Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged problems

Rss Feed Group items tagged

D'coda Dcoda

#Fukushima I Nuke Plant: 450 Tonnes of Groundwater Per Day Seeping into Reactor/Turbine... - 0 views

  • Since the end of June when the contaminated water treatment system started the operation, total 50,000 tonnes of groundwater have seeped into the reactor buildings and turbine buildings at Fukushima I Nuke Plant. Now, the total amount of contaminated water (highly contaminated water plus not-so-highly contaminated, treated water) at the plant has grown from 127,000 tonnes at the end of June to 175,000 tonnes as of October 18, according to Asahi Shinbun.Does TEPCO have any plan to stop the flow of groundwater into the reactor buildings and turbine buildings, which just adds to the amount of highly contaminated water to be treated and stored? TEPCO is fast running out of storage space, even with cutting down more trees to make room for the storage tanks.Other than spraying the low-contamination, treated water on the premise, the answer is no. No plan, as TEPCO is running out of money that it is willing to spend on Fukushima I Nuke Plant.From Asahi Shinbun (10/19/2011):
  • It has been discovered that the contaminated water has increased by 40% in 4 months inside the reactor buildings and turbine buildings at Fukushima I Nuclear Power Plant, with the inflow of ground water of about 50,000 tonnes. The flow still continues. TEPCO may run out of storage space for the treated, still-contaminated, water. There is also a possibility of the highly contaminated water overflowing from the buildings if a problem at the water treatment facility and a heavy rain coincide.
  • According to the calculation done by Asahi Shinbun based on the data published by TEPCO, about 450 tonnes of ground water per day have been flowing into the buildings of Reactors 1 through 4 since the end of June when the contaminated water treatment facility started the operation. It is considered that there are damages in the walls of the buildings.
  • ...7 more annotations...
  • The amount of groundwater into the buildings fluctuates with the rainfall. At the end of September when it rained heavily because of a typhoon, the amount of ground water doubled, and about 7,700 tonnes of water seeped into the buildings in that week.
  • The groundwater would mix with the contaminated water in the basement of the buildings, and this highly contaminated water is being sent to the water treatment facility. After the density of radioactive materials in the water is lowered and salt removed, the treated water is being used for cooling the reactors.
  • When the circulatory water injection and cooling system started in late June, there were 127,000 tonnes of contaminated water (highly contaminated water plus the treated water with low contamination). However, as the result of the groundwater inflow, there are now 175,000 tonnes of contaminated water, a 40% increase, as of October 18. None of the water could be released outside the plant.
  • Concentrated, highly saline waste water after the desalination process is stored in the special tanks. As more water is processed, more tanks are needed. TEPCO is installing 20,000 tonnes storage tanks every month. To secure the space for the tanks the company has been cutting down the trees in the plant compound. There is a system to evaporate water to reduce the amount of waste water, but it is not currently used.
  • The water level in the turbine buildings where the highly contaminated water after the reactor cooling accumulates is 1 meter below the level at which there is a danger of overflowing. It is not the level that would cause immediate overflow after a heavy rain. However, if the heavy rain is coupled with a trouble at the water treatment system that hampers the water circulation, the water level could rise very rapidly.
  • The treatment capacity of the water treatment facility is 1,400 tonnes per day. TEPCO emphasizes that the facility is running smoothly and the circulatory water injection system is stable. However, if the current situation continues where groundwater keeps coming into the buildings that needs to be treated, the water treatment facility will be taxed with excess load, which may cause a problem.
  • It is difficult to stop the inflow of groundwater completely, and TEPCO is not planning any countermeasure construction. Regarding the continued inflow of groundwater into the buildings, TEPCO's Junichi Matsumoto says, "We have to come up with a more compact water treatment system in which we can circulate water without using the basements of the buildings. Otherwise we would be stuck in a situation where we have to treat the groundwater coming into the basements." However, there is no prospect of fundamentally solving the problem.And there will be no such prospect, as TEPCO is now proven to be very good at looking the other way. Over 10 sieverts/hour ultra-hot spot? Not a problem, we will just cordon off the area. What is causing 10 sieverts/hour radiation? Why it's not our problem. How much over 10 sieverts/hour? We don't know because we don't measure such things. High hydrogen concentration in the pipe? Not a problem, we will just blow nitrogen gas. What is causing the high hydrogen concentration? It's not our problem. A worker died after 1 week of work at the plant. Why? It's not our problem, it's the subcontractor's problem...
D'coda Dcoda

