Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged waste disposal

Rss Feed Group items tagged

D'coda Dcoda

It's 2050: Do you know where your nuclear waste is? [09Sep11] - 1 views

  • Though nuclear power produces electricity with little in the way of carbon dioxide emissions, it, like other energy sources, is not without its own set of waste products. And in the case of nuclear power, most of these wastes are radioactive.1 Some very low level nuclear wastes can be stored and then disposed of in landfill-type settings. Other nuclear waste must remain sequestered for a few hundred years in specially engineered subsurface facilities; this is the case with low level waste, which is composed of low concentrations of long-lived radionuclides and higher concentrations of short-lived ones. Intermediate and high-level waste both require disposal hundreds of meters under the Earth’s surface, where they must remain out of harm’s way for thousands to hundreds of thousands of years (IAEA, 2009). Intermediate level wastes are not heat-emitting, but contain high concentrations of long-lived radionuclides. High-level wastes, including spent nuclear fuel and wastes from the reprocessing of spent fuel, are both heat-emitting and highly radioactive.
  • When it comes to the severity of an accident at a nuclear facility, there may be little difference between those that occur at the front end of the nuclear power production and those at the back end: An accident involving spent nuclear fuel can pose a threat as disastrous as that posed by reactor core meltdowns. In particular, if spent fuel pools are damaged or are not actively cooled, a major crisis could be in sight, especially if the pools are packed with recently discharged spent fuel.
  • Elements of success
  • ...17 more annotations...
  • All countries with well-established nuclear programs have found themselves requiring spent fuel storage in addition to spent fuel pools at reactors. Some, like the US, use dry storage designs, such as individual casks or storage vaults that are located at reactor sites; other countries, Germany for one, use away-from-reactor facilities. Sweden has a large underground pool located at a centralized facility, CLAB, to which different reactors send their spent fuel a year after discharge, so spent fuel does not build up at reactor sites. Dry storage tends to be cheaper and can be more secure than wet storage because active circulation of water is not required. At the same time, because dry storage uses passive air cooling, not the active cooling that is available in a pool to keep the fuel cool, these systems can only accept spent fuel a number of years after discharge.6
  • The United States had been working toward developing a high-level waste repository at Yucca Mountain, Nevada; this fell through in 2010, when the Obama administration decided to reverse this decision, citing political “stalemate” and lack of public consensus about the site. Instead, the Obama administration instituted the Blue Ribbon Commission on America’s Nuclear Future to rethink the management of the back end of the nuclear fuel cycle.8 The US can flaunt one success, though. The Waste Isolation Pilot Project (WIPP), located near Carlsbad in southern New Mexico, is actually the only operating deep geologic repository for intermediate level nuclear waste, receiving waste since 1998. In the case of WIPP, it only accepts transuranic wastes from the nuclear weapons complex. The site is regulated solely by the Environmental Protection Agency, and the state of New Mexico has partial oversight of WIPP through its permitting authority established by the Resource Conservation and Recovery Act. The city of Carlsbad is supportive of the site and it appears to be tolerated by the rest of the state.9
  • France has had more success after failing in its first siting attempt in 1990, when a granite site that had been selected drew large protests and the government opted to rethink its approach to nuclear waste disposal entirely. In 2006, the government announced that it needed a geologic repository for high-level waste, identified at least one suitable area, and passed laws requiring a license application to be submitted by 2015 and the site to begin receiving high-level waste by 2025.
  • Canada recently rethought the siting process for nuclear waste disposal and began a consensus-based participatory process. The Canadian Nuclear Waste Management Organization was established in 2002, after previous attempts to site a repository failed. The siting process began with three years’ worth of conversations with the public on the best method to manage spent fuel. The organization is now beginning to solicit volunteer communities to consider a repository, though much of the process remains to be decided, including the amount and type of compensation given to the participating communities.
  • the most difficult part of the back end of the fuel cycle is siting the required facilities, especially those associated with spent fuel management and disposal. Siting is not solely a technical problem—it is as much a political and societal issue. And to be successful, it is important to get the technical and the societal and political aspects right.
  • After weathering the Fukushima accident, and given the current constraints on carbon dioxide emissions and potential for growth of nuclear power, redefinition of a successful nuclear power program is now required: It is no longer simply the safe production of electricity but also the safe, secure, and sustainable lifecycle of nuclear power, from the mining of uranium ores to the disposal of spent nuclear fuel. If this cannot be achieved and is not thought out from the beginning, then the public in many countries will reject nuclear as an energy choice.
  • Certain elements—including an institution to site, manage, and operate waste facilities—need to be in place to have a successful waste management program. In some countries, this agency is entirely a government entity, such as the Korea Radioactive Waste Management Organization. In other countries, the agency is a corporation established by the nuclear industry, such as SKB in Sweden or Posiva Oy in Finland. Another option would be a public– private agency, such as Spain’s National Company for Radioactive Waste or Switzerland’s National Cooperative for the Disposal of Radioactive Waste.
  • Funding is one of the most central needs for such an institution to carry out research and development programs; the money would cover siting costs, including compensation packages and resources for local communities to conduct their own analyses of spent fuel and waste transportation, storage, repository construction, operations, security and safeguards, and future liabilities. Funds can be collected in a number of ways, such as putting a levy on electricity charges (as is done in the US) or charging based on the activity or volume of waste (Hearsey et al., 1999). Funds must also be managed—either by a waste management organization or another industry or government agency—in a way that ensures steady and ready access to funds over time. This continued reliable access is necessary for planning into the future for repository operations.
  • the siting process must be established. This should include decisions on whether to allow a community to veto a site and how long that veto remains operational; the number of sites to be examined in depth prior to site selection and the number of sites that might be required; technical criteria to begin selecting potential sites; non-technical considerations, such as proximity to water resources, population centers, environmentally protected areas, and access to public transportation; the form and amount of compensation to be offered; how the public is invited to participate in the site selection process; and how government at the federal level will be involved.
  • The above are all considerations in the siting process, but the larger process—how to begin to select sites, whether to seek only volunteers, and so on—must also be determined ahead of time. A short list of technical criteria must be integrated into a process that establishes public consent to go forward, followed by many detailed studies of the site—first on the surface, then at depth. There are distinct advantages to characterizing more than one site in detail, as both Sweden and Finland have done. Multiple sites allow the “best” one to be selected, increasing public approval and comfort with the process.
  • he site needs to be evaluated against a set of standards established by a government agency in the country. This agency typically is the environmental agency or the nuclear regulatory agency. The type of standards will constrain the method by which a site will be evaluated with regard to its future performance. A number of countries use a combination of methods to evaluate their sites, some acknowledging that the ability to predict processes and events that will occur in a repository decrease rapidly with each year far into the future, so that beyond a few thousand years, little can be said with any accuracy. These countries use what is termed a “safety case,” which includes multiple lines of evidence to assure safe repository performance into the future.
  • Moving forward
  • France, Canada, and Germany also have experienced a number of iterations of repository siting, some with more success than others. In the 1970s, Germany selected the Gorleben site for its repository; however, in the late 1990s, with the election of a Red–Green coalition government (the Greens had long opposed Gorleben), a rethinking of repository siting was decreed, and the government established the AkEnd group to re-evaluate the siting process. Their report outlined a detailed siting process starting from scratch, but to date too much political disagreement exists to proceed further.
  • Notes
  • Nuclear wastes are classified in various ways, depending on the country or organization doing the classification. The International Atomic Energy Agency (IAEA) notes six general categories of waste produced by civil nuclear power reactors: exempt waste, very short-lived waste, and very low level waste can be stored and then disposed of in landfill-type settings; low level waste, intermediate level waste, and high-level waste require more complex facilities for disposal.
  • Sweden is currently the country closest to realizing a final solution for spent fuel, after having submitted a license application for construction of a geologic repository in March 2011. It plans to open a high-level waste repository sometime after 2025, as do Finland and France.
  • Some countries, such as Sweden, Finland, Canada, and, until recently, the US, plan to dispose of their spent fuel directly in a geologic repository. A few others, such as France, Japan, Russia, and the UK have an interim step. They reprocess their spent fuel, extract the small amount of plutonium produced during irradiation, and use it in new mixed oxide (MOX) fuel. Then they plan to dispose of the high-level wastes from reprocessing in a repository.
D'coda Dcoda

