Skip to main content

Home/ Open Intelligence / Energy/ Group items tagged fuel cycle

Rss Feed Group items tagged

D'coda Dcoda

Economic Aspects of Nuclear Fuel Reprocessing [12Jul05] - 0 views

  • On Tuesday, July 12, the Energy Subcommittee of the House Committee on Science will hold a hearing to examine whether it would be economical for the U.S. to reprocess spent nuclear fuel and what the potential cost implications are for the nuclear power industry and for the Federal Government. This hearing is a follow-up to the June 16 Energy Subcommittee hearing that examined the status of reprocessing technologies and the impact reprocessing would have on energy efficiency, nuclear waste management, and the potential for proliferation of weapons-grade nuclear materials.
  • Dr. Richard K. Lester is the Director of the Industrial Performance Center and a Professor of Nuclear Science and Engineering at the Massachusetts Institute of Technology. He co-authored a 2003 study entitled The Future of Nuclear Power. Dr. Donald W. Jones is Vice President of Marketing and Senior Economist at RCF Economic and Financial Consulting, Inc. in Chicago, Illinois. He co-directed a 2004 study entitled The Economic Future of Nuclear Power. Dr. Steve Fetter is the Dean of the School of Public Policy at the University of Maryland. He co-authored a 2005 paper entitled The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel. Mr. Marvin Fertel is the Senior Vice President and Chief Nuclear Officer at the Nuclear Energy Institute.
  • 3. Overarching Questions  Under what conditions would reprocessing be economically competitive, compared to both nuclear power that does not include fuel reprocessing, and other sources of electric power? What major assumptions underlie these analyses?  What government subsidies might be necessary to introduce a more advanced nuclear fuel cycle (that includes reprocessing, recycling, and transmutation—''burning'' the most radioactive waste products in an advanced reactor) in the U.S.?
  • ...13 more annotations...
  • 4. Brief Overview of Nuclear Fuel Reprocessing (from June 16 hearing charter)  Nuclear reactors generate about 20 percent of the electricity used in the U.S. No new nuclear plants have been ordered in the U.S. since 1973, but there is renewed interest in nuclear energy both because it could reduce U.S. dependence on foreign oil and because it produces no greenhouse gas emissions.  One of the barriers to increased use of nuclear energy is concern about nuclear waste. Every nuclear power reactor produces approximately 20 tons of highly radioactive nuclear waste every year. Today, that waste is stored on-site at the nuclear reactors in water-filled cooling pools or, at some sites, after sufficient cooling, in dry casks above ground. About 50,000 metric tons of commercial spent fuel is being stored at 73 sites in 33 states. A recent report issued by the National Academy of Sciences concluded that this stored waste could be vulnerable to terrorist attacks.
  • Under the current plan for long-term disposal of nuclear waste, the waste from around the country would be moved to a permanent repository at Yucca Mountain in Nevada, which is now scheduled to open around 2012. The Yucca Mountain facility continues to be a subject of controversy. But even if it opened and functioned as planned, it would have only enough space to store the nuclear waste the U.S. is expected to generate by about 2010.  Consequently, there is growing interest in finding ways to reduce the quantity of nuclear waste. A number of other nations, most notably France and Japan, ''reprocess'' their nuclear waste. Reprocessing involves separating out the various components of nuclear waste so that a portion of the waste can be recycled and used again as nuclear fuel (instead of disposing of all of it). In addition to reducing the quantity of high-level nuclear waste, reprocessing makes it possible to use nuclear fuel more efficiently. With reprocessing, the same amount of nuclear fuel can generate more electricity because some components of it can be used as fuel more than once.
  • The greatest drawback of reprocessing is that current reprocessing technologies produce weapons-grade plutonium (which is one of the components of the spent fuel). Any activity that increases the availability of plutonium increases the risk of nuclear weapons proliferation.  Because of proliferation concerns, the U.S. decided in the 1970s not to engage in reprocessing. (The policy decision was reversed the following decade, but the U.S. still did not move toward reprocessing.) But the Department of Energy (DOE) has continued to fund research and development (R&D) on nuclear reprocessing technologies, including new technologies that their proponents claim would reduce the risk of proliferation from reprocessing.