U.S. nuke regulators weaken safety rules [20Jun11] - 0 views

  • Federal regulators have been working closely with the nuclear power industry to keep the nation's aging reactors operating within safety standards by repeatedly weakening standards or simply failing to enforce them, an investigation by The Associated Press has found.Officials at the U.S. Nuclear Regulatory Commission regularly have decided original regulations were too strict, arguing that safety margins could be eased without peril, according to records and interviews.The result? Rising fears that these accommodations are undermining safety -- and inching the reactors closer to an accident that could harm the public and jeopardize nuclear power's future.
  • Examples abound. When valves leaked, more leakage was allowed -- up to 20 times the original limit. When cracking caused radioactive leaks in steam generator tubing, an easier test was devised so plants could meet standards.Failed cables. Busted seals. Broken nozzles, clogged screens, cracked concrete, dented containers, corroded metals and rusty underground pipes and thousands of other problems linked to aging were uncovered in AP's yearlong investigation. And many of them could escalate dangers during an accident.
  • Despite the problems, not a single official body in government or industry has studied the overall frequency and potential impact on safety of such breakdowns in recent years, even as the NRC has extended dozens of reactor licenses.Industry and government officials defend their actions and insist no chances are being taken. But the AP investigation found that with billions of dollars and 19 percent of America's electricity supply at stake, a cozy relationship prevails between industry and the NRC.Records show a recurring pattern: Reactor parts or systems fall out of compliance. Studies are conducted by industry and government, and all agree existing standards are "unnecessarily conservative."
  • ...14 more annotations...
  • Regulations are loosened, and reactors are back in compliance."That's what they say for everything ...," said Demetrios Basdekas, a retired NRC engineer. "Every time you turn around, they say, 'We have all this built-in conservatism.' "The crisis at the decades-old Fukushima Dai-ichi nuclear facility in Japan has focused attention on nuclear safety and prompted the NRC to look at U.S. reactors. A report is due in July.But the factor of aging goes far beyond issues posed by Fukushima.
  • Commercial nuclear reactors in the United States were designed and licensed for 40 years. When the first were built in the 1960s and 1970s, it was expected that they would be replaced with improved models long before their licenses expired.That never happened. The 1979 accident at Three Mile Island, massive cost overruns, crushing debt and high interest rates halted new construction in the 1980s.Instead, 66 of the 104 operating units have been relicensed for 20 more years. Renewal applications are under review for 16 other reactors.As of today, 82 reactors are more than 25 years old.The AP found proof that aging reactors have been allowed to run less safely to prolong operations.
  • Last year, the NRC weakened the safety margin for acceptable radiation damage to reactor vessels -- for a second time. The standard is based on a reactor vessel's "reference temperature," which predicts when it will become dangerously brittle and vulnerable to failure. Through the years, many plants have violated or come close to violating the standard.As a result, the minimum standard was relaxed first by raising the reference temperature 50 percent, and then 78 percent above the original -- even though a broken vessel could spill radioactive contents."We've seen the pattern," said nuclear safety scientist Dana Powers, who works for Sandia National Laboratories and also sits on an NRC advisory committee. "They're ... trying to get more and more out of these plants."
  • Sharpening the pencilThe AP study collected and analyzed government and industry documents -- some never-before released -- of both reactor types: pressurized water units that keep radioactivity confined to the reactor building and the less common boiling water types like those at Fukushima, which send radioactive water away from the reactor to drive electricity-generating turbines.The Energy Northwest Columbia Generating Station north of Richland is a boiling water design that's a newer generation than the Fukushima plants.Tens of thousands of pages of studies, test results, inspection reports and policy statements filed during four decades were reviewed. Interviews were conducted with scores of managers, regulators, engineers, scientists, whistleblowers, activists and residents living near the reactors at 65 sites, mostly in the East and Midwest.
  • AP reporters toured some of the oldest reactors -- Oyster Creek, N.J., near the Atlantic coast 50 miles east of Philadelphia and two at Indian Point, 25 miles north of New York City on the Hudson River.Called "Oyster Creak" by some critics, this boiling water reactor began running in 1969 and is the country's oldest operating commercial nuclear power plant. Its license was extended in 2009 until 2029, though utility officials announced in December they will shut the reactor 10 years earlier rather than build state-ordered cooling towers. Applications to extend the lives of pressurized water units 2 and 3 at Indian Point, each more than 36 years old, are under NRC review.Unprompted, several nuclear engineers and former regulators used nearly identical terminology to describe how industry and government research has frequently justified loosening safety standards. They call it "sharpening the pencil" or "pencil engineering" -- fudging calculations and assumptions to keep aging plants in compliance.
  • Cracked tubing: The industry has long known of cracking in steel alloy tubing used in the steam generators of pressurized water reactors. Ruptures have been common in these tubes containing radioactive coolant; in 1993 alone, there were seven. As many as 18 reactors still run on old generators.Problems can arise even in a newer metal alloy, according to a report of a 2008 industry-government workshop.
  • Neil Wilmshurst, director of plant technology for the industry's Electric Power Research Institute, acknowledged the industry and NRC often collaborate on research that supports rule changes. But he maintained there's "no kind of misplaced alliance ... to get the right answer."Yet agency staff, plant operators and consultants paint a different picture:* The AP reviewed 226 preliminary notifications -- alerts on emerging safety problems -- NRC has issued since 2005. Wear and tear in the form of clogged lines, cracked parts, leaky seals, rust and other deterioration contributed to at least 26 of the alerts. Other notifications lack detail, but aging was a probable factor in 113 more, or 62 percent in all. For example, the 39-year-old Palisades reactor in Michigan shut Jan. 22 when an electrical cable failed, a fuse blew and a valve stuck shut, expelling steam with low levels of radioactive tritium into the outside air. And a 1-inch crack in a valve weld aborted a restart in February at the LaSalle site west of Chicago.
  • * A 2008 NRC report blamed 70 percent of potentially serious safety problems on "degraded conditions" such as cracked nozzles, loose paint, electrical problems or offline cooling components.* Confronted with worn parts, the industry has repeatedly requested -- and regulators often have allowed -- inspections and repairs to be delayed for months until scheduled refueling outages. Again and again, problems worsened before being fixed. Postponed inspections inside a steam generator at Indian Point allowed tubing to burst, leading to a radioactive release in 2000. Two years later, cracking grew so bad in nozzles on the reactor vessel at the Davis-Besse plant near Toledo, Ohio, that it came within two months of a possible breach, an NRC report said, which could release radiation. Yet inspections failed to catch the same problem on the replacement vessel head until more nozzles were found to be cracked last year.
  • Time crumbles thingsNuclear plants are fundamentally no more immune to aging than our cars or homes: Metals grow weak and rusty, concrete crumbles, paint peels, crud accumulates. Big components like 17-story-tall concrete containment buildings or 800-ton reactor vessels are all but impossible to replace. Smaller parts and systems can be swapped but still pose risks as a result of weak maintenance and lax regulation or hard-to-predict failures.Even mundane deterioration can carry harsh consequences.For example, peeling paint and debris can be swept toward pumps that circulate cooling water in a reactor accident. A properly functioning containment building is needed to create air pressure that helps clear those pumps. But a containment building could fail in a severe accident. Yet the NRC has allowed safety calculations that assume the buildings will hold.
  • In a 2009 letter, Mario V. Bonaca, then-chairman of the NRC's Advisory Committee on Reactor Safeguards, warned that this approach represents "a decrease in the safety margin" and makes a fuel-melting accident more likely.Many photos in NRC archives -- some released in response to AP requests under the federal Freedom of Information Act -- show rust accumulated in a thick crust or paint peeling in long sheets on untended equipment.Four areas stand out:
  • Brittle vessels: For years, operators have rearranged fuel rods to limit gradual radiation damage to the steel vessels protecting the core and keep them strong enough to meet safety standards.But even with last year's weakening of the safety margins, engineers and metal scientists say some plants may be forced to close over these concerns before their licenses run out -- unless, of course, new regulatory compromises are made.
  • Leaky valves: Operators have repeatedly violated leakage standards for valves designed to bottle up radioactive steam in an earthquake or other accident at boiling water reactors.Many plants have found they could not adhere to the general standard allowing main steam isolation valves to leak at a rate of no more than 11.5 cubic feet per hour. In 1999, the NRC decided to allow individual plants to seek amendments of up to 200 cubic feet per hour for all four steam valves combined.But plants have violated even those higher limits. For example, in 2007, Hatch Unit 2, in Baxley, Ga., reported combined leakage of 574 cubic feet per hour.
  • "Many utilities are doing that sort of thing," said engineer Richard T. Lahey Jr., who used to design nuclear safety systems for General Electric Co., which makes boiling water reactors. "I think we need nuclear power, but we can't compromise on safety. I think the vulnerability is on these older plants."Added Paul Blanch, an engineer who left the industry over safety issues, but later returned to work on solving them: "It's a philosophical position that (federal regulators) take that's driven by the industry and by the economics: What do we need to do to let those plants continue to operate?"Publicly, industry and government say that aging is well under control. "I see an effort on the part of this agency to always make sure that we're doing the right things for safety. I'm not sure that I see a pattern of staff simply doing things because there's an interest to reduce requirements -- that's certainly not the case," NRC chairman Gregory Jaczko said in an interview.
  • Corroded piping: Nuclear operators have failed to stop an epidemic of leaks in pipes and other underground equipment in damp settings. Nuclear sites have suffered more than 400 accidental radioactive leaks, the activist Union of Concerned Scientists reported in September.Plant operators have been drilling monitoring wells and patching buried piping and other equipment for several years to control an escalating outbreak.But there have been failures. Between 2000 and 2009, the annual number of leaks from underground piping shot up fivefold, according to an internal industry document.
D'coda Dcoda

Regulators up scrutiny of Fort Calhoun nuclear plant after finding more problems [17Dec11] - 0 views

  • Several new problems have been found at a Nebraska power plant that suffered flood damage earlier this year
  • tougher oversight for the Omaha Public Power District plant in Fort Calhoun will likely further delay its restart from early next year until sometime in the spring
  • The Nuclear Regulatory Commission said none of the new issues represents a public safety threat, but the growing number of problems, combined with the prolonged shutdown, requires more scrutiny.
  • ...2 more annotations...
  • new problems at the plant include deficiencies in the Omaha Public Power District’s emergency response and either a design or installation flaw that contributed to a fire in June. Inspectors also found flaws in the way the utility’s analysis of how the plant would withstand different accident conditions such as earthquakes, tornadoes or loss of coolant.
  • The plant was already facing extra oversight because of the failure of a key electrical part during a test in 2010 and deficiencies in flood planning that were also found last year. Fort Calhoun might not be receiving so much attention if it hadn’t had the other recent regulatory problems.
D'coda Dcoda

Japan Researchers: "The problem is here to stay" - Each rain will bring cesium into nei... - 0 views

  • OHTAWARA, JAPAN, Oct 17 — 800,000 pounds of radioactive ash have piled up at a garbage incineration plant over 100 km from the Fukushima meltdowns, according to a report on Reuters by Kiyoshi Takenaka. The Ohtawara plant is projected to run out of protected storage space in two weeks, after which radioactive ash will have to be left outdoors with no proper shelter. A city official explained why the ash has not been taken to a local dump: “Residents say they are worried about their children’s health and grandchildren’s health. Faced with such pleas, we just cannot make a move.”
  • “Researchers say that problems arising from the radiation, scattered over mountains, rivers and residential areas, are set to persist for years,” reports Reuters. “The problem is here to stay.” Kobe University professor Tomoya Yamauchi said, “I doubt the problem will go away in a year or two. It takes 30 years for caesium 137 to decay by half. Each time it rains, caesium deposited in mountains will be washed down to where people live.” In northern Japan, government data shows the amount of stored-up radioactive ash and dehydrated sludge is up 63 percent in the last 11 weeks.
D'coda Dcoda