Los Alamos lab begins removing radioactive soil from canyons to prevent contamination f... - 0 views

  • Contaminated soil a concern at Los Alamos lab, Reuters, July 11, 2011: [...] crews at the Los Alamos National Laboratory have begun removing contaminated soil from nearby canyons out of a concern that flash flooding could wash toxins into the Rio Grande [that supplies drinking water for Santa Fe and many other communities] officials said on Monday. [...] The soil in the canyons above Los Alamos National Laboratory, the linchpin of American’s nuclear weapons industry, contains materials with trace amounts of radiation [...] Over the weekend, about 1,200 cubic yards of contaminated soil was removed primarily from two canyons — Los Alamos and Pajarito — that run through lab property, [ Fred deSousa, spokesman for the lab's environmental control division] said.
  • An Assessment of Los Alamos National Laboratory Waste Disposal Inventory, Radioactive Waste Management Associates, November 2009:
  • Since the beginning of its operations LANL has disposed of millions of gallons of radioactive and hazardous waste throughout the laboratory grounds and in the canyons that surround the laboratory. [...]
  • ...5 more annotations...
  • Hundreds of stacks throughout the laboratory released unfiltered gaseous waste directly from plutonium-processing hoods. The LAHDRA Project Team has developed a system of priority indices and determined that between 1944 and 1966, plutonium was the most significant contaminant released. LAHDRA estimated that the total amount of plutonium released by LANL throughout its history, even with the improved filtering systems in later years, exceeded 170 curies. [...]
  • The waste discharge at LANL began in 1944 during the development of the atomic bomb. Due to time pressures, secrecy of the project, and general lack of knowledge at the time about the dangers of radioactive materials, the laboratory took poor precautions in its disposal of radioactive and other hazardous wastes during its early years of operations. Initially, the waste, in the form of liquids, drums and cardboard boxes, was released into the canyons or deposited into unlined pits completely untreated; poor records were maintained about the volumes and activities of these releases. By the 1960s, the waste disposal practices significantly improved and better records were kept. [...]
  • This report compiles the available information about the waste disposed of at each Material Disposal Area and into the three canyons, including any recent soil and water sampling results. Some of the sites with the highest deposits of radioactive contaminants include MDA’s C, G, and H with respective inventories of up to 49,679 curies, 1,383,700 curies, and 391 curies. Routine sampling of soil and water is regularly performed and radionuclide contamination above background levels is often found at the burial sites (e.g. TA-21). [...]
  • The potential for LANL-origin contaminants to reach the Rio Grande River may vary, depending on the underground formations and the types of waste disposed of at each disposal site. The potential may be quite large, as the 2006 Santa Fe Water Quality Report stated a “qualified detection of plutonium-238”was detected in Santa Fe drinking water supplies4. The US DOE has also reported the detection of LANL radionuclides in Santa Fe drinking water since the late 1990s5. Plutonium is the main ingredient in the core or trigger of the nuclear weapons that were developed and produced at LANL, and approximately 423,776 cubic feet (ft3) (12,000 cubic meters (m3)) of plutonium contaminated waste is buried in unlined disposal pits, trenches, and shafts at the LANL site. This early detection of plutonium in Santa Fe drinking water may be an indicator of an approaching plutonium contamination plume in Santa Fe groundwater. And of course, plutonium is only one of many LANL-origin contaminants. [...]
  • As previously discussed, information pertaining to the wastes disposed of by LANL is not always complete or fully available and so many of the types and quantities of waste disposed of at various LANL technical areas remain unknown.  [...]
  •  
    Includes report about methods used by Los Alamos to store nuclear waste and risks
D'coda Dcoda

DOE Releases Draft EIS on Proposed Low-Level Nuclear Waste Sites, Disposal Methods [21F... - 0 views

  • The Department of Energy on Friday issued a draft environmental impact statement (EIS) on low-level radioactive waste disposal, with public meetings set for April and May in cities near potential waste sites in Oregon, Idaho, Washington, Nevada, New Mexico and South Carolina. The EIS addresses greater-than-class-C (GTCC) low-level-radioactive waste (LLRW) as DOE considers new and existing storage facilities. GTCC waste comes from power plants, medical treatments, medical diagnostics and oil and gas exploration, as well as other industrial processes. The EIS and waste sites do not involve high-level waste like spent fuel.
  • In a release, DOE estimates current GTCC and GTCC-like LLRW in storage at 1,100 cubic meters. The EIS estimates an additional 175 cubic meters of waste will be generated each year over the next six decades. In looking for places to store that waste, the EIS analyzes the potential environmental impacts of using both new and existing waste facilities. Disposal methods evaluated include deep geological repository, intermediate depth boreholes, enhanced near-surface trenches and above-grade vaults
  • “disposal locations analyzed include the Hanford Site in Washington; Idaho National Laboratory in Idaho; the Los Alamos National Laboratory, the Waste Isolation Pilot Project (WIPP) and the WIPP vicinity in New Mexico; the Nevada National Security Site (formerly the Nevada Test Site) in Nevada; and the Savannah River Site in South Carolina. The Draft EIS also evaluates generic commercial disposal sites in four regions of the U.S., as well as a no action alternative.”
  • ...1 more annotation...
  • DOE has not yet identified a preferred alternative for waste disposal, but a preferred alternative or combination of alternatives will be identified in the final EIS. Before making a final decision on disposal method or location, the agency would need to submit its findings to Congress and wait for legislative action.
D'coda Dcoda