  • The report accompanying H.R. 2419, the Energy and Water Development Appropriations Act for Fiscal Year 2006, which the House passed in May, directed DOE to focus research in its Advanced Fuel Cycle Initiative program on improving nuclear reprocessing technologies. The report went on to state, ''The Department shall accelerate this research in order to make a specific technology recommendation, not later than the end of fiscal year 2007, to the President and Congress on a particular reprocessing technology that should be implemented in the United States. In addition, the Department shall prepare an integrated spent fuel recycling plan for implementation beginning in fiscal year 2007, including recommendation of an advanced reprocessing technology and a competitive process to select one or more sites to develop integrated spent fuel recycling facilities.''
  • During floor debate on H.R. 2419, the House defeated an amendment that would have cut funding for research on reprocessing. In arguing for the amendment, its sponsor, Mr. Markey, explicitly raised the risks of weapons proliferation. Specifically, the amendment would have cut funding for reprocessing activities and interim storage programs by $15.5 million and shifted the funds to energy efficiency activities, effectively repudiating the report language. The amendment was defeated by a vote of 110–312.
  • But nuclear reprocessing remains controversial, even within the scientific community. In May 2005, the American Physical Society (APS) Panel on Public Affairs, issued a report, Nuclear Power and Proliferation Resistance: Securing Benefits, Limiting Risk. APS, which is the leading organization of the Nation's physicists, is on record as strongly supporting nuclear power. But the APS report takes the opposite tack of the Appropriations report, stating, ''There is no urgent need for the U.S. to initiate reprocessing or to develop additional national repositories. DOE programs should be aligned accordingly: shift the Advanced Fuel Cycle Initiative R&D away from an objective of laying the basis for a near-term reprocessing decision; increase support for proliferation-resistance R&D and technical support for institutional measures for the entire fuel cycle.''  Technological as well as policy questions remain regarding reprocessing. It is not clear whether the new reprocessing technologies that DOE is funding will be developed sufficiently by 2007 to allow the U.S. to select a technology to pursue. There is also debate about the extent to which new technologies can truly reduce the risks of proliferation.
  •  It is also unclear how selecting a reprocessing technology might relate to other pending technology decisions regarding nuclear energy. For example, the U.S. is in the midst of developing new designs for nuclear reactors under DOE's Generation IV program. Some of the potential new reactors would produce types of nuclear waste that could not be reprocessed using some of the technologies now being developed with DOE funding.
  • 5. Brief Overview of Economics of Reprocessing
  • The economics of reprocessing are hard to predict with any certainty because there are few examples around the world on which economists might base a generalized model.  Some of the major factors influencing the economic competitiveness of reprocessing are: the availability and cost of uranium, costs associated with interim storage and long-term disposal in a geologic repository, reprocessing plant construction and operating costs, and costs associated with transmutation, the process by which certain parts of the spent fuel are actively reduced in toxicity to address long-term waste management.
  • Costs associated with reducing greenhouse gas emissions from fossil fuel-powered plants could help make nuclear power, including reprocessing, economically competitive with other sources of electricity in a free market.
  •  It is not clear who would pay for reprocessing in the U.S.
  • Three recent studies have examined the economics of nuclear power. In a study completed at the Massachusetts Institute of Technology in 2003, The Future of Nuclear Power, an interdisciplinary panel, including Professor Richard Lester, looked at all aspects of nuclear power from waste management to economics to public perception. In a study requested by the Department of Energy and conducted at the University of Chicago in 2004, The Economic Future of Nuclear Power, economist Dr. Donald Jones and his colleague compared costs of future nuclear power to other sources, and briefly looked at the incremental costs of an advanced fuel cycle. In a 2003 study conducted by a panel including Matthew Bunn (a witness at the June 16 hearing) and Professor Steve Fetter, The Economics of Reprocessing vs. Direct Disposal of Spent Nuclear Fuel, the authors took a detailed look at the costs associated with an advanced fuel cycle. All three studies seem more or less to agree on cost estimates: the incremental cost of nuclear electricity to the consumer, with reprocessing, could be modest—on the order of 1–2 mills/kWh (0.1–0.2 cents per kilowatt-hour); on the other hand, this increase represents an approximate doubling (at least) of the costs attributable to spent fuel management, compared to the current fuel cycle (no reprocessing). Where they strongly disagree is on how large an impact this incremental cost will have on the competitiveness of nuclear power. The University of Chicago authors conclude that the cost of reprocessing is negligible in the big picture, where capital costs of new plants dominate all economic analyses. The other two studies take a more skeptical view—because new nuclear power would already be facing tough competition in the current market, any additional cost would further hinder the nuclear power industry, or become an unacceptable and unnecessary financial burden on the government.