We may be too late to evacuate [15Oct11] - 0 views

  • In Chernobyl, 0.09 uSv/h → Children started having symptoms. (near radiation level as westen Tokyo) 0.16 uSv/h → Adults got leukemia within 5 years. (near radiation level as Adachiku) 0.232 uSv/h → Mandatory evacuation area in Cheronobyl. (near radiation level as Asakusa or Tokyo Disneyland) I received a lot of queries. I would like to add some more explanation to this. This is a lecture of Ms. Noro Mika, who runs the NPO “Bridge to Chernobyl”
  • She has been visiting Chernobyl for 25 years and help children to accept in Hokkaido for one month etc.. Currently, the radiation levels in some parts of Kanto area are 3 mSv/year. Annotator’s comment: According to the Ministry of Education, Culture, Sports, Science and Technology, the numerical values announced by the local government prove only the emission of gamma rays. The iodine and the cesium decay while emitting beta rays. If we have to deal strictly with gamma rays emissions, the degree of contamination can be understood, but we can’t measure the level of individual external exposure. Besides, the numerical values detected at the monitoring posts are measured at 10m above the ground level or even more.
  • In Chernobyl, an area 30 km from the nuclear plant, where the radiation level was 0.232 μSv/hour, was declared “no-entry zone”. In Chernobyl, in area where radiation levels were daily even 0.16 μSv/hour have been admitted as being dangerous, and in fact, adults got leukemia and died. Annotator: In case, in Kamakura, were I live, the level is 0.16 μSv/hour. Concerning the gamma dose rate in a certain spots one meter above the ground level, the radiation levels declared officially for Kamakura city are generally between 0.11〜0.14 μSv/hour. Radioactivity, in case of of iron, concrete, etc causes the oxidation and corrosion, but in humans accelerates the aging process and cause them sickness.
  • ...8 more annotations...
  • And the effects start appearing in 2~3 years. We didn’t understand from the beginning where the hot spots were. But after checking later the areas where a lot of children got sick, in Belarus probably the radioactive substances were easily carried by the wind because the flat level ground, but it became clear that in areas 20~30 km from the plant there were places contaminated about just as much as Chernobyl. Kamakura is about 300 kilos away from Fukushima in a straight line. Based on the results of the investigations made after the nuclear accident in Chernobyl, in Europe the fact of assuming that 800km from the nuclear plant might be contaminated has been made taken into consideration as a basic rule for safety.
  • In Chernobyl, because contaminated farm products were made served in school lunches, about 70% of the children suffered from various kinds of health damages. Those (health problems) were not limited to their generation, and when those children became parents their problems passed to their children too. Because radioactive substances have similarities with nutrients like calcium, the mammals will feed a lot of them to their babies. Radioactive substances get easily out of their bodies by milk – hence, there were many cases when after giving birth to their first baby, a large quantity of radioactive substances were passed to the (first born) child and the mother’s health improved, but those children had serious congenital disorders (became people with serious disabilities).
  • Annotator’s comment: Because I believe that breast-feeding has a tremendous influence not only on nutrition, but also on the mental aspect; that’s why I hope that the mothers who are breast-feeding their children pay strict attention also to the their level of internal exposure and evacuate as soon as possible. Because the danger of the radioactive substances is known well enough, the world is watching the way Japan is dealing with the situation. A country which abandons its children and doesn’t value their lives is not a country worthy of trust.
  • Besides, there is no country who would buy things from a country that loosens it’s standards. The gov and Tepco spread misinformation (misinform the population). They should think about requesting the farmers give up growing farming products which are contaminated, give them compensation, and provide them new and safe farmlands.
  • n case of Chernobyl, party members, doctors and a nurses, teachers could afford to evacuate, because they could keep sustaining themselves even if they moved, but the poor people could not afford to evacuate. The symptoms which appeared at children who remained were the following: Headache nosebleed diarrhea thyroid problems not growing taller hard to recover after catching a cold swelling of the lymphatic glands, easily get sick with pneumonia kidney pain renal cancer
  • [that I have a] (because while radioactivity leaves the body, the urinary tract is affected) pain in the back side of the knee arthralgia wounds that take a long time to cure asthma hair loss problems with their hair growing alteration in visual acuity poor appetite poor concentration fatigability/easily getting tired cardiac pain (cardialgia) low resistance to diseases. The school lessons were shortened to 25 minutes, and because their kidneys became week, there are primary school children who wet their beds.
  • Even after becoming adults, the following cases were recorded: increase of myocardial infarcts an increase in the nr of sudden deaths death of young people in their 30th Accumulation of cesium in heart – even if eliminate from their bodies it (cesium) enters the body again after eating being exempted from the military service for having small holes in their hearts Regarding their children, the following medical cases were recorded - Brain damage, proved by the fact that they were slow in eating their meals.
  • Mothers of many children who were different from the other normal children give them to adoption, even if they didn’t have renal surgery or health problems, or a handicap. This kind of things are happening. (Source) German Translation
D'coda Dcoda

Japan Times: Radiation problems will continue for a very long time - Complete disclosur... - 0 views

  • Organizers of the Global Conference for a Nuclear Power Free World [in Yokohama] claimed 6,000 participants from some 30 countries [...] The conference shows all the signs of turning into a coherent, focused movement. [...] The conference’s call for “full transparency, accountability and responsibility by the Japanese Government and Tokyo Electric Power Company” is just as important. Without complete disclosure, progress toward grasping the causes of the problem and finding solutions cannot gain traction. The conference’s calls for ongoing data collection about the safety of food and materials will also be close to the hearts of all consumers. Already, consumers have been demanding basic information about foodstuffs and potentially contaminated materials. Last week’s discovery that radioactive gravel in concrete used to build a new condominium in Nihonmatsu, Fukushima Prefecture, is one more reminder that problems will continue for a very long time. Nuclear issues have come to home to roost. [...] it is clear that a practical consensus towards a different energy future is well underway. Now that is a weekend well spent!
D'coda Dcoda