Economic Aspects of Nuclear Fuel Reprocessing [12Jul05] - 0 views

  • On Tuesday, July 12, the Energy Subcommittee of the House Committee on Science will hold a hearing to examine whether it would be economical for the U.S. to reprocess spent nuclear fuel and what the potential cost implications are for the nuclear power industry and for the Federal Government. This hearing is a follow-up to the June 16 Energy Subcommittee hearing that examined the status of reprocessing technologies and the impact reprocessing would have on energy efficiency, nuclear waste management, and the potential for proliferation of weapons-grade nuclear materials.
  • Dr. Richard K. Lester is the Director of the Industrial Performance Center and a Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology. He co-authored a 2003 study entitled The Future of Nuclear Power. Dr. Donald W. Jones is Vice President of Marketing and Senior Economist at RCF Economic and Financial Consulting, Inc. in Chicago, Illinois. He co-directed a 2004 study entitled The Economic Future of Nuclear Power. Dr. Steve Fetter is the Dean of the School of Public Policy at the University of Maryland. He co-authored a 2005 paper entitled The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel. Mr. Marvin Fertel is the Senior Vice President and Chief Nuclear Officer at the Nuclear Energy Institute.
  • 3. Overarching Questions  Under what conditions would reprocessing be economically competitive, compared to both nuclear power that does not include fuel reprocessing, and other sources of electric power? What major assumptions underlie these analyses?  What government subsidies might be necessary to introduce a more advanced nuclear fuel cycle (that includes reprocessing, recycling, and transmutation—''burning'' the most radioactive waste products in an advanced reactor) in the U.S.?
  • ...13 more annotations...
  • 4. Brief Overview of Nuclear Fuel Reprocessing (from June 16 hearing charter)  Nuclear reactors generate about 20 percent of the electricity used in the U.S. No new nuclear plants have been ordered in the U.S. since 1973, but there is renewed interest in nuclear energy both because it could reduce U.S. dependence on foreign oil and because it produces no greenhouse gas emissions.  One of the barriers to increased use of nuclear energy is concern about nuclear waste. Every nuclear power reactor produces approximately 20 tons of highly radioactive nuclear waste every year. Today, that waste is stored on-site at the nuclear reactors in water-filled cooling pools or, at some sites, after sufficient cooling, in dry casks above ground. About 50,000 metric tons of commercial spent fuel is being stored at 73 sites in 33 states. A recent report issued by the National Academy of Sciences concluded that this stored waste could be vulnerable to terrorist attacks.
  • Under the current plan for long-term disposal of nuclear waste, the waste from around the country would be moved to a permanent repository at Yucca Mountain in Nevada, which is now scheduled to open around 2012. The Yucca Mountain facility continues to be a subject of controversy. But even if it opened and functioned as planned, it would have only enough space to store the nuclear waste the U.S. is expected to generate by about 2010.  Consequently, there is growing interest in finding ways to reduce the quantity of nuclear waste. A number of other nations, most notably France and Japan, ''reprocess'' their nuclear waste. Reprocessing involves separating out the various components of nuclear waste so that a portion of the waste can be recycled and used again as nuclear fuel (instead of disposing of all of it). In addition to reducing the quantity of high-level nuclear waste, reprocessing makes it possible to use nuclear fuel more efficiently. With reprocessing, the same amount of nuclear fuel can generate more electricity because some components of it can be used as fuel more than once.
  • The greatest drawback of reprocessing is that current reprocessing technologies produce weapons-grade plutonium (which is one of the components of the spent fuel). Any activity that increases the availability of plutonium increases the risk of nuclear weapons proliferation.  Because of proliferation concerns, the U.S. decided in the 1970s not to engage in reprocessing. (The policy decision was reversed the following decade, but the U.S. still did not move toward reprocessing.) But the Department of Energy (DOE) has continued to fund research and development (R&D) on nuclear reprocessing technologies, including new technologies that their proponents claim would reduce the risk of proliferation from reprocessing.
  • The report accompanying H.R. 2419, the Energy and Water Development Appropriations Act for Fiscal Year 2006, which the House passed in May, directed DOE to focus research in its Advanced Fuel Cycle Initiative program on improving nuclear reprocessing technologies. The report went on to state, ''The Department shall accelerate this research in order to make a specific technology recommendation, not later than the end of fiscal year 2007, to the President and Congress on a particular reprocessing technology that should be implemented in the United States. In addition, the Department shall prepare an integrated spent fuel recycling plan for implementation beginning in fiscal year 2007, including recommendation of an advanced reprocessing technology and a competitive process to select one or more sites to develop integrated spent fuel recycling facilities.''
  • During floor debate on H.R. 2419, the House defeated an amendment that would have cut funding for research on reprocessing. In arguing for the amendment, its sponsor, Mr. Markey, explicitly raised the risks of weapons proliferation. Specifically, the amendment would have cut funding for reprocessing activities and interim storage programs by $15.5 million and shifted the funds to energy efficiency activities, effectively repudiating the report language. The amendment was defeated by a vote of 110–312.
  • But nuclear reprocessing remains controversial, even within the scientific community. In May 2005, the American Physical Society (APS) Panel on Public Affairs, issued a report, Nuclear Power and Proliferation Resistance: Securing Benefits, Limiting Risk. APS, which is the leading organization of the Nation's physicists, is on record as strongly supporting nuclear power. But the APS report takes the opposite tack of the Appropriations report, stating, ''There is no urgent need for the U.S. to initiate reprocessing or to develop additional national repositories. DOE programs should be aligned accordingly: shift the Advanced Fuel Cycle Initiative R&D away from an objective of laying the basis for a near-term reprocessing decision; increase support for proliferation-resistance R&D and technical support for institutional measures for the entire fuel cycle.''  Technological as well as policy questions remain regarding reprocessing. It is not clear whether the new reprocessing technologies that DOE is funding will be developed sufficiently by 2007 to allow the U.S. to select a technology to pursue. There is also debate about the extent to which new technologies can truly reduce the risks of proliferation.
  •  It is also unclear how selecting a reprocessing technology might relate to other pending technology decisions regarding nuclear energy. For example, the U.S. is in the midst of developing new designs for nuclear reactors under DOE's Generation IV program. Some of the potential new reactors would produce types of nuclear waste that could not be reprocessed using some of the technologies now being developed with DOE funding.
  • 5. Brief Overview of Economics of Reprocessing
  • The economics of reprocessing are hard to predict with any certainty because there are few examples around the world on which economists might base a generalized model.  Some of the major factors influencing the economic competitiveness of reprocessing are: the availability and cost of uranium, costs associated with interim storage and long-term disposal in a geologic repository, reprocessing plant construction and operating costs, and costs associated with transmutation, the process by which certain parts of the spent fuel are actively reduced in toxicity to address long-term waste management.
  • Costs associated with reducing greenhouse gas emissions from fossil fuel-powered plants could help make nuclear power, including reprocessing, economically competitive with other sources of electricity in a free market.
  •  It is not clear who would pay for reprocessing in the U.S.
  • Three recent studies have examined the economics of nuclear power. In a study completed at the Massachusetts Institute of Technology in 2003, The Future of Nuclear Power, an interdisciplinary panel, including Professor Richard Lester, looked at all aspects of nuclear power from waste management to economics to public perception. In a study requested by the Department of Energy and conducted at the University of Chicago in 2004, The Economic Future of Nuclear Power, economist Dr. Donald Jones and his colleague compared costs of future nuclear power to other sources, and briefly looked at the incremental costs of an advanced fuel cycle. In a 2003 study conducted by a panel including Matthew Bunn (a witness at the June 16 hearing) and Professor Steve Fetter, The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel, the authors took a detailed look at the costs associated with an advanced fuel cycle. All three studies seem more or less to agree on cost estimates: the incremental cost of nuclear electricity to the consumer, with reprocessing, could be modest—on the order of 1–2 mills/kWh (0.1–0.2 cents per kilowatt-hour); on the other hand, this increase represents an approximate doubling (at least) of the costs attributable to spent fuel management, compared to the current fuel cycle (no reprocessing). Where they strongly disagree is on how large an impact this incremental cost will have on the competitiveness of nuclear power. The University of Chicago authors conclude that the cost of reprocessing is negligible in the big picture, where capital costs of new plants dominate all economic analyses. The other two studies take a more skeptical view—because new nuclear power would already be facing tough competition in the current market, any additional cost would further hinder the nuclear power industry, or become an unacceptable and unnecessary financial burden on the government.
  • 6. Background
  •  
    Report from the Subcommitte on Energy, Committee on Science for House of Representatives. Didn't highlight the entire article, see site for the rest.
D'coda Dcoda