  • 6. Background
  •  
    Report from the Subcommitte on Energy, Committee on Science for House of Representatives. Didn't highlight the entire article, see site for the rest.
D'coda Dcoda

Senate Appropriators on Nuclear Energy [16Sep11] - 0 views

shared by D'coda Dcoda on 09 Oct 11 - No Cached
  • The Senate Energy and Water Development Appropriations Subcommittee included extensive language in their FY 2012 committee report about nuclear energy.  They wrote of being “extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020,” called for the development of “consolidated regional storage facilities,” and mandated research on dry cask storage, advanced fuel cycle options, and disposal in geological media.  The appropriators provided no funding for the Next Generation Nuclear Plant program or Light Water Reactor Small Modular Reactor Licensing Technical Support.  In a separate section, they direct the Nuclear Regulatory Commission to contract with the National Academy of Sciences for a study on the lessons learned from the Fukushima nuclear disaster, and discuss beyond design-basis events and mitigating impacts of earthquakes. Language from the committee report 112-75 follows, with page number references to the pdf version of this document.
  • Nuclear Energy The FY 2011 appropriation was $732.1 million The FY 2012 administration request was $754.0 million The FY 2012 House-passed bill provides $733.6 million, an increase of $1.5 million or 0.2 percent from the current budget. The Senate Appropriations Committee bill provides $583.8 million, a decline of $148.3 million or 20.3 percent.
  • (Page 80) “The events at the Fukushima-Daiichi facilities in Japan have resulted in a reexamination of our Nation’s policies regarding the safety of commercial reactors and the storage of spent nuclear fuel.  These efforts have been supported by appropriations in this bill, and the Committee provides funding for continuation and expansion of these activities.
  • ...9 more annotations...
  • “While the Nuclear Regulatory Commission has found that spent nuclear fuel can be stored safely for at least 60 years in wet or dry cask storage beyond the licensed life of the reactor, the Committee has significant questions on this matter and is extremely concerned that the United States continues to accumulate spent fuel from nuclear reactors without a comprehensive plan to collect the fuel or dispose of it safely, and as a result faces a $15,400,000,000 liability by 2020. The Committee approved funding in prior years for the Blue Ribbon Commission on America’s Nuclear Future [BRC], which was charged with examining our Nation’s policies for managing the back end of the nuclear fuel cycle and recommending a new plan. The BRC issued a draft report in July 2011 with recommendations, which is expected to be finalized in January 2012. The Committee directs prior existing funding, contingent on the renewal of its charter, to the BRC to develop a comprehensive revision to Federal statutes based on its recommendations, to submit to Congress for its consideration.
  • “The Committee directs the Department to develop and prepare to implement a strategy for the management of spent nuclear fuel and other nuclear waste within 3 months of publication of the final report of the Blue Ribbon Commission on America’s Nuclear Future.  The strategy shall reduce long-term Federal liability associated with the Department’s failure to pick up spent fuel from commercial nuclear reactors, and it should propose to store waste in a safe and responsible manner. The Committee notes that a sound Federal strategy will likely require one or more consolidated storage facilities with adequate capacity to be sited, licensed, and constructed in multiple regions, independent of the schedule for opening a repository. The Committee directs that the Department’s strategy include a plan to develop consolidated regional storage facilities in cooperation with host communities, as necessary, and propose any amendments to Federal statute necessary to implement the strategy.
