Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged fuel rods

Rss Feed Group items tagged

D'coda Dcoda

95% disagree with "Beyond Nuclear". Let's make it 99% [23Oct11] - 0 views

  • 95% disagree with “Beyond Nuclear”. Let’s make it 99% by Rod Adams on October 14, 2011 in Antinuclear activist , Politics of Nuclear Energy , Unreliables , Wind energy Share0 One of the more powerful concepts that I studied in college was called “groupthink.” The curriculum developers in the history department at the US Naval Academy thought it was important for people in training to become leaders in the US Navy learn to seek counsel and advice from as broad a range of sources as possible. We were taught how to avoid the kind of bad decision making that can result by surrounding oneself with yes-men or fellow travelers. The case study I remember most was the ill fated Bay of Pigs invasion where virtually the entire Kennedy Administration cabinet thought that it would be a cakewalk . If Patricia Miller had bothered to do the fact-checking required by journalistic integrity she would have come across this video showing 30 feet of water above the fuel at Fukushima with all of the fuel bundles exactly where they’re supposed to be. Aside: Don’t we live in an amazing world? I just typed “Bay of Pigs groupthink” into my browser search box and instantly hit on exactly the link I needed to support the statement above. It even cites the book we used when I was a plebe in 1977, more than 33 years ago. End Aside. Not everyone, however, has the benefit of early leadership lessons about the danger of believing that a small group of likeminded people can provide actionable advice. Some of the people who are most likely to be victims of groupthink are those who adamantly oppose the continued safe operation of emission-free nuclear power plants. The writers who exclusively quote members of that tiny community have also fallen into the groupthink trap.   On October 8, 2011, the Berkeley Patch, a New Jersey based journal that regularly posts negative stories about Oyster Creek, featured an article titled Petitioners to NRC: Shut Down All Fukushima-Like Nuclear Plants . Here is a snapshot of the masthead, the headline and the lede. The article is a diatribe that quotes people on the short list of frequently quoted antinuclear activists including Paul Gunter, Michael Mariotte, Kevin Kamps, Deb Katz and Dale Bridenbaugh. The author faithfully reproduces some of their best attempts to spread fear, uncertainty and doubt using untruths about the actual events at Fukushima. For example, the article uses the following example of how antinuclear activists are still trying to spread the myth that the used fuel pools at Fukushima caught fire. Oyster Creek – the oldest nuclear plant in the United States – has generated over 700 tons of high-level radioactive waste, Kevin Kamps of Beyond Nuc
  • 95% disagree with “Beyond Nuclear”. Let’s make it 99% by Rod Adams on October 14, 2011 in Antinuclear activist, Politics of Nuclear Energy, Unreliables, Wind energy Share0 One of the more powerful concepts that I studied in college was called “groupthink.” The curriculum developers in the history department at the US Naval Academy thought it was important for people in training to become leaders in the US Navy learn to seek counsel and advice from as broad a range of sources as possible. We were taught how to avoid the kind of bad decision making that can result by surrounding oneself with yes-men or fellow travelers. The case study I remember most was the ill fated Bay of Pigs invasion where virtually the entire Kennedy Administration cabinet thought that it would be a cakewalk. If Patricia Miller had bothered to do the fact-checking required by journalistic integrity she would have come across this video showing 30 feet of water above the fuel at Fukushima with all of the fuel bundles exactly where they’re supposed to be.Aside: Don’t we live in an amazing world? I just typed “Bay of Pigs groupthink” into my browser search box and instantly hit on exactly the link I needed to support the statement above. It even cites the book we used when I was a plebe in 1977, more than 33 years ago. End Aside. Not everyone, however, has the benefit of early leadership lessons about the danger of believing that a small group of likeminded people can provide actionable advice. Some of the people who are most likely to be victims of groupthink are those who adamantly oppose the continued safe operation of emission-free nuclear power plants. The writers who exclusively quote members of that tiny community have also fallen into the groupthink trap.  On October 8, 2011, the Berkeley Patch, a New Jersey based journal that regularly posts negative stories about Oyster Creek, featured an article titled Petitioners to NRC: Shut Down All Fukushima-Like Nuclear Plants . Here is a snapshot of the masthead, the headline and the lede. The article is a diatribe that quotes people on the short list of frequently quoted antinuclear activists including Paul Gunter, Michael Mariotte, Kevin Kamps, Deb Katz and Dale Bridenbaugh. The author faithfully reproduces some of their best attempts to spread fear, uncertainty and doubt using untruths about the actual events at Fukushima. For example, the article uses the following example of how antinuclear activists are still trying to spread the myth that the used fuel pools at Fukushima caught fire. Oyster Creek – the oldest nuclear plant in the United States – has generated over 700 tons of high-level radioactive waste, Kevin Kamps of Beyond Nuclear said. “Granted that some of that has been moved into dry cast storage, but the pool remains full to its capacity,” Kamps said. “And this was a re-rack capacity. Much later in terms of quantity of high level radioactive waste than it was originally designed for.” This represents 125 million curies of radioactive cesium-137 and the NRC has reported that up to 100 percent of the hazardous material could be released from a pool fire, Kamps said. “I would like to point out that Fukushima Daiichi units one, two, three and four combined in terms of the inventory of high level radioactive waste in their storage pools does not match some of these reactors I mentioned in terms of how much waste is in these pools,” Kamps said. “So the risks are greater here for boil downs and the consequences of a radioactive fire in these pools.” Fortunately, the people who are not a part of the antinuclear community are finally beginning to recognize their own strength and to realize that they do not have to remain silent while the lies are being spread. Here is how a knowledgable commenter responded to the above segment of the article: If Patricia Miller had bothered to do the fact-checking required by journalistic integrity she would have come across this video showing 30 feet of water above the fuel at Fukushima with all of the fuel bundles exactly where they’re supposed to be.
  • On October 8, 2011, the Berkeley Patch, a New Jersey based journal that regularly posts negative stories about Oyster Creek, featured an article titled Petitioners to NRC: Shut Down All Fukushima-Like Nuclear Plants. Here is a snapshot of the masthead, the headline and the lede. The article is a diatribe that quotes people on the short list of frequently quoted antinuclear activists including Paul Gunter, Michael Mariotte, Kevin Kamps, Deb Katz and Dale Bridenbaugh. The author faithfully reproduces some of their best attempts to spread fear, uncertainty and doubt using untruths about the actual events at Fukushima. For example, the article uses the following example of how antinuclear activists are still trying to spread the myth that the used fuel pools at Fukushima caught fire. Oyster Creek – the oldest nuclear plant in the United States – has generated over 700 tons of high-level radioactive waste, Kevin Kamps of Beyond Nuclear said. “Granted that some of that has been moved into dry cast storage, but the pool remains full to its capacity,” Kamps said. “And this was a re-rack capacity. Much later in terms of quantity of high level radioactive waste than it was originally designed for.” This represents 125 million curies of radioactive cesium-137 and the NRC has reported that up to 100 percent of the hazardous material could be released from a pool fire, Kamps said. “I would like to point out that Fukushima Daiichi units one, two, three and four combined in terms of the inventory of high level radioactive waste in their storage pools does not match some of these reactors I mentioned in terms of how much waste is in these pools,” Kamps said. “So the risks are greater here for boil downs and the consequences of a radioactive fire in these pools.”
  • ...5 more annotations...
  • NOTHING happend to the fuel in the pools at Fukushima. I would like to see some evidence other than the word of an activist who frightens kids for a living to support Gunter’s rant about peices of fuel being ejected miles away. From the looks of that video, the fuel didn’t move an inch. There is also a poll associated with the article. The poll discloses that it is completely unscientific, since it allows anyone to vote and is not based on randomly selected participants. However, I think that the results as of 0315 this morning are pretty amusing since the antinuclear opinion piece has been posted for nearly a week.
  • Perhaps this October 12, 2011 post titled Oyster Creek Response that was published on Clean Energy Insight has something to do with the way the results are shaping up with 1029 out of 1080 respondents (95.3%) saying that Oyster Creek should not stop operating. Here is one more example of how inbred the group of antinuclear activists has become. I am talking here about the people who are so adamantly opposed to using nuclear energy that they do not even want existing nuclear plants to keep on producing clean, emission free, low cost electricity. Michael Mariotte of NIRS makes the following extraordinary claim: Ninety-five percent of the people in the world know about Fukushima, Michael Mariotte of the Nuclear Information and Resource Service said.
  • “It took a really extraordinary event for 95 percent of the people in the world to know about it,” he said. “If they know about Fukushima, they know about Mark 1 reactors exploding in the air and releasing toxic radiation across the world and they know that’s not a good thing. Something has to be done to make sure that never happens again.” I could not let that one pass without a comment; I am quite sure that Mariotte has once again fallen victim to the fact that he surrounds himself with people who echo his own prejudices. Here is my response.
  • Marriotte makes an interesting statement by he claiming that “95% of the people in the world” know about Fukushima. That statement might be true about the people in the United States, where advertiser-supported television news programs covered the events with breathless hype for several months. I am pretty sure that you would have a difficult time finding anyone in China, central Africa, the Asian subcontinent, South America or the Middle East who can even pronounce Fukushima, much less know anything about GE Mark 1 containments. Most of them would not even know that they should be worried about radiation because they have never been taught to be afraid of something that they cannot smell, feel, taste, or hear especially when it occurs at levels that have no chance of making them sick within their expected lifetime. Mariotte, Gunter, Kamps, Katz and Bridenbaugh are all members of a vocal, but tiny group of people who have been carrying the water of the fossil fuel industry for decades by opposing nuclear energy, the only real competitor it has. They are victims of groupthink who believe that their neighbors in Takoma Park are representative of the whole world.
  • Just before making this comment, I voted in the unscientific poll associated with the article. 95% say that Oyster Creek should keep on powering New Jersey homes and businesses. They are not impressed by the Beyond Nuclear FUD; they like clean electricity.
D'coda Dcoda