Research and Markets: Nuclear Regulatory Frameworks - Fuel Processing and Waste Disposa... - 0 views

  • Research and Markets (http://www.researchandmarkets.com/research/b6d3ce/nuclear_regulatory) has announced the addition of the "Nuclear Regulatory Frameworks - Fuel Processing and Waste Disposal Policies Critical for Industry Growth" report to their offering. Nuclear Regulatory Frameworks - Fuel Processing and Waste Disposal Policies Critical for Industry Growth, that provides an insight into the nuclear regulatory frameworks of the major nuclear power countries of the world. The study, which is an offering from the company's Energy Research Group, provides information about the major nuclear agencies and associations across the world, major nuclear treaties and protocols and comparison between different countries on the basis of selected parameters which define the presence of nuclear power in a country. The research also provides the nuclear policy, regulatory frameworks, key nuclear policies and regulations and also the major nuclear affiliations for major nuclear power generating countries in each of the five geographic regions. The report is built using the data and information sourced from proprietary databases, primary and secondary research and in-house analysis by a team of industry experts.
  • Carbon Emission Reduction Protocol to Play an Important Role in Nuclear Policies Formulation
  • Improved Nuclear Waste Disposal Policy Instrumental in Revitalizing the Nuclear Industry
  • ...4 more annotations...
  • Most of the countries either use large repository or reprocess the fuel as a mean to dispose the nuclear waste. The following table shows the list of different countries and their ways for disposing the radioactive waste. Nuclear Non- Proliferation Makes Way for Peaceful and Non-Power Applications
  • The nuclear energy is used in transport application, in medicines and in industries as radioisotopes, in space exploration programs, in nuclear desalination, in nuclear heat process and in other research programs.
  • Scope Overview of the global nuclear power industry Analysis of the historical trends of nuclear capacity and generation until 2009. Description of the various nuclear agencies and associations, globally and by region. Description of the various nuclear treaties and protocols. Analysis of the nuclear energy policy of the major countries in all geographic regions Analysis of the regulatory frameworks in major countries of different geographic regions including North America, South and Central America, Europe, Middle East and Africa and Asia Pacific.
  • Reasons to Buy
  •  
    This is the competition? This report on nuclear industry, at a price. First one I've seen so far.
Dan R.D.

TOWARD REAL ENVIRONMENTAL SUSTAINABILITY BY MOLECULAR NANOTECHNOLOGY - 0 views

  •  
    2.2.5. Nuclear Wastes MNT cannot treat nuclear wastes and render them harmless directly, for MNT only work with atoms and molecules, not nuclei.  Yet indirectly, by lowering the cost of energy and equipment, MNT can offer us the means for a clean, permanent solution to the untreatable nuclear wastes left over from the nuclear era. Nuclear wastes can be collected, concentrated by specific nanobots. Products of MNT could help with conventional approaches to dealing with nuclear waste, helping to store it in the most stable, reliable forms possible.  Using nanomachines, we could seal them in self-sealing containers and powered by cheap nano-solar energy (10).  These would be more secure than any passive rock or cask.  When MNT has developed cheap, reliable spacecraft, the concentrated nuclear wastes can be transported to the moon and bury them in moon's dead, dry rock by nanobots, or to other planets that still radioactive, or even shoot them directly into the sun. Underground nano-atom smasher powered by cheap solar cells can also be devised to treat nuclear wastes. This is a reverse process of nuclear engineering.  Instead of smashing nonradioactive target and harvesting for radioactive substance, the nanomachine will smash radioactive target and harvest for nonradioactive substance.  The smashing and harvesting process will continue stability is achieved.  Fig. 9 illustrates a few routes for resolving nuclear waste piles that accumulated in the environment and TDBT is at loss on dealing with them.
D'coda Dcoda

Nuclear waste requires a cradle-to-grave strategy, study finds [27Aug11] - 0 views

  • ScienceDaily (July 3, 2010) — after Fukushima, it is now imperative to redefine what makes a successful nuclear energy–from the cradle to the grave. If the management of nuclear waste is not considered by the authority, the public in many countries reject nuclear energy as an option, according to a survey appearing in the Bulletin of Atomic Scientists, published by SAGE.
  • According to Allison Macfarlane, Associate Professor of environmental science and policy at George Mason University and a member of the Blue Ribbon for nuclear future of America, resulting in storage for nuclear waste, which is still a last-minute decision to a number of countries outside of Japan. It is surprisingly common for reactor sites for overburdened with spent nuclear fuel without any clear plan. In South Korea, for example, saving to four nuclear power stations in the nation is filled, leading to a crisis within the storage potential of the next decade.
  • United Arab Emirates broke the ground for the first of four nuclear reactors on 14 March 2011, but has not set the precedence of storage. Hans Blix, former head of the International Atomic energy Agency and current President of the UAE’S International Advisory Council, noted: “it is still an open question of a draft final disposal and greater attention should be spent on deciding what to do.”
  • ...5 more annotations...
  • Some very low level nuclear waste can go into landfill-type settings. But low level waste consists of low concentrations of long-lived radionuclides and higher concentrations of these short-lived must remain sequestered for a few hundred years in subsurface engineering facilities. Medium-and high-level wastes require placing hundreds of meters below the ground for hundreds of thousands of years in order to ensure public safety. Intermediate waste containing high concentrations of long-lived radionuclides, as high-level waste, including spent fuel reprocessing and fuel waste. Because they are extremely radioactive high level waste that emits heat. There is no repository for high level nuclear waste disposal wherever in the world.
  • All types of energy production, money is on the front end of the process and of waste management in the back end. Macfarlane argues, however, that a failure to plan for the disposal of waste can cause the most profitable front end of a company to collapse.
  • Nuclear fuel discharged from a light water reactor after about four to six years in the kernel. This should be cool, because the fuel is radioactively and thermally very hot to discharge, in a pool. Actively cooled with borated water circulated, spent fuel pools are approximately 40 feet (12 meters) deep. Water not only removes heat, but also helps to absorb neutrons and stop a chain reaction. In some countries, including the United States, metal shelves in spent fuel pools hold four times the originally planned amount of fuel. The plans to reprocess fuel have failed for both economic and political reasons. This means that today is more fuel pools from reactor cores, and the fuel endangers big radiation in the event of an accident-loss of coolant, as happened in Fukushima.
  • Japan’s Fukushima Daiichi plant spent fuel has seven pools, one at each reactor and large shared swimming pool, dry storage of spent fuel on site. Initially, Japan had planned a brief period of storage of spent fuel in the reactor before reprocessing, but Japan’s reprocessing facility has suffered long delays (scheduled to open in 2007, the installation is not yet ready). This caused the spent fuel to build the reactor factory sites.
  • Countries should include additional spent fuel storage nuclear projects from the beginning, and not the creation of ad hoc solutions, after spent nuclear fuel has already begun to build. Storage location is a technical issue, but also a social and political.
Dan R.D.