  • “Although successfully disposing of spent nuclear fuel permanently is a long-term effort and will require statutory changes, the Committee supports taking near- and mid-term steps that can begin without new legislation and which provide value regardless of the ultimate policy the United States adopts. The Committee therefore includes funding for several of these steps in the Nuclear Energy Research and Development account, including the assessment of dry casks to establish a scientific basis for licensing; continued work on advanced fuel cycle options; research to assess disposal in different geological media; and the development of enhanced fuels and materials that are more resistant to damage in reactors or spent fuel pools.
  • “The Committee has provided more than $500,000,000 in prior years toward the Next Generation Nuclear Plant [NGNP] program.  Although the program has experienced some successes, particularly in the advanced research and development of TRISO [tristructural-isotropic] fuel, the Committee is frustrated with the lack of progress and failure to resolve the upfront cost-share issue to allocate the risk between industry and the Federal Government. Although the Committee has provided sufficient time for these issues to be resolved, the program has stalled. Recognizing funding constraints, the Committee cannot support continuing the program in its current form. The Committee provides no funding to continue the existing NGNP program, but rather allows the Department to continue high-value, priority research and development activities for high-temperature reactors, in cooperation with industry, that were included in the NGNP program.”
  • The report also contains extensive language regarding Nuclear Energy Research and Development: “Use of Prior Existing Balances. - If the Secretary renews the charter of the Blue Ribbon Commission, the Department is directed to use $2,500,000 of prior existing balances appropriated to the Office of Civilian Radioactive Waste Management to develop a comprehensive revision to Federal statutes based on its recommendations.  The recommendation should be provided to Congress not later than March 30, 2012 for consideration.
  • “Nuclear Energy Enabling Technologies. - The Committee recommends $68,880,000 for Nuclear Energy Enabling Technologies, including $24,300,000 for the Energy Innovation Hub for Modeling and Simulation, $14,580,000 for the National Science User Facility at Idaho National Laboratory, and $30,000,000 for Crosscutting research.  The Committee does not recommend any funding for Transformative research. The Committee recommends that the Department focus the Energy Innovation Hub on the aspects of its mission that improve nuclear powerplant safety.
  • Light Water Reactor Small Modular Reactor Licensing Technical Support. - The Committee provides no funding for Light Water Reactor Small Modular Reactor Licensing Technical Support. “Reactor Concepts Research, Development, and Demonstration. - The Committee provides $31,870,000 for Reactor Concepts Research, Development and Demonstration. Of this funding, $21,870,000 is for Advanced Reactor Concepts activities. The Committee does not include funding for the Next Generation Nuclear Plant Demonstration project. The Department may, within available funding, continue high-value, priority research and development activities for high-temperature reactor concepts, in cooperation with industry, that were conducted as part of the NGNP program.  The remaining funds, $10,000,000, are for research and development of the current fleet of operating reactors to determine how long they can safely operate.
  • “Fuel Cycle Research and Development. - The Committee recommends $187,917,000 for Fuel Cycle Research and Development.  Within available funds, the Committee provides $10,000,000 for the Department to expand the existing modeling and simulation capabilities at the national laboratories to assess issues related to the aging and safety of storing spent nuclear fuel in fuel pools and dry storage casks. The Committee includes $60,000,000 for Used Nuclear Fuel Disposition, and directs the Department to focus research and development activities on the following priorities: $10,000,000 for development and licensing of standardized transportation, aging, and disposition canisters and casks; $3,000,000 for development of models for potential partnerships to manage spent nuclear fuel and high level waste; and $7,000,000 for characterization of potential geologic repository media.
  • “The Committee provides funding for evaluation of standardized transportation, aging and disposition cask and canister design, cost, and safety characteristics, in order to enable the Department to determine those that should be used if the Federal Government begins transporting fuel from reactor sites, as it is legally obligated to do, and consolidating fuel. The Committee notes that the Blue Ribbon Commission on America’s Nuclear Future has, in its draft report, recommended the creation of consolidated interim storage facilities, for which the Federal Government will need casks and canisters to transport and store spent fuel.
