Skip to main content

Home/ Pedagogium/ Group items tagged Onde

Rss Feed Group items tagged

Jac Londe

La terre tourne à 1666 km/h ! - 0 views

La terre tourne sur elle même à la vitesse de 1666 kilomètres à l'heure. Oui, vous avez bien lu. Ce qui est en soi assez rapide par rapport à nos déplacements à 110 kilomètres à l'heure. Ce qui exp...

terre onde vitesse 1666

started by Jac Londe on 08 May 12 no follow-up yet
Jac Londe

La peine de prison infligée à des scientifiques italiens soulève un tollé | I... - 0 views

  • La commission avait alors statué qu'il n'était pas possible de prédire une éventuelle secousse plus forte. Le 6 avril 2009, un séisme de 6,3 sur l'échelle de Richter ravagea la ville de L'Aquila, dans les Abruzzes. Plus de 300 personnes ont trouvé la mort à la suite du tremblement de terre.
  • La tenue d'un procès et la condamnation à la prison de ces scientifiques ont provoqué une onde de choc dans le milieu scientifique international, où on estime qu'il est impossible, même pour les experts le plus aguerris, de prévoir les tremblements de terre.
  • « Dans une décision qui provoque une onde de choc dans la communauté de géophysique aux États-Unis, un tribunal italien a condamné six scientifiques à six ans de prison pour ne pas avoir prédit un séisme, ce qui est absurde et dangereux »,
Jac Londe

Thalassa - télévision TV5 Québec Canada - 0 views

  •  
    Thalassa est diffusé sur les ondes de TV5. L'horaire et les informations supplémentaires sont disponibles ici.
Jac Londe

Hertz - 0 views

  • Le courant électrique domestique (secteur) est un courant alternatif : la polarité (+ ou -) des bornes est inversée plusieurs fois par seconde. Le standard européen, fixé à 50 Hz signifie 100 changements par seconde (chaque borne est positive 50 fois et négative 50 fois chaque seconde) tandis que le standard américain, pour sa part fixé à 60 Hz, accusera un changement de polarité 120 fois par seconde. La hauteur d'un son se mesure (entre autres choses) par le nombre de vibrations par seconde. Le la de référence en musique s'obtient par le diapason qui oscille à 440 Hz. On dit également que l'oreille humaine perçoit les sons dans une plage de fréquence entre 20 Hz et 20 000 Hz. Les ondes radios en modulation de fréquence sont diffusées sur une bande allant de 88 MHz à 108 MHz.
  • À titre d’exemple, la lumière rouge a une fréquence d’environ 4,6×1014 Hz.
Jac Londe