Stick to rules on importing blended waste [08Oct11] - 0 views

  • nergySolutions is once again asking for the State of Utah’s permission to accept another vagrant bunch of radioactive waste. It plans to blend, or dilute, Class B and Class C waste with less radioactive waste until it just meets the Class A waste levels its license allows at its Clive disposal site. Think of it as kind of a radioactive smoothie.
  • This blended waste is a unique waste stream: something unforeseen and unknown to the Nuclear Regulatory Commission (NRC) when it developed its low-level waste regulations in 1981. While the commission is currently trying to develop coherent new guidance on this, its rules state that it is only OK to intentionally mix wastes “as long as the classification is not altered.” Utah does not have such a regulation.
  • At present there are no disposal sites that accept Classes B and C low level waste, but that will change in about a month when a Texas disposal site opens and starts accepting these materials, without any of the hazards incurred in actually putting these things in the blender. The public understands how corporations often use regulatory loopholes to their own benefit.
  • ...1 more annotation...
  • EnergySolutions is also partnering with a company (Studsvik) that in presentations to our board last year vigorously lobbied against blending, saying that there were “not sufficient safeguards,” in place, and that this “does not solve the problem.” And, what will be the actual increase of the total radioactive dose at the site, since the blended material will be manipulated to be at the very highest level of Class A waste?
D'coda Dcoda

Japan's Ministry of Environment to Allow #Radioactive Ashes to Be Buried in Regular Was... - 0 views

  • Now all radioactive debris and garbage can and will be burned and buried. The news headlines at various media outlets say "ashes that contain up to 100,000 becquerels/kg of radioactive cesium", but if you read the news carefully, as long as there are "countermeasures" to prevent the leakage of radioactive cesium into the surrounding environment, the Ministry is prepared to allow the ashes with any amount of radioactive materials to be buried in regular waste final disposal facilities.
  • From NHK News (8/28/2011):
  • Regarding the ashes after burning the disaster debris and regular household garbage contaminated with radioactive materials, the Ministry of the Environment has decided on a policy that will allow the burial of ashes that exceed 8,000 becquerels/kg of radioactive cesium, as long as there are countermeasures in place to prevent the leakage into the ground water.
  • ...6 more annotations...
  • The new policy was revealed during the meeting of experts affiliated with the Ministry of the Environment on August 27. So far, the Ministry's policy has been to allow the ashes with 8,000 becquerels/kg of radioactive cesium and below to be buried, but require the ashes that exceed that level to be stored temporarily while the Ministry decides on the disposal method.
  • Under the new policy, if radioactive cesium in the ashes exceeds 8,000 becquerels/kg but does not exceed 100,000 becquerels/kg, the ashes are allowed to be buried after they are bound with cement or put in a concrete container. If radioactive cesium exceeds 100,000 becquerels, then the ashes should be buried in the disposal facilities with a roof and/or with the concrete shield.
  • Radioactive cesium exceeding 8,000 becquerels/kg has been detected from the ashes from burning the regular household garbage in Kanto and Tohoku regions. The Ministry of the Environment has decided to apply the same rule as the disaster debris and allow the ashes to be buried. The municipalities will be able to bury the ashes that they have stored temporarily, but it may be difficult to obtain consent from the residents living near the disposal facilities.
  • The number "100,000 becquerels/kg" is significant in a sense, as the highest level of radioactive cesium found from ashes after burning the household garbage is 95,300 becquerels/kg in Fukushima Prefecture (link in Japanese). The number is high enough to clear the Fukushima garbage ashes, and it is probably high enough to clear garbage ashes from anywhere else.
  • Besides, as the NHK article states, even if it exceeds 100,000 becquerels/kg, all they need to do is to bury it in a disposal site with a roof or the concrete shield. This new policy is to be applied to ashes from disaster debris and regular garbage that are radioactive. It's not mentioned in the article but the ashes and slag from the radioactive sewage sludge will be likely to be disposed under the same policy - i.e. burn and bury. (And remember the "mix and match" scheme.)
  • In the meantime, some garbage incinerators and sludge incinerators at waste processing plants and sewage treatment plants in cities in Kanto have become so radioactive that they have to be shut down. (More later.) The entire country is to become the nuclear waste disposal site, because of one wrecked nuclear power plant. Talk about socializing the cost.
D'coda Dcoda

Nuclear Waste Piles Up As Repository Plan Falters [28Jul11] - 0 views

  • Diablo Canyon nuclear power plant on California's central coast has more than 1,300 tons of nuclear waste sitting on its back porch, waiting for pickup. The problem is, there's no one to pick it up
  • The 103 other reactors in the country are in the same bind — it has now been more than 50 years since the first nuclear plant was switched on in the United States, and the federal government still hasn't found a permanent home for the nation's nuclear waste
  • The two nuclear reactors at the plant generate steam that drives giant turbines, which in turn generate electricity that powers about 3 million households. Once the uranium rods that fuel the reactors are used up, they're removed and cooled down underwater, in temporary storage pools.
  • ...11 more annotations...
  • The trouble is, those "temporary" pools have become pretty permanent and crowded, as utilities load them up with more fuel rods, squeezing them closer together
  • Since 1982, utility customers on the nuclear grid have paid $34 billion into a federal fund for moving the waste to some kind of permanent disposal site — something the federal government still hasn't done
  • 65,000 tons of nuclear waste have piled up at power plants — waste that produces more radioactivity than the reactors themselves
  • "It is clear that we lack a comprehensive national policy to address the nuclear fuel cycle, including management of nuclear waste
  • Yucca Mountain in Nevada was the leading contender, until Nevada's residents said "not in our backyard."
  • In the meantime, utility companies like PG&E are stuck with the waste. During a visit three years ago, engineers at Diablo Canyon were preparing to move older waste from storage in pools to containers called dry casks. "The spent fuel pools were not built large enough to hold all the fuel from the original 40-year license life, so we had to find alternatives for safe storage," said Pete Resler, head of PG&E's nuclear communications at the time. The company is now using some dry casks — huge concrete and steel canisters to store older, less radioactive waste. Each is anchored to its own concrete pad.
  • "Each one of those pads is 7-foot-thick concrete with steel rebar reinforcement in it," Resler says. Those pads are there as an extra measure because Diablo is situated near two significant seismic faults. There are now 16 of these canisters sitting on the plant grounds, with plans to fill 12 more in the next couple of years
  • Though most agree that dry-casking is safer than leaving the fuel rods in pools of water, nobody's proposing it as a permanent solution. The head of the Nuclear Regulatory Commission, Gregory Jaczko, told Sen. Feinstein's committee that it's the best we can do for now.
  • "Right now we believe that for at least 100 years, that fuel can be stored with very little impacts to health and safety, or to the environment," Jaczko said.
  • In the meantime, the Blue Ribbon Commission appointed by President Obama to find that way forward will issue another round of recommendations Friday
  • They're likely to include more stop-gap measures, while the holy grail of a permanent home for spent fuel remains decades away
  •  
    There's a detailed chart on the page showing how much waste is stored at sites, state by state
D'coda Dcoda

Final nuclear waste disposal issue needs serious deliberation [13Oct11] - 0 views