Experts split on how to decommission Fukushima nuclear plant [29Aug11] - 0 views

  • What is actually going to take place at the Fukushima No. 1 Nuclear Power Plant, where word is that the four reactors that were crippled in the Great East Japan Earthquake and tsunami will eventually be decommissioned? The Ministry of Economy, Trade and Industry's Nuclear and Industrial Safety Agency (NISA) defines "decommissioning" as the process of removing spent fuel from reactors and dismantling all facilities. Ultimately, the site of a decommissioned reactor is meant to be reverted into a vacant lot.
  • In 1996, the then Japan Atomic Energy Research Institute (JAERI) -- now the Japan Atomic Energy Agency (JAEA) -- finished decommissioning its Japan Power Demonstration Reactor. The decommissioning process of the Tokai Nuclear Power Plant in the Ibaraki Prefecture village of Tokai began in 1998 and is set to end in fiscal 2020, while the No. 1 and No. 2 nuclear reactors at the Hamaoka Nuclear Power Plant in the Shizuoka Prefecture city of Omaezaki are slated for decommissioning by fiscal 2036. Around the world, only around 15 nuclear reactors have thus far been dismantled.
  • The standard decommissioning process entails six major steps: 1. Remove spent fuel rods, 2. Remove radioactive materials that have become affixed to reactor pipes and containers, 3. Wait for radiation levels to go down with time, 4. Dismantle reactors and other internal vessels and pipes, 5. Dismantle the reactor buildings, and 6. Make the site into a vacant lot.
  • ...17 more annotations...
  • "Cleaning," "waiting," and "dismantling" are the three key actions in this process. Needless to say, this all needs to be done while simultaneously containing radioactive materials.
  • In the case of the Tokai Nuclear Power Plant, the first commercial plant to undergo decommissioning, spent fuel was removed over a span of three years beginning in 1998, and was transported to Britain for reprocessing. Dismantling of the facilities began in 2001, with current efforts being made toward the dismantling of heat exchangers; workers have not yet begun to take the reactor itself apart. The entire process is expected to be an 88.5-billion-yen project involving 563,000 people.
  • Hitachi Ltd., which manufactures nuclear reactors, says that it "generally takes about 30 years" to decommission a reactor. The Hamaoka Nuclear Power Plant's No. 1 and No. 2 reactors operated by Chubu Electric Power Co. are also expected to take about 30 years before they are decommissioned.
  • In the case of the Fukushima No. 1 Nuclear Power Plant, meanwhile, the biggest challenge lies in how to remove the fuel, says Tadashi Inoue, a research advisor at the Central Research Institute of Electric Power Industry (CRIEPI), a foundation that conducts research on energy and environmental issues in relation to the electrical power industry.
  • "we must deal with rubble contaminated with radioactive materials that were scattered in the hydrogen blasts and treat the radiation-tainted water being used to cool nuclear fuel before we can go on to fuel removal."
  • Currently, the Fukushima plant's operator, Tokyo Electric Power Co. (TEPCO), is desperately trying to treat the contaminated water. Huge challenges remain with regards to the contaminated rubble, as radiation levels of over 10 sieverts per hour were found near outdoor pipes on the plant grounds just the other day. Exposure to such high levels would mean death for most people.
  • Each step in the process toward decommissioning is complicated and requires great numbers of people. It's a race against time because the maximum amount of radiation that workers can be exposed to is 250 millisieverts.
  • Prefacing the following as "a personal opinion," Inoue says: "Building a car that can protect the people inside as much as possible from radioactive materials, and attaching an industrial robotic arm to the car that can be manipulated by those people could be one way to go about it."
  • Two types of fuel removal must take place. One is to take out the spent fuel in the containment pools, and the other is to remove the melted fuel from the reactor cores. Because the radiation levels of the water in the spent fuel pools have not shown any significant changes from before the crisis, it is believed that the spent fuel has not suffered much damage. However, removing it will require repairing and reinstalling cranes to hoist the fuel rods out.
  • The breached reactor core is a bigger problem. It is believed that raising water levels inside the reactor has been difficult because of a hole in the bottom of the vessel. It will be necessary to plug the hole, and continue filling the vessel with water while extracting the melted fuel. How to fill the vessel with water is still being debated. If the reactor can be filled with water, steps taken after the 1979 Three Mile Island nuclear accident can serve as a guide because in that case, in which approximately 50 percent of the core had melted, workers were able to fill the reactor with water and remove the fuel within.
  • Inoue predicts that removal of spent fuel from the containment pools will begin about five years after the crisis, and about 10 years in the case of melted fuel from the reactor core. Work on the four reactors at the Fukushima plant will probably take several years.
  • "Unless we look at the actual reactors and take and analyze fuel samples, we can't know for sure," Inoue adds. Plus, even if workers succeed in removing the fuel, reprocessing it is an even more difficult task. A review of processing methods and storage sites, moreover, has yet to take place.
  • Meanwhile, at least one expert says he doesn't believe that workers will be able to remove the melted fuel from the crippled plant.
  • "If there's 10 sieverts per hour of radiation outside, then the levels must be much higher closer to the reactor core," says Tadahiro Katsuta, an associate professor at Meiji University and an expert in reactor engineering and reactor policy who was once a member of an anti-nuclear non-profit organization called Citizens' Nuclear Information Center (CNIC). "The fuel has melted, and we haven't been able to cool it consistently. If work is begun five or 10 years from now when radiation levels have not yet sufficiently gone down, workers' health could be at serious risk."
  • Katsuta predicts that it will probably take at least 10 years just to determine whether it is possible to remove the fuel. He adds that it could very well take 50 years before the task of dismantling the reactor and other facilities is completed.
  • What Katsuta has in mind is a Chernobyl-style concrete sarcophagus, which would entail cloaking the melted tomb with massive amounts of concrete. "How could we simultaneously dismantle four reactors that have been contaminated to the extent that they have by radioactive materials?" asks Katsuta. "Japan has little experience in decommissioning reactors, and this case is quite different from standard decommissioning processes. It's not realistic to think we can revert the site back to a vacant lot. I think we should be considering options such as entombing the site with concrete or setting up a protective dome over the damaged reactor buildings
  • what we face is a great unknown to all of mankind.
D'coda Dcoda