Problems Plague Cleanup at Hanford Nuclear Waste Site [19Jan12] - 0 views

  • Seven decades after scientists came here during World War II to create plutonium for the first atomic bomb, a new generation is struggling with an even more daunting task: cleaning up the radioactive mess.The U.S. government is building a treatment plant to stabilize and contain 56 million gallons of waste left from a half-century of nuclear weapons production. The radioactive sludge is so dangerous that a few hours of exposure could be fatal. A major leak could contaminate water supplies serving millions across the Northwest. The cleanup is the most complex and costly environmental restoration ever attempted.And the project is not going well.
  • A USA TODAY investigation has found that the troubled, 10-year effort to build the treatment plant faces enormous problems just as it reaches what was supposed to be its final stage.In exclusive interviews, several senior engineers cited design problems that could bring the plant's operations to a halt before much of the waste is treated. Their reports have spurred new technical reviews and raised official concerns about the risk of a hydrogen explosion or uncontrolled nuclear reaction inside the plant. Either could damage critical equipment, shut the facility down or, worst case, allow radiation to escape.The plant's $12.3 billion price tag, already triple original estimates, is well short of what it will cost to address the problems and finish the project. And the plant's start-up date, originally slated for last year and pushed back to its current target of 2019, is likely to slip further.
  • "We're continuing with a failed design," said Donald Alexander, a senior U.S. government scientist on the project."There's a lot of pressure … from Congress, from the state, from the community to make progress," he added. As a result, "the design processes are cut short, the safety analyses are cut short, and the oversight is cut short. … We have to stop now and figure out how to do this right, before we move any further."
  • ...5 more annotations...
  • The "design-build" approach "is good if you're building a McDonald's," said Gene Aloise, the GAO's director of nuclear non-proliferation and security. "It's not good if you're building a one-of-a-kind, high-risk nuclear waste facility."The Defense Nuclear Facilities Safety Board, an independent federal panel that oversees public health and safety at nuclear weapons sites, is urging Energy Secretary Steven Chu to require more extensive testing of designs for some of the plant's most critical components."Design and construction of the project continue despite there being unresolved technical issues, and there is a lot of risk associated with that," said Peter Winokur, the board's chairman. The waste at Hanford, stored in 177 deteriorating underground tanks, "is a real risk to the public and the environment. It is essential that this plant work and work well."
  • Documents obtained by USA TODAY show at least three federal investigations are underway to examine the project, which is funded and supervised by the Department of Energy, owner of Hanford Site. Bechtel National is the prime contractor.In November, the Energy Department's independent oversight office notified Bechtel that it is investigating "potential nuclear safety non-compliances" in the design and installation of plant systems and components. And the department's inspector general is in the final stages of a separate probe focused on whether Bechtel installed critical equipment that didn't meet quality-control standards.Meanwhile, Congress' Government Accountability Office has launched a sweeping review of everything from cost and schedule overruns to the risks associated with the Energy Department's decision to proceed with construction before completing and verifying the design of key components.
  • Everything about the waste treatment plant at Hanford is unprecedented — and urgent.The volume of waste, its complex mix of highly radioactive and toxic material, the size of the processing facilities — all present technical challenges with no proven solution. The plant is as big as the task: a sprawling, 65-acre compound of four giant buildings, each longer than a football field and as tall as 12 stories high.The plant will separate the waste's high- and low-level radioactive materials, then blend them with compounds that are superheated to create a molten glass composite — a process called "vitrification." The mix is poured into giant steel cylinders, where it cools to a solid form that is safe and stable for long-term storage — tens of thousands of glass tubes in steel coffins.
  • Once the plant starts running, it could take 30 years or more to finish its cleanup work.The 177 underground tanks at Hanford hold detritus from 45 years of plutonium production at the site, which had up to nine nuclear reactors before it closed in 1989. Some of the tanks, with capacities ranging from 55,000 gallons to more than 1 million gallons, date to the mid-1940s, when Hanford's earliest reactor made plutonium for the first atomic bomb ever detonated: the "Trinity" test at Alamagordo, N.M. It also produced the plutonium for the bomb dropped on Nagasaki, Japan, in World War II.
  • More than 60 of the tanks are thought to have leaked, losing a million gallons of waste into soil and groundwater. So far, the contamination remains within the boundaries of the barren, 586-square-mile site, but it poses an ongoing threat to the nearby Columbia River, a water source for communities stretching southwest to Portland, Ore. And, while the liquid most likely to escape from the older tanks has been moved to newer, double-walled tanks, the risk of more leaks compounds that threat.
D'coda Dcoda

Fukushima catastrophe - Disaster beyond imagining - YouTube [01Aug11] - 0 views

shared by D'coda Dcoda on 03 Aug 11 - No Cached
  •  
    Professor Chris Busby giving a press talk (translated into Japanese,too) states this is the greatest disaster in human history, discusses most contaminated sources for internal radiation and how its not a Japanese problem but a global problem and the IAE must get involved with everything at its disposal to stop it soon.
D'coda Dcoda

Iran - Regime's nuclear ambitions have no place for people's problems [26Jul11] - 0 views

shared by D'coda Dcoda on 26 Jul 11 - No Cached
  • the nuclear program became the main subject of the first European tourney of Foreign Minister Ali Akber Salehi.
  • As part of the tourney, Salehi visited the capital of Slovenia Ljubljana and also Vienna, where he talked to his Austrian counterpart Michael Spindelegger and general director of the International Atomic Energy Agency Yukiya Amano. At the press conference in Ljubljana and Vienna, the head of the Iranian delegation made it clear that Iran is committed to the Nuclear Weapon Nonproliferation Treaty but will never yield its legal rights for implementation of the peaceful nuclear program
  • It is not a secret that most economic problems and deprivations of the population of the country are caused by sanctions against our state over the development of nuclear industry. The paradox is that we have already got used to the sanctions, which had been place against us for already 21 years.
  • ...8 more annotations...
  • Though the nuclear program in our country started in 1967, when the United State handed the nuclear reactor of 5 MW capacity to Shah Muhammad Reza Pehlevi, in 1979, the clericals who came to power rejected to implement the program of nuclear plant construction. In the first years after war not only foreign but also a great many of specialists participating in the nuclear program left the country. In a few years, when the situation in the country slightly stabilized, the powers decided to restart implementation of the nuclear program.
  • A scientific research center with the research reactor on heavy water was created under China’s support in Isfahan, and production of uranium ore continued. All the same, the powers were negotiating the technologies of uranium enrichment and production of heavy water with the companies from Switzerland and Germany. Iranian physicists visited  the National Institute of Nuclear Physics and High Energy Physics in Amsterdam, nuclear Petten center in Netherlands. However, in 2002 the United States included our country into the so-called evil axe and on the basis of footage from the space, they declared that religious fanatics are working secretly on creation of nuclear weapon. For many years the United States have been seeking international isolation of our country under pretense of inadmissibility of creating a nuclear bomb by this country
  • Undoubtedly, nuclear program is a two-edged sword. First, we are an independent state and no one has the right to dictate their provisions to us. The country’s powers have repeatedly stated that the nuclear program is implemented under international standards and control. Additionally, our neighbors Kuwait, Bahrain, Arab Emirates have already stated the intention to build nuclear stations and develop nuclear industry. But the world community is not concerned with it. This means that the ‘concern’ over Iranian nuclear programs is politically motivated. How long will we have to prove that we pursue only peaceful aims?
  • Our religious leader Ayatollah Hamenei said that creation of the nuclear bomb is illegal and goes contrary to Islam.
  • why do we need this nuclear program? Why do we need those high costs, if 70% of population is starving? There are no economic preconditions for development of the nuclear program. Our country has 10% of world’s proven oil reserves and is second for its natural gas resources.
  • The energy complex of the country fully meets the internal needs, for example, Iran is 20th in the world for its power generation. So why do we need the nuclear energy sector? It is much more important in the countries that have no sufficient natural energy sources. Additionally, nuclear energy remains the subject of fierce debates. Opponents and supporters of nuclear energy give different assessment to its security, reliability and economic effectiveness. The threat is connected with problems of waste utilization, car crashes that are causes of environmental disasters.
  • It seems that the maniacal wish to develop nuclear program by all means  is caused by the excessive ambitions of the regime, which decided to demonstrate its independence and determination by all means. Getting involved in the ambitions race with its main rival-United States, the Iranian authorities do not understand that the nuclear program has already turned into a speculation that is used by each of the parties for their own interests.
  • no one cares that this mad race has no place for the problems of people,  suffering from international sanctions against the country. Though, we are used to it since in 32 years the regime recalled the people only when there appeared the direct threat of overthrow.
D'coda Dcoda