  • Little progress has been made in the debate on the construction of final disposal facilities for nuclear waste, while calls urging that Japan rely less on nuclear power plants have intensified since the ongoing crisis at the tsunami-hit Fukushima No. 1 Nuclear Power Plant emerged in March. The construction of nuclear waste final disposal facilities is an inescapable issue that Japan as a whole needs to address. “The national government should consider buying up land around the crippled nuclear power station and build a final disposal facility for high-level radioactive waste,” said a former member of the municipal assembly of a town designated as a no-entry zone, in an interview with the Mainichi. He was quoted in a series of articles on local governments tossed about by the national government’s nuclear power policy, which were carried in the Mainichi Shimbun’s Aug. 19-25 morning editions. End Extract http://mdn.mainichi.jp/perspectives/news/20111013p2a00m0na002000c.html
D'coda Dcoda

Experts Say Federal Nuclear Waste Panel Overlooks Public Mistrust [13Aug10] - 0 views

  • expert on technological risk and environmental change. Other contributors include fellow WSU sociologist James F. Short and Tom Leschine, director of the University of Washington School of Marine Affairs
  • "While scientific and technical analyses are essential, they will not, and arguably should not, carry the day unless they address, substantively and procedurally, the issues that concern the public." Source:  Washington State University A renewed federal effort to fix the nation's stalled nuclear waste program is focusing so much on technological issues that it fails to address the public mistrust hampering storage and disposal efforts.
  • Writing in the latest issue of the journal Science, 16 researchers from around the country say a special White House panel on high-level radioactive waste needs to focus more on the social and political acceptability of its solutions to succeed
  • ...4 more annotations...
  • The lead author of the "policy forum" paper is Eugene Rosa, a Washington State University professor of sociology and a widely published expert
  • Their paper comes while a "nuclear renaissance" has more than 50 reactors under construction and another 100-plus planned over the next decade. Meanwhile, some 60,000 tons of high-level waste have accumulated in the United States alone as 10 presidential administrations have failed to develop a successful waste-disposal program
  • President Obama is bolstering the nation's commitment to nuclear energy with $8.6 billion in loan guarantees to two new plants in Georgia and a 2011 budget request for tens of billions more. Meanwhile, he has appointed a 15-member Blue Ribbon Panel to review the storage, processing and disposal of nuclear materials
  • The panel is dominated by science and technology experts and politicians, says Rosa. But disposing of nuclear waste, he says, "will ultimately require public acceptability.  Current efforts by the administration, such as the composition of its Blue Ribbon Commission, indicate that this important element may be overlooked."
D'coda Dcoda

EnergySoultions Contracts with Studsvik for Nuclear Waste Processing [10Feb11] - 0 views

  • EnergySolutions Inc. is making a deal with a Sweden-based competitor, Studsvik, to dispose of solid nuclear waste in Utah. The Deseret News of Salt Lake City reported Tuesday that EnergySolutions signed a contract in December with Studsvik Inc. That's a U.S. subsidiary of Sweden's Studsvik Holding.
  • The plan is to use the company's THOR (Thermal volume/Weight Reduction Technology) to process nuclear power plant waste into solid form rather than a mix of powdery, radioactive resins.
  • Studsvik's patented technology features a pyrolysis / steam reforming system to volume and mass reduce organic waste streams to a non-reactive waste form for efficient Disposal or On-site Storage. Bead Resins, Powdered Filter Medias, Sludges, Activated Charcoal, Non-Metal Filter Cartridges, and Dry Active Wastes (DAW) all have been successfully processed. This entire process is referred to as Thermal Organic Reduction or THOR.
  • ...2 more annotations...
  • After processing at Studsvik's facility in Erwin, Tenn., the waste will be disposed of at EnergySolutions' plant in Tooele County, about 80 miles west of Salt Lake City.
  • Officials say the final product doesn't exceed the low-level class A radioactivity limits that the EnergySolutions Utah facility is licensed to accept
D'coda Dcoda

In Sweden, A Tempered Approach To Nuclear Waste [28Jul11] - 0 views

  • At least two dozen countries around the globe get energy from nuclear power, yet not one has been able to pull off a permanent disposal site. Finding communities willing to live with such dangerous stuff has been a big sticking point. But in Sweden, two communities have stepped up, and are willing to take the country's waste. Like many countries, Sweden has had its share of political meltdowns over nuclear power. Protests stirred an uproar in the early 1980s when the Swedish nuclear industry simply decided where to begin testing for a possible geologic disposal site.
  • But today, instead of deflecting protesters, the nuclear industry shuttles visitors by the busloads for guided tours of facilities. More than 1,100 feet below the surface, exotic machinery and copper tubes wide enough to fit two men fill an underground cavern carved from crystalline bedrock. In this working lab in eastern Sweden, a private nuclear waste company tests methods for permanently storing used fuel. It plans to encase the fuel rods in copper capsules, then bury them 1,500 feet down in bedrock where it is supposed to sit for the next 100,000 years.
  • how did nuclear waste in Sweden go from a toxic topic to a field trip? People in the area said the industry needed to start over with things like public participation, a transparent, predictable process and trust. The industry took these lessons to heart. "We know that we have to meet people and communicate what we want to do, why we want to do it and how we will find a place for it," says Inger Nordholm, a spokeswoman for the Swedish Nuclear Fuel and Waste Management Company, or SKB.
  • ...6 more annotations...
  • Lilliemark says she learned a lot about the risks of not dealing with the used fuel. And it changed her thinking. "I can't just close my eyes and imagine that the fuel is not here, because it is," she says.
  • "I couldn't see anything that was positive," she says. But then local government officials asked her to lead a community advisory group. She says they told her: "We think you could contribute to the work — we need to open all the questions and be clear and transparent, and we want you to participate if you want to." And she did.
  • Oskarshamn was one of two communities in eastern Sweden that stepped forward after nuclear waste officials asked for volunteers willing to let them start geologic testing. Charlotte Lilliemark, who lives about 12 miles north of the town, was just the kind of person a nuclear power executive would want to avoid. The former Stockholmer moved to the country to raise dressage horses and didn't want a waste dump anywhere near her
  • This spring, Swedish nuclear officials applied for a licensing application to build a geologic vault in the municipality of Osthammar, about a two-hour drive north of Stockholm. If they get it, the facility could open in 2025. "We believe that it will not create a stigma, but on the other hand create an interest in how to solve this very difficult issue that people in Japan and California and Germany must solve in one way or another," says Jacob Spangenberg, the mayor of Osthammar.
  • The community will see some financial benefits: Besides new jobs and infrastructure, Osthammar negotiated a deal with the company to receive approximately $80 million for long-term economic development if the repository is approved
  • Already the community gets money from a national waste fund to help it chart an independent course. It has retained technical consultants and hired five full-time employees. Spangenberg says Osthammar learned how to ask tough questions, press for conditions and also to keep cool.
D'coda Dcoda

Fukushima Part II? Tokyo to begin burning massive amounts of radioactive waste from dis... - 0 views