Nuclear Expert Discusses 'Melt-Through' at NRC Meeting: I believe melted nuclear core l... - 0 views

  • Fukushima & Japan Tokyo Area Outside Tokyo Fukushima Reactors Status of Reactors Reactor No. 1 Reactor No. 2 Reactor No. 3 Spent Fuel Pools Spent Fuel Pool No. 1 Spent Fuel Pool No. 2 Spent Fuel Pool No. 3 Spent Fuel Pool No. 4 Common Spent Fuel Pool Radiation Releases Plutonium Uranium Longterm Chernobyl Comparisons Criticality US & Canada West Coast California Los Angeles San Francisco Bay Area Hawaii Seattle Canada Midwest East Coast Florida US Nuclear Facilities North Anna (VA) Calvert Cliffs (MD) World Europe France UK Germany Chernobyl Rest of Europe South America Russia Asia China South Korea Taiwan Rest of Asia Pacific Maps & Forecasts Radiation Maps Radiation Forecasts Rad. Facts Internal Emitters Health Testing Food Water Air Rain Soil Milk Strange Coverups? Children Video Home page_
D'coda Dcoda

What do you do with the waste? - Kirk Sorensen's answers [13Oct11] - 0 views

  • What do you do with the waste? – Kirk Sorensen’s answers by Rod Adams on October 13, 2011 in Fuel Recycling , Nuclear Batteries , Nuclear Waste , Plutonium , Thorium Share3   Gordon McDowell, the film maker who produced Thorium Remix , has released some additional mixes of material gathered for that production effort. One in particular is aimed at those people whose main concern about using nuclear energy is the often repeated question “What do you do with the waste.” Many people who ask that question think that it is a trump card that should end all conversation and let them win the hand. I used to play bridge and enjoyed it when I could “no trump” a smug contestant who thought he had a winner. Kirk’s discussion below is one example of how that can be done in the nuclear energy field . My friends who like the Integral Fast Reactor have another answer . I am pretty certain there are dozens of other good answers to the question – the primary obstacle to implementing them comes from the nefarious forces that LIKE raising (artificial) barriers to the use of nuclear energy. On another note, I want to point to a story published in the evening of October 12, 2011 on the Wall Street Journal web site titled WSJ: Fluor Buys Stake In Reactor Maker NuScale Energy . I am happy to see that NuScale has found a suitable, deep pockets investor with a lot of nuclear plant engineering and construction experience. One more short note. Jay Hancock, a writer for the Baltimore Sun, has taken note of some of the work published on Atomic Insights regarding Exelon’s decision to destroy the Zion Nuclear power station rather than allowing it to compete against existing power plants to increase the supply and decrease the price of electricity. On October 8, 2011, Hancock published a column titled State should pull plug on Constellation-Exelon deal that explored whether or not it would be beneficial for Marylanders to allow a company like Exelon to own a dominant number of electrical power generation facilities in the state. One of the pieces of evidence that has convinced Hancock to oppose the proposed merger is the way that Exelon has acted with regard to the Zion nuclear station. He recognizes that the company has adequately demonstrated a history of using market power to drive up prices and profits at the expense of customer interests. Additional reading related to Exelon bear hug attempt: EDF Asks Maryland Regulators To Block Exelon-Constellation Merger
  • What do you do with the waste? – Kirk Sorensen’s answers by Rod Adams on October 13, 2011 in Fuel Recycling, Nuclear Batteries, Nuclear Waste, Plutonium, Thorium Share3  Gordon McDowell, the film maker who produced Thorium Remix , has released some additional mixes of material gathered for that production effort. One in particular is aimed at those people whose main concern about using nuclear energy is the often repeated question “What do you do with the waste.” Many people who ask that question think that it is a trump card that should end all conversation and let them win the hand. I used to play bridge and enjoyed it when I could “no trump” a smug contestant who thought he had a winner. Kirk’s discussion below is one example of how that can be done in the nuclear energy field . My friends who like the Integral Fast Reactor have another answer. I am pretty certain there are dozens of other good answers to the question – the primary obstacle to implementing them comes from the nefarious forces that LIKE raising (artificial) barriers to the use of nuclear energy. On another note, I want to point to a story published in the evening of October 12, 2011 on the Wall Street Journal web site titled WSJ: Fluor Buys Stake In Reactor Maker NuScale Energy. I am happy to see that NuScale has found a suitable, deep pockets investor with a lot of nuclear plant engineering and construction experience. One more short note. Jay Hancock, a writer for the Baltimore Sun, has taken note of some of the work published on Atomic Insights regarding Exelon’s decision to destroy the Zion Nuclear power station rather than allowing it to compete against existing power plants to increase the supply and decrease the price of electricity. On October 8, 2011, Hancock published a column titled State should pull plug on Constellation-Exelon deal that explored whether or not it would be beneficial for Marylanders to allow a company like Exelon to own a dominant number of electrical power generation facilities in the state.
  • Gordon McDowell, the film maker who produced Thorium Remix, has released some additional mixes of material gathered for that production effort. One in particular is aimed at those people whose main concern about using nuclear energy is the often repeated question “What do you do with the waste.” Many people who ask that question think that it is a trump card that should end all conversation and let them win the hand. I used to play bridge and enjoyed it when I could “no trump” a smug contestant who thought he had a winner. Kirk’s discussion below is one example of how that can be done in the nuclear energy field
D'coda Dcoda