Fukushima Update: Why We Should (Still) Be Worried [20Jan12] - 0 views

  • you would think the Japanese government would be doing everything in its power to contain the disaster. You would be wrong—dead wrong.
  • nstead of collecting, isolating, and guarding the millions of tons of radioactive rubble that resulted from the chain reaction of the 9.0 earthquake, the subsequent 45- to 50-foot wall of water that swamped the plant and disabled the cooling systems for the reactors, and the ensuing meltdowns, Japanese Environment Minister Goshi Hosono says that the entire country must share Fukushima’s plight by accepting debris from the disaster.
  • an estimated 20 million tons of wreckage on the land, much of which—now ten months after the start of the disaster—is festering in stinking piles throughout the stricken region. (Up to 20 million more tons of rubble from the disaster—estimated to cover an area approximately the size of California—is also circulating in the Pacific.)
  • ...9 more annotations...
  • the sheer amount of radioactive rubble is proving difficult to process. The municipal government of Kashiwa, in Chiba Prefecture to the west and south of Tokyo, recently shut down one of its main incinerators, because it can’t store any more than the 200 metric tons of radioactive ash it already has that is too contaminated to bury in a landfill.
  • According to the California-based Fukushima Fallout Awareness Network (FFAN), burning Fukushima’s radioactive rubble is the worst possible way to deal with the problem. That’s because incinerating it releases much more radioactivity into the air, not only magnifying the contamination all over Japan but also sending it up into the jet stream. Once in the jet stream, the radioactive particles travel across the Northern Hemisphere, coming back down to earth with rain, snow, or other precipitation.
  • Radiation used to be a word that evoked serious concern in a lot of people. However, the nuclear industry and its supporters have done a masterful job in allaying public fears about it. They do this in significant part by relying on outdated and highly questionable data collected on Japanese atom bomb survivors, while at the same time ignoring and dismissing inconvenient but much more relevant evidence that shows the actual harmful effects of radiation exposure from nuclear accidents. Author Gayle Greene explains this well in a recent article here. In their attempt to win the public over to their viewpoint, nuclear proponents even trot out the dubious theory of radiation hormesis, which says that low doses of radiation are actually good for you, because they stimulate an immune response. Well, so does something that causes an allergic reaction. But I digress…
  • radioactive elements, also known as radioisotopes or radionuclides, are unstable atoms. They seek stability by giving off particles and energy—ionizing radiation—until the radioisotope becomes stable. This process occurs within the nucleus of the radioisotope, and the shedding of these particles and energy is commonly referred to as ‘‘nuclear disintegration.’’ Nuclear radiation expert Rosalie Bertell describes the release of energy in each disintegration as ‘‘an explosion on the microscopic level.” This process is known as the “decay chain,” and during their decay, most radioactive elements morph into yet other radioactive elements on their journey to becoming lighter, stable atoms at the end of the chain. Some of the morphed-into elements are much more dangerous than the original radioisotope, and the decay chain can take a very long time. This is the reason that radioactive contamination can last so long
  • different radioisotopes give off different kinds of radiation—alpha, beta, gamma, X ray, or neutron emissions—all of which behave differently. Alpha emitters, such as plutonium and radon, are intensely ionizing but don’t penetrate very far and generally can’t get through the dead layers of cells covering skin. But when they are inhaled from the air or ingested from radiation-contaminated food or water, they emit high-energy particles that can do serious damage to the cells of sensitive internal soft tissues and organs. The lighter, faster-moving beta particles can penetrate far more deeply than alpha particles, though sheets of metal and heavy clothing can block them. Beta particles are also very dangerous when inhaled or ingested. Strontium-90 and tritium, a radioactive form of hydrogen, are both beta emitters. Gamma radiation is a form of electromagnetic energy like X rays, and it passes through clothing and skin straight into the body. A one-inch shield of either lead or iron, or eight inches of concrete are needed to stop gamma rays, examples of which include cobalt-60 and cesium-137—one of the radionuclides of most concern in the Fukushima fallout
  • The behavior of radioisotopes out in the environment also varies depending on what they encounter. They can combine with one another or with stable chemicals to form molecules that may or may not dissolve in water. They can combine with solids, liquids, or gases at ordinary temperature and pressure. They may be able to enter into biochemical reactions, or they may be biologically inert.
  • In her book No Immediate Danger: Prognosis for a Radioactive Earth, Bertell notes that if they enter the body either through air, food, water, or an open wound, “They may remain near the place of entry into the body or travel in the bloodstream or lymph fluid. They can be incorporated into the tissue or bone. They may remain in the body for minutes or hours or a lifetime.”
  • “Plutonium is biologically and chemically attracted to bone as is the naturally occurring radioactive chemical radium. However, plutonium clumps on the surface of bone, delivering a concentrated dose of alpha radiation to surrounding cells, whereas radium diffuses homogeneously in bone and thus has a lesser localized cell damage effect. This makes plutonium, because of the concentration, much more biologically toxic than a comparable amount of radium.”
  • the EPA was so confident that Fukushima fallout would not be a problem for U.S. citizens that it stopped its specific monitoring of fallout from Fukushima less than two months after the meltdowns began. But neglecting to monitor the fallout will not make it go away. In fact, another enormous problem with radioactive contamination is that it bioaccumulates in the environment, which means it concentrates as it moves up the food chain.
D'coda Dcoda

Three Plutonium Brothers of Japan: "They Are So Safe You Can Drink It" (Updated with Tr... - 0 views

  • The original Japanese video was compiled by "sievert311":http://www.youtube.com/watch?v=Ppon_vEJLCQ&feature=channel_video_title "sievert311" also has a Dr. Shunichi "100 millisievert is safe" Yamashita's video in three languages (English, Spanish, French). Check it out.
  • Tokyo Brown Tabby's latest captioning is over the collection of video clips of three Japanese nuclear researchers, claiming safety for plutonium on the national TV. The first two appeared on TV after the March 11 accident to assure the public that there was nothing to worry about on plutonium, because it was so safe.
  • Three Plutonium Brothers are: (1)Tadashi Narabayashi Professor in Engineering at Hokkaido University (in TV Asahi "Sunday Scramble" on Apr. 3, 2011)
  • ...13 more annotations...
  • Transcript of the video.
  • (3)Hirotada Ohashi Professor in System Innovation University of Tokyo (at a panel discussion in Saga Pref. on Dec. 25, 2005, regarding using MOX fuel at Genkai Nuke Plant)
  • (2)Keiichi Nakagawa Associate Professor in Radiology The University of Tokyo Hospital (in Nippon TV "news every" on Mar. 29, 2011)
  • For example, plutonium will not be absorbed from the skin. Sometimes you ingest it through food, but in that case, most of it will go out in urine or stools. The problem occurs when you inhale it. Inhaling plutonium is said to increase the risk of lung cancer. MC: "How will that affect our daily lives?" Nothing. MC: "Nothing?"
  • Besides, plutonium can be stopped by a single sheet of paper. Plutonium is made into nuclear fuels in facilities with good protective measures, so you don't need to worry.
  • Well, half of adult males will die if they ingest 200 grams of salt. With only 200 gram. However, oral lethal dose of plutonium-239 is 32g. So, if you compare the toxicity, plutonium, when ingested, is not very different from salt. If you inhale it into your lungs, the lethal dose will be about 10 milligram. This is about the same as potassium cyanide. That sounds scary but the point is plutonium is no different from potassium cyanide. Some toxins like botulism bacillus that causes food poisoning is much more dangerous. Dioxin is even more dangerous. So, unless you turn plutonium into powder and swallow it into your lungs.... MC: "No one would do that."
  • Nothing. To begin with, this material is very heavy. So, unlike iodine, it won't disperse in the air. Workers at the plant MAY be affected. So, I'd caution them to be careful. But I don't think the public should worry. For example, 50 years ago when I was born, the amount of plutonium was 1000 times higher than now. MC: "Oh, why?" Because of nuclear testing. So, even if the amount has now increased somewhat, in fact it's still much less than before. However, if it is released into the ocean through exhaust water, that's a problem. Once outside, plutonium hardly decreases.
  • MC: "It takes 24,000 years before it dicreases to half, doen't it?" That's right. So, in that sense, plutonium is problematic. But then again, there will be no effect on the public. I think you can rest easy. MC: "Let me summarize. Plutonium won't be absorbed from the skin. If it's ingested through food, it will go out of the body in urine. If it's inhaled, it may increase the risk of lung cancer. But since it's very heavy, we don't need to worry."
  • I'd like to point out two things. What happens in a [nuclear] accident depends entirely on your assumptions. If you assume everything would break and all the materials inside the reactor would be completely released into the environment, then we would get all kinds of result. But it's like discussing "what if a giant meteorite hit?" You are talking about the probability of an unlikely event. You may think it's a big problem if an accident occurs at the reactor, but the nuclear experts do not think Containment Vessels will break. But the anti-nuclear people will say, "How do you know that?" Hydrogen explosions will not occur and I agree, but their argument is "how do you know that?"
  • So, right now in the safety review, we're assuming every technically possible situation. For example, such and such parts would break, plutonium would be released like this, then it would be stopped here...something like that. We set the hurdle high and still assume even the higher-level radiation would be released and make calculations. This may be very difficult for you to understand this process, but we do. To figure out how far contamination might spread, we analyze based on our assumption of what could occur. However, the public interpret it as something that will occur. Or the anti-nuclear people take it in a wrong way and think we make such an assumption because it will happen. We can't have an argument with such people.
  • Another thing is the toxicity of plutonium. The toxicity of plutonium is very much exaggerated. Experts dealing with health damage by plutonium call this situation "social toxicity." In reality, there's nothing frightening about plutonium. If, in an extreme case, terrorists may take plutonium and throw it into a reservoir, which supplies the tap water. Then, will tens of thousands of people die? No, they won't. Not a single one will likely die. Plutonium is insoluble in water and will be expelled quickly from the body even if it's ingested with water.
  • So, what Dr. Koide is saying is if we take plutonium particles one by one, cut open your lungs and bury the plutonium particles deep in the lungs, then that many people will die. A pure fantasy that would never happen. He's basically saying we can't drive a car, we can't ride a train, because we don't know what will happen. MC: "Thank you very much."
  • See, we've been duped. Plutonium is not dangerous! We'd better ask these three to drink it up to prove it's not dangerous. Then we will feel safe, won't we? Please doctors, would you do it for us?
D'coda Dcoda

