been activated or deactivated by the histones
  • The genetic information of the DNA is passed on along with the relevant epigenetic information for the respective cell type.
  • A similar question remains for the inheritance of the epigenetic characteristics from parents to offspring. They now know that when the gametes are formed, certain epigenetic markers remain and are passed on to the offspring. The questions, which are currently being researched, are how much and which part of the epigenetic information is preserved and subsequently inherited.
  • Diet and epigenetics appear to be closely linked. The most well known example is that of the Agouti mice: they are yellow, fat and are prone to diabetes and cancer. If Agouti females are fed with a cocktail of vitamin B12, folic acid and cholin, directly prior to and during pregnancy, they give birth to mainly brown, slim and healthy offspring. They in turn mainly have offspring similar to themselves.
  • Environmental factors, which change the characteristics of an individual and are then passed on to its offspring, do not really fit into Darwin’s theory of evolution. According to his theory, evolution is the result of the population and not the single individual. “Passing on the gained characteristics fits more to Lamarck’s theory of evolution”, says Paro.
nidthamsirisup

Engineered stem cells seek out and kill HIV in living mice - 0 views

  • The engineered stem cells developed into a large population of mature, multi-functional HIV-specific CD8 cells that could specifically target cells containing HIV proteins. The researchers also discovered that HIV-specific T cell receptors have to be matched to an individual in much the same way an organ is matched to a transplant patient.
  • Expanding on previous research providing proof-of-principle that human stem cells can be genetically engineered into HIV-fighting cells
  • In this current study, the researchers similarly engineered human blood stem cells and found that they can form mature T cells that can attack HIV in tissues where the virus resides and replicates. They did so by using a surrogate model, the humanized mouse, in which HIV infection closely resembles the disease and its progression in humans.
  • ...1 more annotation...
  • increased, while levels of HIV in the blood decreased. CD4 cells are white blood cells that are an important component of the immune system, helping to fight off infections. These results indicated that the engineered cells were capable of developing and migrating to the organs to fight infection there.
nidthamsirisup

Stem Cell Treatment Spurs Cartilage Growth - Science News - 0 views

  • A small molecule dubbed kartogenin encourages stem cells to take on the characteristics of cells that make cartilage, a new study shows
  • And treatment with kartogenin allowed many mice with arthritis-like cartilage damage in a knee to regain the ability to use the joint without pain.
  • Kartogenin steers the stem cells to wake up and take on cartilage-making duties. This is an essential step in the cartilage repair that falls behind in people with osteoarthritis, the most common kind of arthritis, which develops from injury or long-term joint use.
  • ...2 more annotations...
  • The molecule turned on genes that make cartilage components called aggrecan and type II collagen. Tests of mice with cartilage damage similar to osteoarthritis showed that kartogenin injections lowered levels of a protein called cartilage oligomeric matrix protein. People with osteoarthritis have an excess of the protein, which is considered a marker of disease severity.
  • kartogenin inhibits a protein called filamin A in the mesenchymal stem cells
nidthamsirisup

Study suggests why some animals live longer - 1 views

    • nidthamsirisup
       
      A new method to detect proteins associated with longevity which helps further our understanding into why some animals live longer than others.
  • found a similar pattern in proteins associated with metabolism, cholesterol and pathways involved in the recycling of proteins
  • these species have optimised pathways that repair molecular damage, compared to shorter-lived animals, such as mice
  • ...4 more annotations...
  • The study, led by Dr. Joao Pedro Magalhaes and postgraduate student, Yang Li, is the first to show evolutionary patterns in biological repair systems in long-lived animals and could, in the future, be used to help develop anti-ageing interventions by identifying proteins in long-lived species that better respond to, for example, DNA damage
  • Proteins associated with the degradation of damaged proteins, a process that has been connected to ageing, were also linked with the evolution of longevity in mammals.
  • If we can identify the proteins that allow some species to live longer than others we could use this knowledge to improve human health and slow the ageing process.
  • “We developed a method to detect proteins whose molecular evolution correlates with longevity of a species. The proteins we detected changed in a particular pattern, suggesting that evolution of these proteins was not by accident, but rather by design to cope with the biological processes impacted by ageing, such as DNA damage. The results suggest that long-lived animals were able to optimise bodily repair which will help them fend off the ageing process.”
1 - 6 of 6
Showing 20 items per page