204 new fuel rods turned out to be in the "spent" fuel pool at reactor 4.[29Oct11] - 0 views

  • Tepco has announced that there are 1,331 spent fuel rods in the pool of reactor 4. However, 10/14/2011, Nuclear and Industrial Safety Agency announced that the pool contained 204 units of new fuel rods as well. They assumed that once aftershock hits the pool and it’s damaged, the fuel rods get to 900 C, melting out of the zirconium cover in 2.3 hours later. As the zirconium alloy cover (Zircaloy) is destroyed, it emits hydrogen, which is likely to cause hydrogen explosion. The melted fuel rods are estimated to have reached 2,800 C and started to melt down some 7.7 hours later.
  • Currently Tepco is reinforcing the fuel pool, which is now exposed to outside because it lost the wall from the explosion. Today Hokkaido University stated that there is a possibility that another M9.0 hits north Japan again (soon? imminent?). They say they caught the same earthquake echo of 89.9MHz as what they caught before 311. According to their report, another M9.0 may hit from December to January, the epicenter may be from South Miyagi prefecture offshore to Ibaraki offshore, which is beside Fukushima plant.
  • Even apart from this report, it is rational to assume another major aftershock hits Fukushima plants anytime. Fukushima is still on the edge.
D'coda Dcoda

Fukushima Forever [21Sep13] - 0 views

  •  
    [...] Much more serious is the danger that the spent fuel rod pool at the top of the nuclear plant number four will collapse in a storm or an earthquake, or in a failed attempt to carefully remove each of the 1,535 rods and safely transport them to the common storage pool 50 meters away. Conditions in the unit 4 pool, 100 feet from the ground, are perilous, and if any two of the rods touch it could cause a nuclear reaction that would be uncontrollable. The radiation emitted from all these rods, if they are not continually cool and kept separate, would require the evacuation of surrounding areas including Tokyo. Because of the radiation at the site the 6,375 rods in the common storage pool could not be continuously cooled; they would fission and all of humanity will be threatened, for thousands of years. [...]
D'coda Dcoda

Reactors 1 & 2 have HOLES up to 50 meters, clean up notes [9Dec11] - 0 views

  • expected to take more than 30 years to decommission crippled reactors at the Fukushima No. 1 Nuclear Power Plant, and workers tasked with the difficult mission would have to venture into "uncharted territory" filled with hundreds of metric tons of highly radioactive nuclear fuel,
  • After the expert committee of the Japan Atomic Energy Commission (JAEC) compiled a report on procedures to decommission the No. 1 to 4 reactors at the Fukushima No. 1 Nuclear Power Plant on Dec. 7, the actual work is expected to move into high gear after the turn of the year. As in the case of the 1979 Three Mile Island accident, the workers would try to remove melted nuclear fuel after shielding radiation with water, a technique called a "water tomb." But the work would have to be done in a "territory where humans have not stepped into before," said a senior official of Tokyo Electric Power Co. (TEPCO), the operator of the troubled Fukushima nuclear power station. The work is so difficult that it is expected to take more than 30 years to finish decommissioning the reactors.
  • Up to about 5,000 millisieverts per hour of radiation -- lethal levels -- have been detected in the reactor building of the No. 1 reactor.
  • ...5 more annotations...
  • The key part of the decommissioning work is to remove a total of 1,496 fuel rods from the No. 1 to 3 nuclear reactors and 3,108 fuel rods from nuclear fuel pools of the No. 1 to 4 reactors. The government and TEPCO are expected to start decommissioning the reactors early in the New Year after unveiling detailed plans around Dec. 16 that the nuclear plant has been brought under control by achieving a stable state called a ''cold shutdown.''
  • TEPCO said it would bring the nuclear plant under control by filling the reactors with water. But subsequent analysis of the accident suggested that the No. 1 and 2 reactors had holes of up to 50 square centimeters caused by hydrogen explosions and the like. In the work schedule announced in May, TEPCO said it had scrapped its plan to repair the containment vessels and suspended the work to fill them with water.
  • workers have been fighting an uphill battle to remove crumbled fuel. The reactors had been running without cooling water for a long time, and most of the fuel melted and apparently dropped into the containment vessel from the bottom of the pressure vessel at the No. 1 reactor
  • A single fuel rod contains about 170 kilograms of uranium, and a simple calculation suggests that about 254 tons of uranium in the reactors alone must be recovered. The distance between the upper lid and the bottom of a containment vessel is up to 35 meters. From that far away, the work has to be done to chop off and recover melted and crumbled fuel by using remote controlled cranes. Furthermore, the melted fuel is mixed with metal from fuel pellets and reactor parts.
  • "Because no one has seen the inside of the nuclear reactors, the timing of starting the work to recover nuclear fuel mentioned in the report is only a nonbinding target."
D'coda Dcoda

NTI: Global Security Newswire - Senior U.S. Official Denies Talk of Foreign Nuclear Was... - 0 views