Reactor No.3 requiring more water than No. 1 and 2 because of leaks and "other problems... - 0 views

  • TEPCO seeks new ways to reduce contaminated water, NHK, July 27, 2011:
  • [...] Tokyo Electric Power Company sent a remote-controlled robot into the No.3 reactor building on Tuesday to take photos of the piping and measure radiation levels. [...] TEPCO says the temperature of the No.3 reactor is relatively stable, but it needs more water than the others because of leaks and other problems. [...] TEPCO hopes to eventually send workers into the buildings to find a way to pour water directly onto the fuel rods.
D'coda Dcoda

The human element | Bulletin of the Atomic Scientists [01Sep11] - 0 views

  • Nuclear reactors are operated by fallible human beings, and at least two meltdowns have been caused by poor human decisions: the 1961 meltdown of an experimental military reactor in Idaho, which killed three operators when one of them withdrew a control rod six times as far as he was supposed to (carrying out a high-tech murder-suicide over a love triangle, according to some accounts), and the Chernobyl accident, which was caused by an ill-conceived experiment conducted outside approved protocols.
  • So, if nuclear safety is a matter of human behavior as well as sound technical infrastructure, we should look to the social sciences in addition to engineering to improve reactor safety. After all, the machines don't run themselves. The social sciences have five lessons for us here: The blind spot. In what we might call the frog-in-boiling-water syndrome, human cognition is such that, in the absence of a disaster, individuals often filter out accumulating indications of safety problems that look like obvious red flags in retrospect -- just as frogs do not jump out of a pot of water on a stove as long as the temperature goes up slowly. Diane Vaughan's award-winning book on the Challenger disaster demonstrates a clear pattern in earlier space shuttle launches of O-ring performance degrading in proportion to declining launch temperatures -- the problem that would ultimately kill Challenger's ill-fated crew. Some shuttle engineers had become concerned about this, but the organizational complex responsible for the space shuttle could not bring this problem into full cognitive focus as long as the missions were successful. Operational success created a blinding glow that made this safety issue hard to see.
  • The whistle-blower's dilemma. The space shuttle program provides another example of human fallibility, explored in William Langewische's account of the Columbia space shuttle accident: Large, technical organizations tend to be unfriendly to employees who harp on safety issues. The NASA engineers who warned senior management -- correctly, as it turned out -- that the Columbia shuttle was endangered by the foam it lost on takeoff were treated as pests. (The same is true of Roger Boisjoly, the Morton Thiokol engineer who was ostracized and punished for having warned correctly that the Challenger shuttle was likely to explode if launched at low temperature.) Large technical organizations prioritize meeting deadlines and fulfilling production targets, and their internal reward structures tend to reflect these priorities. This is especially true if the organizations operate in a market environment where revenue streams are at stake. In such organizations, bonuses tend not to go to those who cause the organization to miss targets and deadlines or spend extra money to prevent accidents that may seem hypothetical. It is not the safety engineers, after all, who become CEOs. Those with safety concerns report that they often censor themselves unless they are deeply convinced of the urgency of their cause. Indeed, there is -- sadly -- substantial literature on the various forms of mistreatment of engineers who do come forward with such concerns.
  • ...4 more annotations...
  • The politics of oversight. Regulatory apparatuses tend to degrade over time -- especially in political systems such as America's, which tend to facilitate the corporate capture of government functions. Thanks to the leverage afforded by campaign donations and the revolving door between public and private employment, industries have become extremely skillful at inserting their former employees, future employees, and other allies into the very regulatory agencies that oversee them. A brilliant piece of investigative journalism on the Securities and Exchange Commission in the latest issue of Rolling Stone shows how this can reduce a regulatory agency to an empty husk. Whether it's the Nuclear Regulatory Commission, the Securities and Exchange Commission, or the Food and Drug Administration, the story is the same: Government agencies that started off as aggressive watchdogs have become absorbed over time by those over whom they have titular oversight. Americans recently saw the dire consequences of this trend in the banking meltdown of 2008.
  • Overwhelmed by speed and complexity. As Charles Perrow argues in his influential book Normal Accidents, which was inspired by the Three Mile Island accident, human operators function well in environments of routinized normality; but, when highly complex technical systems function in unpredicted ways -- especially if the jagged interactions between subsystems unfold very rapidly -- then the human capacity for cognitive processing is quickly overwhelmed. In other words, if a reactor is veering toward an accident caused by the failure of a single system in a way that operators have been trained to handle, then they are likely to retain control. But, if the accident-in-the-making involves unforeseen combinations of failures unfolding quickly and requires improvised responses rather than routinized ones, the outcome is far less hopeful.
  • The wild card. Finally, human nature being what it is, there are always the wild cards: people who kill romantic rivals via nuclear meltdown, freelance experimenters, terrorists, operators who should never have made it through personnel screening, operators who are drunk on the job, operators whose performance has declined through laziness, depression, boredom, or any host of reasons.
  • The bottom line: Nuclear safety is threatened by human as well as technical malfunctions, and the risk of disaster can only be attenuated through attention to the principles of social engineering as well as nuclear engineering. While human behavior can always overflow the bounds of our plans for its containment, there are measures that can at least lower the risk of a nuclear disaster caused by human factors: First, the nuclear industry needs to do more to both protect and reward whistle-blowers; and, second, the industry needs regulators with a genuine desire to exercise oversight -- rather than people hoping to increase their income by later going to work for the very companies that they were regulating. Unfortunately, this goes against the ethos of the contemporary United States, where the trend-lines are going in the wrong direction.
D'coda Dcoda