Planetary Magnetism - 0 views

  • Jusqu'en 1950, le magnétisme terrestre semblait être un heureux accident de la nature.  Beaucoup de facteurs devaient converger pour le maintenir : le noyau fluide de la Terre, sa conductivité électrique et ses mouvements, le tout doit obéir à des critères bien stricts de la théorie de la dynamo.  Nous savons maitenant que Vénus est la seule planète qui n'a pas de magnétisme. Les planètes diffèrent beaucoup entre elles en taille et en propriétés, ainsi que par leurs champs .  Les planètes ont toutes un champ magnétique ou en ont eu un dans le passé (tels Mars et la Lune). 
  • "Qu'est-ce-que cet objet brillant là-haut?" .  C'était Jupiter, le signal provenait de cette planète.  En publiant leurs résultats, les deux astronomes proposèrent que " la cause de cette radiation non-connue était sans doute dûe à des perturbations électriques dans l'atmosphère de Jupiter".
  • Ces quatre planètes ont un champ magnétique plus fort que la Terre
  • ...5 more annotations...
  • Jupiter, Saturne, Uranus et Neptune-
  • Si on représentait par des barreaux aimantés au centre de la planète les champs de la terre et de Jupiter, l'aimant de Jupiter serait 20.000 fois plus puissant.  L'axe magnétique de Jupiter, comme celui de la Terre, est légèrement hors de l'axe de rotation, mais alors que Jupiter et la Terre tournent dans le même sens, la polarité magnétique de Jupiter est opposée à celle de la Terre. 
  • .  En ce qui concerne Saturne, son axe magnétique est exactement aligné sur son axe de rotation, à la précision des observations près.
  • Les axes magnétiques d' Uranus et Neptune sont,eux, inclinés de 60° par rapport à leurs axes de rotation. La forme et les propriétés de la magnétosphère planétaire dépendent de l'angle entre l'écoulement du vent solaire (c.à.d. la direction du soleil) et l'axe magnétique; pour ces deux planètes, cet angle change vite et sans arrêt.  Le résultat est que : leur magnétosphère subit de fortes variations durant chaque rotation, cependant que ces 2 magnétosphères parviennent malgré tout à capturer des particules.  L'origine de ces champs est inconnue : Saturne est suffisamment grande que pour produire de l'hydrogène métallique en son noyau mais Uranus et Neptune ne sont pas dans ce cas.
  • On découvrit que Vénus est non-magnétique, le vent solaire n'est arrêté que par sa haute atmosphère : l'ionosphère. Ce vent solaire crée un type complètement différent de magnétosphère, qui ressemble plutôt à une queue de comète. D'autre part, la petite Mercure (un peu plus grosse que notre lune), un rocher sans atmosphère gazeuse, en rotation lente, surprit les observateurs car elle est magnétisée, son champ magnétique est faible et n'est pas suffisant pour capturer de nombreuses particules, mais au passage de la sonde côté obscurité, on observa un spasme soudain pendant lequel des particules étaient, semble-t'il, énergisées. 
Jac Londe

Luminiferous aether - Wikipedia, the free encyclopedia - 0 views

  • In the late 19th century, luminiferous aether, æther or ether, meaning light-bearing aether, was the postulated medium for the propagation of light.
Jac Londe

Physicists confirm surprisingly small proton radius - 0 views

  • Physicists confirm surprisingly small proton radius
  • In the experiment described in the newly published Science article, the energy shift was determined for another transition. This leads to a new measurement of the electric charge radius of the proton. Its value of 0.84087(39) femtometres (1 fm = 0.000 000 000 000 001 metre) is in good agreement with the one published in 2010, but 1.7 times as precise.
Jac Londe

Greebo Science - 0 views

  • Planck Units
  • Planck units are largely based upon three fundamental units, h, G, and c.
  • The gravitational constant is given the symbol "G".   It is a measured value used in the force equation for gravity (see below). F = Gm1m2 / r2 The m units are masses of two bodies which are separated by a distance r.   By rearranging the equation, we have G (see below). G = Fr2 / m1m2 The gravitational force, F, was measured between two masses to arrive at G.   At various times, the laboratory equipment and methods were improved to arrive at more accurate values for G.   The physics texts were not usually updated for the new values because (1) the changes were not great enough to justify the added expense to the texts, and (2) the changes were happening frequently enough to make each text obsolete before it arrived in the hands of students.   Consequently, there are numerous variations of G to be found, but the differences between them are slight. There are many systems of weights and measures used in physics.   Fundamental constants such as G often have two values according to the measuring system used.   When two such units are mixed to arrive at subsidiary units such as the planck length, the result is a completely erroneous value along with units of measure which do not apply.   Consequently, it is important to convert the various units of the fundamental constants used to the same system of units.   In may instances of late, this has not been done. Finally, there is human error involved in copying from an old text to create a new next.   This means that it is wise to check various texts to see if they all agree (they usually don't), and decide what is correct and what is not correct.   For G, the following was discovered.
  • ...7 more annotations...
  • G = 6.670x10-11 newton meter2/kilogram2 From a text created by the Department of Physics at the U.S. Air Force Academy in about 1955, Formulas and Tables. G = 6.673x10-11 newton meter2/kilogram2 From a textbook last copyrighted in 1972, Elements of Physics. G = 6.6742x10-11 meter3/kilogram second2 From a science publication announcing an improved value based upon data from a recent experiment 1994.   Note that the the text mentioned below, probably written prior to 1994, did not include the change. G = 6.67259x10-11 newton meter2/kilogram2 From a textbook last copyrighted in 1997, Fundamentals of Physics Extended.  
  • 1 newton = 1 kilogram of force = 1 kilogram of mass x 1 meter/second2 = 100,000 dynes
  • For h, the following was discovered. h = 6.6252x10-34 joule second   or   4.134x10-15 electron volt second
  • 1 joule = 10,000,000 ergs = .737324 (one book gave .7376) foot pounds = 1 watt second = .1020 kilogram meter
  • The joule is defined as the unit of work or energy equivalent to work done or heat generated in one second by an electric current of one ampere against a resistance of one ohm - or raising the potential of a coulomb by one volt.
  • The erg is defined as the unit of work and of energy, being the work done in moving a body one centimeter against a force of one dyne. 1 erg = one centimeter dyne = 980.7 centimeter grams = 107 joules = 107 watt seconds The electron volt (sometimes called the equivalent volt) is defined as the unit of energy equal to that acquired by an electron passing through a potential of one volt.
  • h = 1.0753x10-35 kilogram meter2/second G = 6.6742x10-11 meter3/kilogram second2 c = 2.9979x108 meters/second
Jac Londe