  • A senior U.S. Energy Department official on Wednesday disputed reports that the Obama administration has sought Mongolian support for construction of a storage site for international spent nuclear fuel in the Central Asian nation (see GSN, March 30).
  • The assertion -- made by a high-ranking official who asked not to be named in addressing a diplomatically sensitive issue -- directly countered remarks offered last spring by a veteran State Department official who leads U.S. nuclear trade pact negotiations. The diplomat, Richard Stratford, told a Washington audience in March that Energy Department leaders had made initial contacts with their counterparts in Ulaanbaatar about potential cooperation on a range of nuclear fuel services that Mongolia would like to develop for international buyers.
  • Among the possible features of a joint project, Stratford said, could be the creation of a repository for U.S.-origin fuel that has been used by Washington's partners in the region, potentially including Japan, South Korea and Taiwan. If brought to fruition, the proposal would be "a very positive step forward," he said at the time, because no nation around the globe thus far has successfully built a long-term storage facility for dangerous nuclear waste. The Obama administration in 2009 shuttered plans for a U.S. storage site at Yucca Mountain in Nevada -- which would have been the world's only permanent repository -- after prolonged debate over potential environmental and health hazards (see GSN, Sept. 13).
  • ...2 more annotations...
  • n an interview this week with Global Security Newswire, the high-level Energy Department official said that discussions have focused on an array of potential nuclear energy market roles for Mongolia, from mining its substantial uranium reserves to fabricating fuel and more. However, the unofficial talks have not broached the idea of Mongolia becoming a recipient of foreign-origin spent fuel, the senior figure said. "I never thought about U.S. spent fuel. Never," the Energy official said. "I never even thought about it, much less discussed it." The Obama administration generally supports the idea of creating international operations for waste storage and other fuel-cycle functions that might help stem global nuclear proliferation, but "what the Mongolian government and the Mongolian people end up deciding they want to do is completely their decision and I would not dream of imposing our views on that," the senior official said. "There's no discussion of an international spent-fuel repository," added a second Energy Department official who participated in the same interview. "What has been included as part of the comprehensive fuel services discussions are potential long-term storage of Mongolian-origin used fuel that has Mongolian uranium [in it]."
  • Adding Value An evolving concept of nuclear fuel "leasing" would have the Mongolians build on their existing uranium ore resources to ultimately provide reactor-ready fuel to foreign nations and, additionally, stand ready to take back used uranium fuel rods once they are depleted, according to reports. The idea, said the more junior Energy official, is that Mongolia could "potentially add long-term storage as part of the value of that uranium resource to potential buyers." Even if foreign-origin spent fuel cannot be stored in Mongolia, the nation's talks with its international partners might yet allow for U.S., Japanese or other companies to build facilities in the Central Asian nation to produce Mongolian fuel for sale abroad, which could later be returned to Ulaanbaatar for storage after it is used.
D'coda Dcoda

TEPCO Is Not Providing English Translation of Its Report to NISA on Emergency Cooling S... - 0 views

  • The Japanese government seems to be "instructing" TEPCO not to release certain information in English.TEPCO submitted the report to its regulatory agency Nuclear and Industrial Safety Agency (NISA) "on the measures to continue water injection into reactors of Units 1 to 3 at Fukushima Daiichi Nuclear Power Station" on August 3. It's in Japanese only, and it may or may not be translated into English.According to TEPCO:We have provided a Japanese press release version of the instruction document received from NISA. However, at this time we have reserved the right not to provide an English version due to potential misunderstandings that may arise from an inaccurate rendering of the original Japanese text. We may provide the English translation that NISA releases in our press releases. However, in principle we would advise you to visit the NISA website for timely and accurate information.(From TEPCO's English press release on August 3 explaining why they are releasing the information only in Japanese.)The 34-page Japanese report is here.
  • The report talks about the fuel inside the Reactor Pressure Vessels;It talks about the reactors as if they were sound;It states that zirconium will start to interact with water at a certain temperature (1,200 degrees Celsius).
  • Most likely, there is no fuel left inside the RPVs at Fukushima I Nuke Plant. Even if there is, it is not fuel any more but "corium" - fuel, control rods, instruments, whatever inside the RPV, melted together. TEPCO has already admitted that there are holes in the RPV, and holes in the Containment Vessels. There is no zirconium left because there is no cladding left.
  • ...3 more annotations...
  • nowhere in the report does the company say anything about melted fuel, broken reactors, water in the basements, or extremely high radiation at certain locations in the plant.But the report goes on to describe the elaborate backup pump system and power system as if what they are dealing with is normal (i.e. without cracks or holes at the bottom) reactors with intact fuel rods inside the RPVs with control rods safely deployed in a clean nuclear power plant, and all they need to worry is how they can continue the cooling; or as if the salt-encrusted molten mess of everything that was inside the RPV behaves just the same as normal fuel rods in a normal reactor.
  • Why was TEPCO asked by NISA to submit this report to begin with? So that the national government can begin the discussion with the local municipalities within the 20-kilometer radius evacuation zone for the return of the residents to their towns and villages. The discussion is to begin this month, and TEPCO's report will be used to reassure the residents that Fukushima I Nuke Plant is so stable now with the solid plans (to be approved by NISA, which no doubt will happen very soon) to cool the fuels in the reactors even in case of an emergency.
  • Remember the mayor of Naraha-machi, where Fukushima II Nuclear Power Plant is located? He wants TEPCO to restart the plant so that 5,000 jobs will return to the town. He also wanted to invite the government to build the final processing plant of spent nuclear fuels in his town. He would be the first one to highly approve of the report so that his town can continue to prosper with nuclear money.
D'coda Dcoda

VA Spent Fuel Containers Moved Inches by 5.8 Quake - 0 views

  • In another indication of the power of last week's magnitude-5.8 earthquake, officials at North Anna Power Station said yesterday that 25 of 27 vertical steel casks that hold highly radioactive spent fuel shifted on their pads.
  • Richard Zuercher, spokesman for Dominion power's nuclear operations, said none is leaking, all are intact, and there is no danger to the public or plant employees. "The earthquake did move, slightly, some of the dry storage casks on the pad," he said. The steel casks, which weigh up to 115 tons when loaded, shifted between an inch and 4 inches. "We're evaluating whether we need to move them back," Zuercher said.
  • Other newer steel and concrete casks that sit horizontally on pads sustained some minor "cosmetic" damage, Zuercher said. "Everything there is intact and easily fixable." Thirteen of those casks also contain spent fuel. The fuel for North Anna's two reactors is enriched uranium dioxide, compressed into small ceramic pellets and stacked in metal-alloy tubes called fuel rods.
  • ...4 more annotations...
  • The rods are bundled together in 8-inch by 14-foot fuel assemblies. There are 157 fuel assemblies in each reactor.
  • After powering each reactor for about nine months, the fuel is spent, then shifted into a swimming-pool-like container to cool underwater for several years. When cool enough, the fuel assemblies are shifted to the casks and stored outside the reactor containment domes on pads in a secure area. Each cask contains 32 fuel assemblies.
  • Plans for a permanent, national repository for the fuel, which remains radioactive for thousands of years, are still in a holding pattern. So the material is accumulating at the nation's 104 commercial nuclear reactors. Environmental groups argue that spent-fuel pool and storage casks are inviting targets for terrorists; the industry maintains both are safe and secure.
  • The topic has come up in recent years at North Anna because Dominion has an application pending with the NRC for a third reactor. The plant is on Lake Anna in Louisa County, near Mineral. The news about the fuel-storage casks comes as a special Nuclear Regulatory Commission team continues its work at North Anna. The team arrived earlier this week to look into reports that ground motion from the quake may have exceeded the plant's design.
D'coda Dcoda