What to hate about nuclear energy [14Sep11] - 0 views

shared by D'coda Dcoda on 14 Sep 11 - No Cached
  • Reconsidering my support for nuclear energy I have found that it is only based in a desire to use it as a tool in the rather important fight against global warming and global meltdown. That in turn makes it possible to say “I hate nuclear energy. I just hate global warming more. So I support using it exactly until that problem is solved.” I said as much in my post yesterday with the nice title “Shut down those filthy nuclear reactors”.
  • So, what is there to hate about nuclear energy? Imagine you are a supporter of nuclear energy that is pushed by a silly reason like anger over being insulted by some random stranger on the Internet to actively look for anything that might be a problem with your former position. That is exactly what I have done. As a result, I have found basically two problems with it. One, which is the more important point, is the fact that the pro-nuclear position has lost in Germany, the only country where I actually have a vote. There is no German party I could vote for that supports building new nuclear reactors.
  • The victory of German anti-nuclear forces was quite decisive. That means as far as Germany is concerned, nuclear is just not a realistic option any more. Pro-nuclear advocacy is a waste of time, and a fringe minority position. Japan, the other country I might have some influence, is not quite as hopeless. Still advocating for a large increase in nuclear energy there does not seem a promising strategy.
  • ...2 more annotations...
  • The other thing I hate about nuclear energy is that most of pro-nuclear advocates are against renewable energy. That is not compatible with my point of view, making this a very efficient wedge issue for the anti-nuclear forces to exploit. Since most of the pro-nuclear advocates insist on bashing renewable energy, that point puts me out of the pro-nuclear advocacy business. For example, I regard the “Atomic Insights” blog by Rod Adams as hostile territory right now, and I am done writing any comments there for the time being.
  • So where does that leave me? I don’t exactly know yet. There are a couple of things that are clear already, however. One is that if anybody asks me to choose between nuclear and renewable, I will always choose the latter. That makes any form of pro-nuclear advocacy based on bashing renewable energy quite unacceptable to me. The other is that I am not quite joining the anti-nuclear advocates yet. I still think nuclear is needed as the most effective tool in the box against global warming. But my enthusiasm for advocating for that particular solution went down a couple of notches, so I will probably just focus more on discussing renewable energy issues.
D'coda Dcoda

Fuku I Worker Who Pointed Finger at Livecam: Why He Did It, In His Own Words [05Oct11] - 0 views

  • My Requests and The Reasons Why I Pointed My Finger at TEPCO and the GovernmentI would like to request that TEPCO and the government improve in a tangible way how they contract work to subcontractors and how they monitor the employment situation.As has been much reported, some workers have been forced to work here by the outlaw element [i.e. "yakuza" or the Japanese mafia]. Such workers are disguised as being employed by legitimate contractors but have to accept an unfair or severe employment conditions. Sometimes even the legitimate contractors who post recruitment information at employment Offices don't know who their workers' true contractors are. The excessive multi-layered subcontracting leads to various problems such as lower wages, no insurance, and no contract document, as has been reported.In addition, I would like to share a few stories from my own experience
  • At the inn where I stayed, there were days when I could not sleep during the daytime before my nighttime shift, because my roommates' work shifts are different. Before work, the workers had to fill in the form to declare their health condition. On one of such sleep-starved days, I honestly declared that I had slept for 4 hours. But while I was looking away, one of my seniors rewrote it to 6 hours. I assume it was because workers who were not capable of managing their own health would put a bad face on the company.There is another problem. Even if we only worked for the prescribed hours, we had to spend huge amount of extra time taking care of the newcomers and registering them. Therefore, we sometimes ended up working or driving a car with only 1 or 2 hours of sleep.The subcontractors are competing with each other for more work and trying to show how much they could do even if they have to strain their workers a little. The contractors would benefit from the low-cost, high-efficiency work. However, by the very nature of the whole setup, minor troubles or problems will not be reported to the higher hierarchy. They are causing negative effects everywhere, and I am worried that they might eventually lead to a serious accident.
  •  
    more to read on the site
D'coda Dcoda

The Dispatch Queue - An Alternative Means of Accounting for External Costs? [28Sep11] - 0 views

  • Without much going on recently that hasn’t been covered by other blog posts, I’d like to explore a topic not specifically tied to nuclear power or to activities currently going on in Washington, D.C. It involves an idea I have about a possible alternative means of having the electricity market account for the public health and environmental costs of various energy sources, and encouraging the development and use of cleaner sources (including nuclear) without requiring legislation. Given the failure of Congress to take action on global warming, as well as environmental issues in general, non-legislative approaches to accomplishing environmental goals may be necessary. The Problem
  • One may say that the best response would be to significantly tighten pollution regulations, perhaps to the point where no sources have significant external costs. There are problems with this approach, however, above and beyond the fact that the energy industry has (and will?) successfully blocked the legislation that would be required. Significant tightening of regulations raises issues such as how expensive compliance will be, and whether or not viable alternative (cleaner) sources would be available. The beauty of simply placing a cost (or tax) on pollution that reflects its costs to public health and the environment is that those issues need not be addressed. The market just decides between sources based on the true, overall cost of each, resulting in the minimum overall (economic + environmental) cost-generation portfolio
  • The above reasoning is what led to policies like cap-and-trade or a CO2 emissions tax being proposed as a solution for the global warming problem. This has not flown politically, however. Policies that attempt to have external costs included in the market cost of energy have been labeled a “tax increase.” This is particularly true given that the associated pollution taxes (or emissions credit costs) would have largely gone to the government.
  • ...15 more annotations...
  • One final idea, which does not involve money going to or from government, is simply requiring that cleaner sources provide a certain fraction of our overall power generation. The many state Renewable Portfolio Standards (that do not include nuclear) and the Clean Energy Standard being considered by Congress and the Obama administration (which does include nuclear) are examples of this policy. While better than nothing, such policies are not ideal in that they are crude, and don’t involve a quantitative incentive based on real external costs. An energy source is either defined as “clean,” or it is not. Note that the definition of “clean” would be decided politically, as opposed to objectively based on tangible external costs determined by scientific studies (nuclear’s exclusion from state Renewable Portfolio Standards policies being one outrageous example). Finally, there is the fact that any such policy would require legislation.
  • Well, if we can’t tax pollution, how about encouraging the use of clean sources by giving them subsidies? This has proved to be more popular so far, but this idea has also recently run into trouble, given the current situation with the budget deficit and national debt. Events like the Solyndra bankruptcy have put government clean energy subsidies even more on the defensive. Thus, it seems that neither policies involving money flowing to the government nor policies involving money flowing from the government are politically viable at this point.
  • All of the above begs the question whether there is a policy available that will encourage the use of cleaner energy sources that is revenue-neutral (i.e., does not involve money flowing to or from the government), does not involve the outright (political) selection of certain energy sources over others, and does not require legislation. Enter the Dispatch Queue
  • There must be enough power plants in a given region to meet the maximum load (or demand) expected to occur. In fact, total generation capacity must exceed maximum demand by a specified “reserve margin,” to address the possibility of a plant going offline, or other possible considerations. Due to the fact that demand varies significantly with time, a significant fraction of the generation capacity remains offline, some or most of the time. The dispatch queue is a means by which utilities, or independent regional grid operators, decide which power plants will operate in order to meet demand at any given instant. A good discussion of dispatch queues and how they operate can be found in this Department of Energy report.
  • The general goal of the methodology used to set the dispatch queue order is to minimize overall generation cost, while staying in compliance with all federal or state laws (environmental rules, etc.). This is done by placing the power plants with the lowest “variable” cost first in the queue. Plants with the highest “variable” cost are placed last. The “variable” cost of a plant represents how much more it costs to operate the plant than it costs to leave it idle (i.e., it includes the fuel cost and maintenance costs that arise from operation, but does not include the plant capital cost, personnel costs, or any fixed maintenance costs). Thus, one starts with the least expensive plants, and moves up (in cost) until generation meets demand. The remaining, more expensive plants are not fired up. This ensures that the lowest-operating-cost set of plants is used to meet demand at any given time
  • As far as who makes the decisions is concerned, in many cases the local utility itself runs the dispatch for its own service territory. In most of the United States, however, there is a large regional grid (covering several utilities) that is operated by an Independent System Operator (ISO) or Regional Transmission Organization (RTO), and those organizations, which are independent of the utilities, set the dispatch queue for the region. The Idea
  • As discussed above, a plant’s place in the dispatch queue is based upon variable cost, with the lowest variable cost plants being first in the queue. As discussed in the DOE report, all the dispatch queues in the country base the dispatch order almost entirely on variable cost, with the only possible exceptions being issues related to maximizing grid reliability. What if the plant dispatch methodology were revised so that environmental costs were also considered? Ideally, the public health and environmental costs would be objectively and scientifically determined and cast in terms of an equivalent economic cost (as has been done in many scientific studies such as the ExternE study referenced earlier). The calculated external cost would be added to a plant’s variable cost, and its place in the dispatch queue would be adjusted accordingly. The net effect would be that dirtier plants would be run much less often, resulting in greatly reduced pollution.
  • This could have a huge impact in the United States, especially at the current time. Currently, natural gas prices are so low that the variable costs of combine-cycle natural gas plants are not much higher than those of coal plants, even without considering environmental impacts. Also, there is a large amount of natural gas generation capacity sitting idle.
  • More specifically, if dispatch queue ordering methods were revised to even place a small (economic) weight on environmental costs, there would be a large switch from coal to gas generation, with coal plants (especially the older, dirtier ones) moving to the back of the dispatch queue, and only running very rarely (at times of very high demand). The specific idea of putting gas plants ahead of coal plants in the dispatch queue is being discussed by others.
  • The beauty of this idea is that it does not involve any type of tax or government subsidy. It is revenue neutral. Also, depending on the specifics of how it’s implemented, it can be quantitative in nature, with environmental costs of various power plants being objectively weighed, as opposed certain sources simply being chosen, by government/political fiat, over others. It also may not require legislation (see below). Finally, dispatch queues and their policies and methods are a rather arcane subject and are generally below the political radar (many folks haven’t even heard of them). Thus, this approach may allow the nation’s environmental goals to be (quietly) met without causing a political uproar. It could allow policy makers to do the right thing without paying too high of a political cost.
  • Questions/Issues The DOE report does mention some examples of dispatch queue methods factoring in issues other than just the variable cost. It is fairly common for issues of grid reliability to be considered. Also, compliance with federal or state environmental requirements can have some impacts. Examples of such laws include limits on the hours of operation for certain polluting facilities, or state requirements that a “renewable” facility generate a certain amount of power over the year. The report also discusses the possibility of favoring more fuel efficient gas plants over less efficient ones in the queue, even if using the less efficient plants at that moment would have cost less, in order to save natural gas. Thus, the report does discuss deviations from the pure cost model, to consider things like environmental impact and resource conservation.
  • I could not ascertain from the DOE report, however, what legal authorities govern the entities that make the plant dispatch decisions (i.e., the ISOs and RTOs), and what types of action would be required in order to change the dispatch methodology (e.g., whether legislation would be required). The DOE report was a study that was called for by the Energy Policy Act of 2005, which implies that its conclusions would be considered in future congressional legislation. I could not tell from reading the report if the lowest cost (only) method of dispatch is actually enshrined somewhere in state or federal law. If so, the changes I’m proposing would require legislation, of course.
  • The DOE report states that in some regions the local utility runs the dispatch queue itself. In the case of the larger grids run by the ISOs and RTOs (which cover most of the country), the report implies that those entities are heavily influenced, if not governed, by the Federal Energy Regulatory Commission (FERC), which is part of the executive branch of the federal government. In the case of utility-run dispatch queues, it seems that nothing short of new regulations (on pollution limits, or direct guidance on dispatch queue ordering) would result in a change in dispatch policy. Whereas reducing cost and maximizing grid reliability would be directly in the utility’s interest, favoring cleaner generation sources in the queue would not, unless it is driven by regulations. Thus, in this case, legislation would probably be necessary, although it’s conceivable that the EPA could act (like it’s about to on CO2).
  • In the case of the large grids run by ISOs and RTOs, it’s possible that such a change in dispatch methodology could be made by the federal executive branch, if indeed the FERC has the power to mandate such a change
  • Effect on Nuclear With respect to the impacts of including environmental costs in plant dispatch order determination, I’ve mainly discussed the effects on gas vs. coal. Indeed, a switch from coal to gas would be the main impact of such a policy change. As for nuclear, as well as renewables, the direct/immediate impact would be minimal. That is because both nuclear and renewable sources have high capital costs but very low variable costs. They also have very low environmental impacts; much lower than those of coal or gas. Thus, they will remain at the front of the dispatch queue, ahead of both coal and gas.
D'coda Dcoda