Creative Destruction: GE's Brand New 100W Equivalent LED Bulb Illuminates the Future of... - 0 views

  • GE’s Brand New 100W Equivalent LED Bulb Illuminates the Future of Lighting May 7, 2012 Engineers at GE’s NELA Park in East Cleveland, Ohio, have spent a century building better light bulbs. When NELA opened in 1911, it became the world’s first industrial park, a distinction that earned it a place on the National Register of Historic Places. But now a new kind of history is taking place at NELA, the kind that will soon dispatch the incandescent light bulb down the same road traveled by the LP and the VCR. “This is an evolution,” says Glenn Kuenzler, a lighting engineer at NELA. He and his team of researchers are making sure that the GE bulb, whose legacy stretches back to Edison, is fit to survive.
Jac Londe

Joule - Wikipédia - 0 views

  • Le joule (symbole : J) est une unité dérivée du système international (SI) pour quantifier l'énergie, le travail et la quantité de chaleur[1]. Le joule étant une très petite quantité d'énergie par rapport à celles mises en jeu dans certains domaines, on utilise plutôt les kilojoules (kJ) en nutrition et dans les tableaux de valeur nutritive. Cette mesure est de plus en plus utilisée au côté des calories et tend graduellement à les remplacer.
  • Un joule est approximativement égal à : 6,24150636309.1018 eV (électronvolts) ;
  • Un joule vaut exactement : 107 ergs ; 1 pascal-mètre cube.
  • ...1 more annotation...
  • la calorie : 1 calorie = 4,1855 joules ; la thermie : 1 thermie = 4,1855 millions de joules. la thermie vaut 1 million de calories ; le kWh : 1 kWh = 3 600 000 J. Le kWh est l'énergie fournie par une puissance d'un kilowatt pendant une heure ; Le watt seconde : 1 Ws = 1 joule. Le kilogrammètre : 1 kilogrammètre = 9,80665 joules
Jac Londe

Energy of Photon | PVEducation - 0 views

  • Energy of Photon
  • A photon is characterized by either a wavelength, denoted by λ or equivalently an energy, denoted by E. There is an inverse relationship between the energy of a photon (E) and the wavelength of the light (λ) given by the equation:
Jac Londe

Heliophysics nugget: Riding the plasma wave - 0 views

  • Throughout the universe more than 99 percent of matter looks nothing like what's on Earth.
  • This material that pervades the universe, making up the stars and our sun, and also – far less densely, of course – the vast interstellar spaces in between, is called plasma. Plasmas are similar to gases, and indeed are made of familiar stuff such as hydrogen, helium, and even heavier elements like iron, but each particle carries electrical charge and the particles tend to move together as they do in a fluid.
  • "Which particles are moving, what is the source of energy for the motion, how does a moving wave interact with the particles themselves, do the wave fields rotate to the right or to the left – all of these get classified," says Lynn Wilson who is a space plasma physicist at NASA's Goddard Space Flight Center in Greenbelt, Md.
1 - 20 of 90 Next › Last »
Showing 20 items per page