Fukushima: animation explains how fuel rod removal will happen - video [06Nov13] - 0 views

  •  
    A video animation by the operators of the Fukushima plant, the Tokyo Electric Company, shows how 1,534 damaged fuel rods will be removed from the site. A robotic crane will move the rods from a storage pool damaged by March 2011's earthquake and stored more securely in an on-site facility
D'coda Dcoda

Obama's Gold - 94.6% Pure, Bomb Grade Plutonium [09Aug12] - 0 views

  •  President Obama asked Duke Power Corporation in the States to test run some plutonium fuel rods (MOX) in three of their reactors. The physicists said No; but, the head boss of Duke Power said “Yes.” Obama’s test run failed miserably.
  • As a result, the country very nearly lost the state of South Carolina. Those deadly  Plutonium cores were jerked out of those three big Duke Power reactors so fast it would make your head spin. Undaunted, unbowed and too ignorant to be afraid, the President of the United  States asked the President of a Japanese utility, the Tokyo Electric Power Company (TEPCO,) to run the “test” of the Plutonium fuel. Now, what are you going to do when the President of the US asks you for a favor? The test was slated immediately for the MOX fuel rods, of course. That is 21,000 lbs of 94.6% pure bomb grade Plutonium 239 (Pu 239) down blended and mixed with Uranium to form MOX 6% Pu 239 nuclear fuel rods.
  • Here’s what happened, perhaps as a result of President Obama’s political dabbling  in real life-or-death physics. This stuff gets real serious real fast.
  • ...1 more annotation...
  • Five hundred eighteen days into the continuous reactor meltdowns and global dispersion of reactor cores; it’s a direct choice for “Gruesome Death” made by the pro-nukers. The deed is done and cannot be reversed. MOX stands for Mixed Oxide Fuel. The very poisonous bomb grade Pu 239 is taken from Hydrogen Bombs and mixed with Uranium to form pellets for fuel rods for nuclear  reactors. The fuel rods are about five (5) meters or 16 ft long and as big around as a person’s thumb. Pu 239 is very hard for bomb makers to work with and tends to go off by itself, which makes for a really bad day. The manufacturing of Hydrogen Bombs is a very nasty business in any country. Putting extra Pu 239 in nuclear reactors to boil water for steam is insane. LETHAL DOSES How many Lethal Doses of radiation from radioactive particles are in our air just from Fukushima Daiichi’s trashed reactors? As of Jun 29, 2012 Dr. Paolo Scampa, a noted physicist stated: “… [about Fukushima reactors exploding]  … occasioning a prodigious explosion of radioactivity and radiotoxicity which over time, is several times the amount needed to kill by internal contamination the whole human race.” - Dr Paolo Scampa, PhD., Nuclear Physicist.
D'coda Dcoda

Sellafield MOX plant to close - UK [03Aug11] - 0 views

  • The manufacture of mixed oxide (MOX) nuclear fuel at Sellafield is to stop "at the earliest practical opportunity" to reduce the financial risks to British taxpayers from events in Japan.  
  • The closure comes as a result of the Fukushima accident, which dramatically increased uncertainty for the ten Japanese utilities that had placed contracts for supplies of MOX fuel. This is made by combining uranium with plutonium recovered by reprocessing used nuclear fuel. The Nuclear Decommissioning Authority (NDA), which owns all the UK state's nuclear assets, said it reviewed the risk profile for operation of Sellafield MOX Plant (SMP) and "concluded that in order to ensure that the UK taxpayer does not carry a future financial burden from SMP that the only reasonable course of action is to close SMP at the earliest practical opportunity."
  • Separately Areva last week announced the cancellation of orders for uranium and nuclear fuel amounting to €191 million ($273 million) as a result of the shutdown of reactors in Japan and Germany.The NDA's move to close SMP will be a grave disappointment for the plant's 600 workers, who had celebrated success in raising performance to commercially acceptable levels. Despite being designed to produce 120 tonnes of fuel per year, it never operated properly and was downrated to just 40 tonnes per year. In its nine years of operation to 2010 it produced only 15 tonnes of fuel.
  • ...4 more annotations...
  • However, in 2010 the NDA and ten Japanese utilities agreed on a plan to refurbish the SMP "on the earliest timescale" using technology from France's Areva. A new rod manufacturing line was being installed which, as well as improving overall performance, was meant to ultimately replace the existing one. The NDA's Sellafield site – including the SMP - is managed by Nuclear Management Partners, a consortium of URS of the USA, AMEC of the UK and Areva of France. Taking the back-end forward
  • The two major elements in the UK's strategy for the back-end of the nuclear fuel cycle were SMP and the Thermal Oxide Reprocessing Plant (Thorp), at which used nuclear fuel is reprocessed to separate uranium and plutonium from wastes that go on to be vitrified ready for permanent disposal. A document released in March 2010 highlighted that Thorp would require refurbishment or replacement to handle the complete inventory of used nuclear fuel it was built to process - all that coming from the fleet of Advanced Gas-cooled Reactors (AGR) as well as international contracts. Some 6600 tonnes of AGR fuel remains outstanding, with options for storing it unclear until a permanent repository is available in about 2030.
  • Simultaneously, the UK is considering the future of some 100 tonnes of civil plutonium, which is currently classified as a 'zero value asset'. A public consultation on this ran from February to May. In late March the former science advisor to Tony Blair, Sir David King, presented a range of options which in essence showed it makes sense to produce MOX fuel from the plutonium. The question for the UK is whether it wants to offset the cost of this with extra savings and revenues from the potentially expensive return to the full nuclear fuel cycle that would come with a refurbishment of Thorp.
  • A cost-benefit analysis of a new MOX plant has been commissioned by the Department of Energy and Climate Change and a decision based on that is expected before the end of this year.
D'coda Dcoda

Decommissioning Fukushima: how Japan will remove nuclear fuel rods from damaged reactor... - 0 views

  •  
    Nuclear Expert: Fuel rods are "in a jumble" at Fukushima Unit 4 pool; Unclear if they are cracked - US pressing Japan on removal, fears terrorist activity at plant (VIDEO)
D'coda Dcoda