  •  
    too long to highlight all of it so see the rest on the site
D'coda Dcoda

It's 2050: Do you know where your nuclear waste is? [09Sep11] - 1 views

  • Though nuclear power produces electricity with little in the way of carbon dioxide emissions, it, like other energy sources, is not without its own set of waste products. And in the case of nuclear power, most of these wastes are radioactive.1 Some very low level nuclear wastes can be stored and then disposed of in landfill-type settings. Other nuclear waste must remain sequestered for a few hundred years in specially engineered subsurface facilities; this is the case with low level waste, which is composed of low concentrations of long-lived radionuclides and higher concentrations of short-lived ones. Intermediate and high-level waste both require disposal hundreds of meters under the Earth’s surface, where they must remain out of harm’s way for thousands to hundreds of thousands of years (IAEA, 2009). Intermediate level wastes are not heat-emitting, but contain high concentrations of long-lived radionuclides. High-level wastes, including spent nuclear fuel and wastes from the reprocessing of spent fuel, are both heat-emitting and highly radioactive.
  • When it comes to the severity of an accident at a nuclear facility, there may be little difference between those that occur at the front end of the nuclear power production and those at the back end: An accident involving spent nuclear fuel can pose a threat as disastrous as that posed by reactor core meltdowns. In particular, if spent fuel pools are damaged or are not actively cooled, a major crisis could be in sight, especially if the pools are packed with recently discharged spent fuel.
  • Elements of success
  • ...17 more annotations...
  • All countries with well-established nuclear programs have found themselves requiring spent fuel storage in addition to spent fuel pools at reactors. Some, like the US, use dry storage designs, such as individual casks or storage vaults that are located at reactor sites; other countries, Germany for one, use away-from-reactor facilities. Sweden has a large underground pool located at a centralized facility, CLAB, to which different reactors send their spent fuel a year after discharge, so spent fuel does not build up at reactor sites. Dry storage tends to be cheaper and can be more secure than wet storage because active circulation of water is not required. At the same time, because dry storage uses passive air cooling, not the active cooling that is available in a pool to keep the fuel cool, these systems can only accept spent fuel a number of years after discharge.6
  • The United States had been working toward developing a high-level waste repository at Yucca Mountain, Nevada; this fell through in 2010, when the Obama administration decided to reverse this decision, citing political “stalemate” and lack of public consensus about the site. Instead, the Obama administration instituted the Blue Ribbon Commission on America’s Nuclear Future to rethink the management of the back end of the nuclear fuel cycle.8 The US can flaunt one success, though. The Waste Isolation Pilot Project (WIPP), located near Carlsbad in southern New Mexico, is actually the only operating deep geologic repository for intermediate level nuclear waste, receiving waste since 1998. In the case of WIPP, it only accepts transuranic wastes from the nuclear weapons complex. The site is regulated solely by the Environmental Protection Agency, and the state of New Mexico has partial oversight of WIPP through its permitting authority established by the Resource Conservation and Recovery Act. The city of Carlsbad is supportive of the site and it appears to be tolerated by the rest of the state.9
  • France has had more success after failing in its first siting attempt in 1990, when a granite site that had been selected drew large protests and the government opted to rethink its approach to nuclear waste disposal entirely. In 2006, the government announced that it needed a geologic repository for high-level waste, identified at least one suitable area, and passed laws requiring a license application to be submitted by 2015 and the site to begin receiving high-level waste by 2025.
  • Canada recently rethought the siting process for nuclear waste disposal and began a consensus-based participatory process. The Canadian Nuclear Waste Management Organization was established in 2002, after previous attempts to site a repository failed. The siting process began with three years’ worth of conversations with the public on the best method to manage spent fuel. The organization is now beginning to solicit volunteer communities to consider a repository, though much of the process remains to be decided, including the amount and type of compensation given to the participating communities.
  • the most difficult part of the back end of the fuel cycle is siting the required facilities, especially those associated with spent fuel management and disposal. Siting is not solely a technical problem—it is as much a political and societal issue. And to be successful, it is important to get the technical and the societal and political aspects right.