  • We are basically recreating Fukushima all over again -Arnie Gundersen, nuclear engineer Rubble from quake- and tsunami-hit areas to be disposed in Tokyo, Mainichi, September 29, 2011: [Emphasis Added] [...] Tokyo decided to process rubble from disaster-hit areas after detecting only 133 becquerels of radioactive cesium per kilogram of ash generated after rubble was incinerated [...] [D]ue to radiation fears, little progress has been made in efforts to dispose of such waste. [...] The metropolitan government intends to transport approximately 500,000 metric tons of rubble to facilities in the capital and dispose of them over a 2 1/2-year period from this coming October to March 2014. [...] The waste will be separate into burnable and unburnable items. Burnable waste will be incinerated [...] Tokyo Metropolitan Government will regularly measure the amount of radiation in the incinerated ash [...]
  • See also: “We are basically recreating Fukushima all over again” — Clouds of radiation continue across to Pacific Northwest (VIDEO): At 7:30 in (Transcript Summary) Arnie Gundersen, chief nuclear engineer at Fairewinds Associates: US would be burying 8,000 Bq/kg radioactive waste underground for thousands of years Lots of serious ramifications from burning of nuclear waste Material from Fukushima that was on the ground is now going airborne again Towns now getting cesium redeposited on them by the burning of nuclear material Clouds of radiation recontaminating areas deemed clean or low Continues across to the Pacific Northwest We are basically recreating Fukushima all over again >> Have your voice be heard. Visit the discussion thread: What should be done about Japan burning radioactive debris until at least March 2014? <<
D'coda Dcoda

"My university is annoyed with me" - Air filter from Japan so radioactive, it must be b... - 0 views

  • A professional video of Marco Kaltofen’s presentation to the American Public Health Association was recently made available to Fairewinds. Kaltofen states that hot particles are contaminating portions of northern Japan. He also states that auto air filters from Fukushima, that he tested in his Massachusetts laboratory, are so radioactive that they have to be disposed of in a buried radioactive waste disposal site in the US. Additionally, he expresses concerns for the mechanics who work on cars in Fukushima Prefecture.
  • At 12:30 in And also we have Fukushima’s which is about 65 kilometers away from the site. This automobile air filter is actually hazardous. My university is annoyed with me because we have to contract to have this filter disposed of as radioactive waste. Unfortunately, you can just imagine what this means to the people in Fukushima City which is not evacuated, and even for the (automobile) mechanics who are changing these air filters.
D'coda Dcoda

Senate Appropriators on Nuclear Energy [16Sep11] - 0 views

shared by D'coda Dcoda on 09 Oct 11 - No Cached
  • The Senate Energy and Water Development Appropriations Subcommittee included extensive language in their FY 2012 committee report about nuclear energy.  They wrote of being “extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020,” called for the development of “consolidated regional storage facilities,” and mandated research on dry cask storage, advanced fuel cycle options, and disposal in geological media.  The appropriators provided no funding for the Next Generation Nuclear Plant program or Light Water Reactor Small Modular Reactor Licensing Technical Support.  In a separate section, they direct the Nuclear Regulatory Commission to contract with the National Academy of Sciences for a study on the lessons learned from the Fukushima nuclear disaster, and discuss beyond design-basis events and mitigating impacts of earthquakes. Language from the committee report 112-75 follows, with page number references to the pdf version of this document.
  • Nuclear Energy The FY 2011 appropriation was $732.1 million The FY 2012 administration request was $754.0 million The FY 2012 House-passed bill provides $733.6 million, an increase of $1.5 million or 0.2 percent from the current budget. The Senate Appropriations Committee bill provides $583.8 million, a decline of $148.3 million or 20.3 percent.
  • (Page 80) “The events at the Fukushima-Daiichi facilities in Japan have resulted in a reexamination of our Nation’s policies regarding the safety of commercial reactors and the storage of spent nuclear fuel.  These efforts have been supported by appropriations in this bill, and the Committee provides funding for continuation and expansion of these activities.
  • ...9 more annotations...
  • “While the Nuclear Regulatory Commission has found that spent nuclear fuel can be stored safely for at least 60 years in wet or dry cask storage beyond the licensed life of the reactor, the Committee has significant questions on this matter and is extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020. The Committee approved funding in prior years for the Blue Ribbon Commission on America’s Nuclear Future [BRC], which was charged with examining our Nation’s policies for managing the back end of the nuclear fuel cycle and recommending a new plan. The BRC issued a draft report in July 2011 with recommendations, which is expected to be finalized in January 2012. The Committee directs prior existing funding, contingent on the renewal of its charter, to the BRC to develop a comprehensive revision to Federal statutes based on its recommendations, to submit to Congress for its consideration.
  • “The Committee directs the Department to develop and prepare to implement a strategy for the management of spent nuclear fuel and other nuclear waste within 3 months of publication of the final report of the Blue Ribbon Commission on America’s Nuclear Future.  The strategy shall reduce long-term Federal liability associated with the Department’s failure to pick up spent fuel from commercial nuclear reactors, and it should propose to store waste in a safe and responsible manner. The Committee notes that a sound Federal strategy will likely require one or more consolidated storage facilities with adequate capacity to be sited, licensed, and constructed in multiple regions, independent of the schedule for opening a repository. The Committee directs that the Department’s strategy include a plan to develop consolidated regional storage facilities in cooperation with host communities, as necessary, and propose any amendments to Federal statute necessary to implement the strategy.
  • “Although successfully disposing of spent nuclear fuel permanently is a long-term effort and will require statutory changes, the Committee supports taking near- and mid-term steps that can begin without new legislation and which provide value regardless of the ultimate policy the United States adopts. The Committee therefore includes funding for several of these steps in the Nuclear Energy Research and Development account, including the assessment of dry casks to establish a scientific basis for licensing; continued work on advanced fuel cycle options; research to assess disposal in different geological media; and the development of enhanced fuels and materials that are more resistant to damage in reactors or spent fuel pools.
  • “The Committee has provided more than $500,000,000 in prior years toward the Next Generation Nuclear Plant [NGNP] program.  Although the program has experienced some successes, particularly in the advanced research and development of TRISO [tristructural-isotropic] fuel, the Committee is frustrated with the lack of progress and failure to resolve the upfront cost-share issue to allocate the risk between industry and the Federal Government. Although the Committee has provided sufficient time for these issues to be resolved, the program has stalled. Recognizing funding constraints, the Committee cannot support continuing the program in its current form. The Committee provides no funding to continue the existing NGNP program, but rather allows the Department to continue high-value, priority research and development activities for high-temperature reactors, in cooperation with industry, that were included in the NGNP program.”
  • The report also contains extensive language regarding Nuclear Energy Research and Development: “Use of Prior Existing Balances. - If the Secretary renews the charter of the Blue Ribbon Commission, the Department is directed to use $2,500,000 of prior existing balances appropriated to the Office of Civilian Radioactive Waste Management to develop a comprehensive revision to Federal statutes based on its recommendations.  The recommendation should be provided to Congress not later than March 30, 2012 for consideration.
  • “Nuclear Energy Enabling Technologies. - The Committee recommends $68,880,000 for Nuclear Energy Enabling Technologies, including $24,300,000 for the Energy Innovation Hub for Modeling and Simulation, $14,580,000 for the National Science User Facility at Idaho National Laboratory, and $30,000,000 for Crosscutting research.  The Committee does not recommend any funding for Transformative research. The Committee recommends that the Department focus the Energy Innovation Hub on the aspects of its mission that improve nuclear powerplant safety.
  • Light Water Reactor Small Modular Reactor Licensing Technical Support. - The Committee provides no funding for Light Water Reactor Small Modular Reactor Licensing Technical Support. “Reactor Concepts Research, Development, and Demonstration. - The Committee provides $31,870,000 for Reactor Concepts Research, Development and Demonstration. Of this funding, $21,870,000 is for Advanced Reactor Concepts activities. The Committee does not include funding for the Next Generation Nuclear Plant Demonstration project. The Department may, within available funding, continue high-value, priority research and development activities for high-temperature reactor concepts, in cooperation with industry, that were conducted as part of the NGNP program.  The remaining funds, $10,000,000, are for research and development of the current fleet of operating reactors to determine how long they can safely operate.
  • “Fuel Cycle Research and Development. - The Committee recommends $187,917,000 for Fuel Cycle Research and Development.  Within available funds, the Committee provides $10,000,000 for the Department to expand the existing modeling and simulation capabilities at the national laboratories to assess issues related to the aging and safety of storing spent nuclear fuel in fuel pools and dry storage casks. The Committee includes $60,000,000 for Used Nuclear Fuel Disposition, and directs the Department to focus research and development activities on the following priorities: $10,000,000 for development and licensing of standardized transportation, aging, and disposition canisters and casks; $3,000,000 for development of models for potential partnerships to manage spent nuclear fuel and high level waste; and $7,000,000 for characterization of potential geologic repository media.
  • “The Committee provides funding for evaluation of standardized transportation, aging and disposition cask and canister design, cost, and safety characteristics, in order to enable the Department to determine those that should be used if the Federal Government begins transporting fuel from reactor sites, as it is legally obligated to do, and consolidating fuel. The Committee notes that the Blue Ribbon Commission on America’s Nuclear Future has, in its draft report, recommended the creation of consolidated interim storage facilities, for which the Federal Government will need casks and canisters to transport and store spent fuel.
  •  
    too long to highlight all of it so see the rest on the site
D'coda Dcoda