Nuclear Waste Piles Up As Repository Plan Falters [28Jul11] - 0 views

  • Diablo Canyon nuclear power plant on California's central coast has more than 1,300 tons of nuclear waste sitting on its back porch, waiting for pickup. The problem is, there's no one to pick it up
  • The 103 other reactors in the country are in the same bind — it has now been more than 50 years since the first nuclear plant was switched on in the United States, and the federal government still hasn't found a permanent home for the nation's nuclear waste
  • The two nuclear reactors at the plant generate steam that drives giant turbines, which in turn generate electricity that powers about 3 million households. Once the uranium rods that fuel the reactors are used up, they're removed and cooled down underwater, in temporary storage pools.
  • ...11 more annotations...
  • The trouble is, those "temporary" pools have become pretty permanent and crowded, as utilities load them up with more fuel rods, squeezing them closer together
  • Since 1982, utility customers on the nuclear grid have paid $34 billion into a federal fund for moving the waste to some kind of permanent disposal site — something the federal government still hasn't done
  • 65,000 tons of nuclear waste have piled up at power plants — waste that produces more radioactivity than the reactors themselves
  • "It is clear that we lack a comprehensive national policy to address the nuclear fuel cycle, including management of nuclear waste
  • Yucca Mountain in Nevada was the leading contender, until Nevada's residents said "not in our backyard."
  • In the meantime, utility companies like PG&E are stuck with the waste. During a visit three years ago, engineers at Diablo Canyon were preparing to move older waste from storage in pools to containers called dry casks. "The spent fuel pools were not built large enough to hold all the fuel from the original 40-year license life, so we had to find alternatives for safe storage," said Pete Resler, head of PG&E's nuclear communications at the time. The company is now using some dry casks — huge concrete and steel canisters to store older, less radioactive waste. Each is anchored to its own concrete pad.
  • "Each one of those pads is 7-foot-thick concrete with steel rebar reinforcement in it," Resler says. Those pads are there as an extra measure because Diablo is situated near two significant seismic faults. There are now 16 of these canisters sitting on the plant grounds, with plans to fill 12 more in the next couple of years
  • Though most agree that dry-casking is safer than leaving the fuel rods in pools of water, nobody's proposing it as a permanent solution. The head of the Nuclear Regulatory Commission, Gregory Jaczko, told Sen. Feinstein's committee that it's the best we can do for now.
  • "Right now we believe that for at least 100 years, that fuel can be stored with very little impacts to health and safety, or to the environment," Jaczko said.
  • In the meantime, the Blue Ribbon Commission appointed by President Obama to find that way forward will issue another round of recommendations Friday
  • They're likely to include more stop-gap measures, while the holy grail of a permanent home for spent fuel remains decades away
  •  
    There's a detailed chart on the page showing how much waste is stored at sites, state by state
D'coda Dcoda

Former UN Advisor: Many scientists are emphasizing precarious situation of Fukushima Sp... - 0 views

  • The Need for Independent Assessment of the Fourth Reactor, Gordon Edwards, Ph.D., October 25, 2011: “In his recent blog, entitled “The Fourth Reactor and the Destiny of Japan”, Akio Matsumura correctly identifies the spent fuel pool in Unit 4 as the most serious potential threat for further massive radioactive releases from the Fukushima Daiichi nuclear power plant.” The Fourth Reactor and the Destiny of Japan, Akio Matsumura, September 29, 2011:
  • “I, along with many eminent scientists, are emphasizing the precarious situation of the fourth reactor that contains 1,535 nuclear fuel rods in the pool and is balanced on the second floor, outside of the reactor containment vessel. If the fuel rods spill onto the ground, disaster will ensue and force Tokyo and Yokohama to close, creating a gigantic evacuation zone. All scientists I have talked with say that if the structure collapses we will be in a situation well beyond where science has ever gone. The destiny of Japan will be changed and the disaster will certainly compromise the security of neighboring countries and the rest of the world in terms of health, migration and geopolitics. The Japanese government should immediately create an independent assessment team to determine the structural integrity of the spent fuel pool and its supporting structure. This is of the highest importance: the structure’s security is critical to the country’s future.” h/t Anonymous tip About Akio Matsumura Throughout his long career at the United Nations and other organizations he has brought together the unlikeliest of people: Arafat and Rabin, Chinese government officials and the Dalai Lama, and many more.
D'coda Dcoda

Spent Fuel Pools in Japan Survived Disaster, Industry Notes [28Jul11] - 0 views

  • The staff of the Nuclear Regulatory Commission recently produced a list of safety improvements that might be undertaken at American nuclear plants in light of the Fukushima disaster in Japan. On Tuesday, the nuclear industry focused on two elements that were conspicuous by their absence.
  • In a presentation to Wall Street analysts, Marvin Fertel, the president and chief executive of the Nuclear Energy Institute, emphasized that spent fuel pools at the Fukushima Daiichi plant had “survived the accident quite well.”Early in the crisis, which began with an earthquake and tsunami on March 11, American regulators feared that water in one of the pools had almost completely boiled off, and the American Embassy in Tokyo advised Americans to stay 50 miles away. But “the pools may turn out to be a much better story at Fukushima than people envisioned,’’ Mr. Fertel said.
  • Noting that fuel pools at American reactors have far more radioactive material in them than the ones at Fukushima, the accident focused new attention on the idea of moving spent fuel out of the pools and into dry casks, Something already done at most American reactors when they run out of space.That idea first came to prominence after the terrorist attacks of Sept. 11, 2001.
  • ...7 more annotations...
  • But the Nuclear Regulatory Commission staff’s report does not call for moving more of the fuel.When the commission received an oral report from a six-member “task force” it appointed to study the safety implications of Fukushima, one commissioner, William C. Ostendorff, said he had received letters from members of Congress asking for wider use of the casks, however.But Charles L. Miller, who led the task force, replied that removing the fuel would not do much to reduce the basic problem, which is that fuel rods remain in the pool, and if cooling is knocked out, the water that provides protection against melting and the release of radioactive materials will boil away.
  • “Before you can take it out of the pool, it has to be at least five years old, and by that time, we call it, for lack of a better word, cold fuel,’’ Mr. Miller said.At the briefing on Tuesday, Mr. Fertel mentioned other recommendations from the task force, including better instruments for altering operators to how much water is in the pools and new ways of adding water in an emergency. Pulling more fuel out, he said, would provide certain advantages but is also certain to expose workers to radiation in the course of the transfer.
  • Fukushima used dry casks as well, and those appear to have survived without damage, Mr. Fertel said, although they have not been thoroughly inspected. “They’re fine, but so are the pools,’’ he said.
  • They were not unscathed, however; debris flew into the pools after the buildings surrounding them blew up in hydrogen explosions.
  • The task force also refrained from recommending changes in emergency planning zones, despite the embassy’s recommendation during the crisis for Americans to stay 50 miles away from Fukushima. In the United States, emergency evacuation planning is required within 10 miles of any reactor.
  • Mr. Fertel said the recommendation to evacuate to 50 miles “was based not on information, but on the lack thereof.’’
  • Opponents of nuclear power have argued that the commission should cease all extensions of reactors’ operating licenses until it has digested the lessons of the accident in Japan. But Mr. Fertel noted that since March 11, the commission has issued 20-year license extensions for the Vermont Yankee, Palo Verde, Prairie Island, Salem and Hope Creek reactors, and allowed higher power outputs for Limerick and Point Beach.
D'coda Dcoda