Why Japanese government conceals |[14Oct11] - 0 views

  • They found strontium at two more different places in Yokohama. Now they have measured strontium at three places in Total. All of them are located just around the corner from my apartment. It’s possibility that strontium is already everywhere around in Tokyo. I went to Tokyo last weekend. I visited Foreign Correspondents’ Club of Japan to have a pre-interview. The interviewees have worked for National Geographic or Jiji , They have done great reports about Sarin terrorism and the Tokai village nuclear accident. They met me because they were interested in my idea of “radiation refugees”.
  • They kindly offered me to help set up a new visa of “radiation refugee” in EU. For the further interview, they are planning to meet me this Sunday again. I need to clean my room before. In the interview, they asked me what I think must be done. I answered all honestly. I answered: I think all the Japanese must evacuate to Australia at the closest. Then South Korean, Philippine people, Malay, Singaporian, Indonesian, West Coast, they all must evacuate and leave Japan empty except for pro-nuc mental cases.
  • UN, American army, etc will all have to build the front line of the radiation shield on the Japan island, to minimize the potential international risk. No wonder Japanese race will lose their land. We will have to live like old Jewish. (Nika here – Iori refers to the millennia long Jewish Diaspora) We can no longer eat sushi. All the Pacific Ocean will keep being contaminated until human-beings invent a technology to pick up melted nuclear fuel rods from miles deep in the ground. Sure, the reporter called me unrealistic. It even seems so to me. However, I can not find any reason to deny it. On the other hand, the Japanese government is so eager to conceal the fact. US government seems to be helping it too. Why?
  • ...1 more annotation...
  • It is also the core problem of this whole disaster. The actual problem, which is as serious as radioactive contamination, is where to move the 30 million people from around Tokyo. By counting all the rest of the Japanese and Asian people, the number will be billions. Where to move them? This is the core of the problem. “Radiation refugee” The countries to accept them are seriously needed. We can never go back to before 3-10-11. World has totally changed. We must accept the fact.
Dan R.D.

Hanford's Nuclear Option - Page 2 - News - Seattle - Seattle Weekly [19Oct11] - 0 views

  • the Defense Nuclear Facilities Safety Board (DNFSB), an independent organization tasked by the executive branch to oversee public health and safety issues at the DOE's nuclear facilities. In a report addressed to Secretary of Energy Steven Chu, DNFSB investigators wrote that "both DOE and contractor project management behaviors reinforce a subculture . . . that deters the timely reporting, acknowledgement, and ultimate resolution of technical safety concerns."
  • It's not just the DNFSB that is concerned with the safety culture and management at Hanford. Seattle Weekly has obtained official documents revealing that the Government Accountability Office (GAO), the Congressional arm in charge of investigating matters relating to contractors and other public fund recipients, visited the Hanford site last month. In an outline sent to DOE personnel in advance of their visit, the GAO wrote that it will look into how contractors are addressing concerns over what they call "relatively lax attitudes toward safety procedures," "inadequacies in identifying and addressing safety problems," and a "weak safety culture, including employees' reluctance to report problems." Their findings likely will be made public in early 2012.
  • After reviewing 30,000 documents and interviewing 45 staffers, the DNFSB reported that those who went against the grain and raised concerns about safety issues associated with construction design "were discouraged, if not opposed or rejected without review." In fact, according to the DNFSB, one of these scientists, Dr. Walter Tamosaitis, was actually removed from his position as a result of speaking up about design problems.
  • ...1 more annotation...
  • This wasn't the first time the GAO investigated DOE contracts with Bechtel. In 2004, the agency released a report critical of the DOE and Bechtel's clean-up plans, warning of faulty design and construction of the Tank Waste Treatment and Immobilization Plant (WTP), a structure at the heart of the clean-up effort. The WTP building was not designed to withstand a strong earthquake, but only after prodding from the DNFSB did the DOE force Bechtel to go back to the drawing board to ensure the plant could withstand one. As a result, Bechtel's design and cost estimates to finish construction skyrocketed from $4.3 billion to more than $10 billion. And in 2006, GAO released another paper critical of Bechtel's timeline and cost estimates, which seemed to change annually, saying that they have "continuing concerns about the current strategy for going forward on the project."
1 - 20 of 207 Next › Last »
Showing 20 items per page