Chiba city halts waste plant following radiation contamination [02Oct11] - 0 views

  • Extract KASHIWA, Chiba (majirox news) — A waste disposal plant at Kashiwa City in Chiba prefecture has been shut down for the foreseeable future after incinerator ash registered excessively high radiation levels, the Kashiwa Municipal Government said Sept. 30. Chiba Prefecture is located directly east of Tokyo, and bordered by Ibaraki prefecture to the north. Kashiwa became the first case in Japan where a waste disposal plant was shut down due to high radioactivity, with 78,000 becquerels of radioactive cesium per kilogram detected in incinerator ash from the plant in June. End Extract http://www.majiroxnews.com/2011/10/01/chiba-city-halts-waste-plant-following-radiation-contamination/
D'coda Dcoda

U.S. secretly asked Japan to help dump nuclear reactors [27Sep11] - 0 views

  • The United States secretly sought Japan's support in 1972 to enable it to dump decommissioned nuclear reactors into the world's oceans under the London Convention, an international treaty being drawn up at the time. Countries working on the wording of the pact wanted to specifically prohibit the dumping of radioactive waste at sea.
  • But Washington wanted to incorporate an exceptional clause in the case of decommissioned nuclear reactors. These facts came to light in diplomatic records held by the Foreign Ministry in Tokyo and released at the request of The Asahi Shimbun.
  • Japan did not offer a clear answer when it was approached by the United States on the issue. Eventually, however, Washington succeeded in incorporating the clause into the treaty. In 1972, the United States was already dismantling early-stage nuclear reactors that had been used for testing. However, the disposal method of large-scale nuclear reactors for commercial purposes had not been decided although it was an issue that could not be shelved indefinitely.
  • ...6 more annotations...
  • Since Japan, a key U.S. ally, had already started its own nuclear power generation program, Washington did not hesitate to seek Tokyo's backing for its request. It was apparent that the United States constructed nuclear reactors without having decided on disposal methods, forcing it to consider dumping them at sea after they were decommissioned.
  • The documents obtained by The Asahi Shimbun were signed by Japan's ambassador to Britain and designated as top secret. According to the records, a U.S. State Department official who was part of the U.S. delegation discussing the terms of the treaty, met his Japanese counterpart in November 1972. In that meeting, the official explained that the United States had a number of early-stage nuclear reactors which had reached their life spans. He said Washington was facing problems disposing of them.
  • The official noted that any attempt to bury the reactors on land would invite a public backlash. He also pointed to the financial difficulty of scientifically processing the reactors until the risk of radioactive contamination was totally eliminated. Then, the official said the only other option was to dump them at sea, and asked Japan for cooperation.
  • According to Kumao Kaneko, now aged 74 and then a member of the Foreign Ministry team involved in the negotiations, Japan did not take specific steps to assist the United States in this delicate matter. Eventually, during the general meeting of countries for the London Convention, the United States proposed incorporating a clause that would enable it to dump nuclear reactors at sea in exceptional cases in which all other means of disposal presented a risk to human health.
  • When presenting the proposal, the United States made no mention of its intention to dump its nuclear reactors at sea far into the future. The proposal was accepted. In the early 1970s, sea pollution was a huge international issue. Against that backdrop, countries worked feverishly to put the finishing touches on the London Convention. The treaty designated high-level radioactive substances as well as other materials, including mercury and cadmium, as waste whose dumping at sea is prohibited.
  • In 1993 revisions to the London Convention, the dumping of radioactive waste at sea was totally prohibited. However, the clause that approved of dumping in exceptional cases remained. For this reason, under the London Convention, it is possible for member countries of the treaty to dump radioactive waste at sea if they obtain the OK from the other parties as well as the International Atomic Energy Agency. According to the IAEA, the United States has not dumped radioactive waste at sea since 1970. Instead, it buries decommissioned nuclear reactors underground.
Dan R.D.

Energy CEOs Urge Court To End Nuclear Waste Fee [25Oct11] - 0 views

  • A Department of Energy fee that costs nuclear power utilities some $750 million a year should be suspended because a nuclear-waste program the fee is designed to pay for does not exist, opponents said in a new court filing.
  • The National Association of Regulatory Utility Commissioners and the Nuclear Energy Institute, a policy organization for the industry, urged a Washington DC appeals court to order the DOE to stop collecting the fee for the federally mandated Nuclear Waste Fund which grows by about $1 billion a year and is expected to total $28.3 billion by the end of fiscal 2012.
  • The fund was intended to pay for the development and maintenance of a planned repository for nuclear waste at Yucca Mountain in Nevada, a long-delayed program that was effectively killed when the Obama administration cut off funding and support for it.
  • ...4 more annotations...
  • In the latest filing, NARUC and NEI accuse the DOE of ignoring the size of the fund, the costs of the program it is intended to pay for, and the revenues already collected to pay those costs.
  • The White House initiative prompted NARUC and NEI to sue in March this year, arguing that the fee, which has been in effect since 1983, should be suspended because there was no justification for it.
  • In their latest legal brief, filed on Oct. 20, and released by NARUC on Monday, the petitioners substantiate their claims that the DOE's determination in December 2010 to leave the fee unchanged is not in compliance with the 1982 Nuclear Waste Policy Act, which requires the department to regularly assess whether the fees are too high, too low, or necessary at all.
  • "Rather than complying with the NWPA requirement to annually evaluate the costs of the nuclear waste disposal program and determine whether the fees that have been and are being collected from ratepayers and utilities offset those costs, DOE has concluded that it must continue collecting the same fee it has been collecting since 1983 because it cannot determine that too much or too little revenue is being collected," the brief said.
1 - 20 of 75 Next › Last »
Showing 20 items per page