Shutdown of Fukushima Reactors Is Ahead of Schedule [Nov11] - 0 views

  • Editor's Note: This is part of the IEEE Spectrum special report: Fukushima and the Future of Nuclear Power.
  • This past April, when the Japanese government and Tokyo Electric Power Co. (TEPCO) jointly unveiled their plan to bring the damaged reactors of the Fukushima Dai-ichi nuclear power plant to a cold shutdown and gain control of the release of radioactive materials, they set a tentative completion date for mid-January 2012. And "tentative" had to be the operative word, for the obstacles TEPCO faced—and to some extent still does face—are challenging in the extreme. They include:
  • Fuel rod meltdowns in reactors 1, 2, and 3 due to loss of cooling systems following the 11 March earthquake and tsunami; Severe damage to the upper levels of reactor buildings 1, 3, and 4 and slight damage to building 2, stemming from hydrogen explosions; High levels of radiation and contaminated rubble, making working conditions hazardous and difficult; Thousands of metric tons of contaminated water accumulating on the site and leaking out of the reactors.
  • ...5 more annotations...
  • It appears, however, that the process is now ahead of schedule. Environment Minister Goshi Hosono, who is also in charge of the Fukushima nuclear accident recovery, told the International Atomic Energy Agency's annual general conference in Vienna on 19 September that Japan was now aiming to complete a cold shutdown of the Fukushima plant by December 2011, instead of mid-January 2012. Progress was already evident in July, when Hosono announced that workers had completed step 1 of the two-step road map on schedule, reducing radioactive emissions and starting to bring down the core temperatures in reactors 1, 2, and 3. Hosono attributed the success to the construction of a new cooling system, which had begun pumping water into all three damaged reactors. In addition to cooling, the system also decontaminates the water accumulating in the basements of the reactor and turbine buildings. The contamination is the result of injected water coming into contact with the molten fuel in the pressure vessels.
  • Critics, however, were quick to question the stability of the system and its ad hoc design. The combination of filtering and decontamination technologies—mainly from the French nuclear giant Areva and the U.S. nuclear waste management company Kurion—includes some 4 kilometers of piping. The critics have a point. Even with the addition of a reportedly more robust system (to be used in parallel or as backup as needed) from Toshiba and IHI Corp., TEPCO admits the system underwent 39 disruptions between 10 July and 8 September. One consequence is that roughly 100 000 metric tons of water still need to be decontaminated.
  • Disruptions and remaining challenges notwithstanding, TEPCO has been making progress toward step 2 of the road map: a cold shutdown. According to TEPCO, that means achieving and maintaining a temperature of less than 100 °C as measured at the bottom of a reactor pressure vessel—the steel vessel containing the fuel rods—which itself is enclosed inside a protective containment vessel. A major advance came at the beginning of September, when TEPCO was able to start up the core spray lines to cool reactors 1 and 3. The core spray lines apply water directly to the cores from above, while the system installed in July has been cooling the cores by injecting water from the bottom. TEPCO has also begun increasing the amount of water being injected into reactor 2. The core spray line could not be used until recently because TEPCO first had to survey the subsystem's piping and valves. Given the high radiation in the area, this was difficult, but workers completed the job in July and confirmed the system's operability in August.
  • By late September, as a result of these efforts, the temperatures in all three reactors had dropped below 100 °C for the first time since the accident. As of 29 September, the temperatures for reactors 1, 2, and 3, respectively, were 77.5 °C, 99.7 °C, and 78.7 °C. "We are steadily bringing the postaccident situation under control," says Hosono. "To achieve step 2 this year, we'll move the schedule forward and do our best." But Yoshinori Moriyama, deputy director-general of Japan's Nuclear and Industrial Safety Agency (NISA) is cautious. "We need to maintain this state over the midterm," he says. "Temporary lower temperatures and the nonrelease of radioactive substances do not immediately mean that this is a cold shutdown." In order for NISA to declare a cold shutdown, the temperatures must remain stable and below 100 °C into December. So NISA won't officially declare a cold shutdown until near the end of 2011.
  • Despite these positive developments, nuclear experts point out that achieving a cold shutdown does not make the troubled plant completely safe, given that even spent fuel continues to generate heat for years after use. And upon achieving a cold shutdown, TEPCO must take on a new series of challenges. These include finding where the injected water is escaping, stopping those leaks, dealing with the accumulated contaminated water, removing and storing the thousands of spent fuel rods from the pools in reactors 1 to 4, and then figuring out a way to remove the melted fuel. The last is a task that could take a decade or more, according to experts.
D'coda Dcoda

Asahi: Explosive hydrogen may be coming from melted fuel rods and "accumulating near th... - 1 views

  • Hydrogen accumulates in pipes at Fukushima’s No. 1 reactor, Asahi, September 24, 2011:
  • Hydrogen has accumulated to a level higher than previously thought in pipes connected to the No. 1 reactor containment vessel [...] The nitrogen injections are believed to have lowered the hydrogen concentration considerably, but some hydrogen, being lighter than nitrogen, may be accumulating near the top of the containment vessel without being driven out. [...] Nor could TEPCO measure how much hydrogen may have been generated in the containment vessel. [...] TEPCO said it is investigating the possibility that hydrogen has also accumulated in a similar manner at the plant’s No. 2 and No. 3 reactors. [...]
  • Where does TEPCO think the hydrogen is coming from?
  • ...1 more annotation...
  • TEPCO said most of the accumulated hydrogen was generated by a reaction under high temperatures between water vapor and the surface of nuclear fuel rods that were exposed after water was lost following the March 11 earthquake and tsunami. Even now, the damaged reactors may be generating small amounts of hydrogen as water decomposes through irradiation from the melted fuel rods.
D'coda Dcoda

Doctor finds Uranium and Zirconium in Tokyo resident's fingernails - "We are becoming n... - 0 views

  • TOKYO, Oct. 18 — Dr. Naoki Tsuji is testing the fingernails of Tokyo citizens checking for radioactive material, reports Mochizuki. The doctor published data that shows the detection of Uranium and Zirconium, which make up nuclear fuel rods. Cesium and Strontium were also measured. “He once tried the same test for Fukushima people but the result was terrifying,” Mochizuki writes, “Some of the materials went over the limit of the measurement, he said.” “Only tiny a part comes out to nail or urine,” he concludes, “We are becoming nuclear fuel rods.”
  •  
    chart on the site
1 - 20 of 84 Next › Last »
Showing 20 items per page