  • After weathering the Fukushima accident, and given the current constraints on carbon dioxide emissions and potential for growth of nuclear power, redefinition of a successful nuclear power program is now required: It is no longer simply the safe production of electricity but also the safe, secure, and sustainable lifecycle of nuclear power, from the mining of uranium ores to the disposal of spent nuclear fuel. If this cannot be achieved and is not thought out from the beginning, then the public in many countries will reject nuclear as an energy choice.
  • Certain elements—including an institution to site, manage, and operate waste facilities—need to be in place to have a successful waste management program. In some countries, this agency is entirely a government entity, such as the Korea Radioactive Waste Management Organization. In other countries, the agency is a corporation established by the nuclear industry, such as SKB in Sweden or Posiva Oy in Finland. Another option would be a public– private agency, such as Spain’s National Company for Radioactive Waste or Switzerland’s National Cooperative for the Disposal of Radioactive Waste.
  • Funding is one of the most central needs for such an institution to carry out research and development programs; the money would cover siting costs, including compensation packages and resources for local communities to conduct their own analyses of spent fuel and waste transportation, storage, repository construction, operations, security and safeguards, and future liabilities. Funds can be collected in a number of ways, such as putting a levy on electricity charges (as is done in the US) or charging based on the activity or volume of waste (Hearsey et al., 1999). Funds must also be managed—either by a waste management organization or another industry or government agency—in a way that ensures steady and ready access to funds over time. This continued reliable access is necessary for planning into the future for repository operations.
  • the siting process must be established. This should include decisions on whether to allow a community to veto a site and how long that veto remains operational; the number of sites to be examined in depth prior to site selection and the number of sites that might be required; technical criteria to begin selecting potential sites; non-technical considerations, such as proximity to water resources, population centers, environmentally protected areas, and access to public transportation; the form and amount of compensation to be offered; how the public is invited to participate in the site selection process; and how government at the federal level will be involved.
  • The above are all considerations in the siting process, but the larger process—how to begin to select sites, whether to seek only volunteers, and so on—must also be determined ahead of time. A short list of technical criteria must be integrated into a process that establishes public consent to go forward, followed by many detailed studies of the site—first on the surface, then at depth. There are distinct advantages to characterizing more than one site in detail, as both Sweden and Finland have done. Multiple sites allow the “best” one to be selected, increasing public approval and comfort with the process.
  • he site needs to be evaluated against a set of standards established by a government agency in the country. This agency typically is the environmental agency or the nuclear regulatory agency. The type of standards will constrain the method by which a site will be evaluated with regard to its future performance. A number of countries use a combination of methods to evaluate their sites, some acknowledging that the ability to predict processes and events that will occur in a repository decrease rapidly with each year far into the future, so that beyond a few thousand years, little can be said with any accuracy. These countries use what is termed a “safety case,” which includes multiple lines of evidence to assure safe repository performance into the future.
  • Moving forward
  • France, Canada, and Germany also have experienced a number of iterations of repository siting, some with more success than others. In the 1970s, Germany selected the Gorleben site for its repository; however, in the late 1990s, with the election of a Red–Green coalition government (the Greens had long opposed Gorleben), a rethinking of repository siting was decreed, and the government established the AkEnd group to re-evaluate the siting process. Their report outlined a detailed siting process starting from scratch, but to date too much political disagreement exists to proceed further.
  • Notes
  • Nuclear wastes are classified in various ways, depending on the country or organization doing the classification. The International Atomic Energy Agency (IAEA) notes six general categories of waste produced by civil nuclear power reactors: exempt waste, very short-lived waste, and very low level waste can be stored and then disposed of in landfill-type settings; low level waste, intermediate level waste, and high-level waste require more complex facilities for disposal.
  • Sweden is currently the country closest to realizing a final solution for spent fuel, after having submitted a license application for construction of a geologic repository in March 2011. It plans to open a high-level waste repository sometime after 2025, as do Finland and France.
  • Some countries, such as Sweden, Finland, Canada, and, until recently, the US, plan to dispose of their spent fuel directly in a geologic repository. A few others, such as France, Japan, Russia, and the UK have an interim step. They reprocess their spent fuel, extract the small amount of plutonium produced during irradiation, and use it in new mixed oxide (MOX) fuel. Then they plan to dispose of the high-level wastes from reprocessing in a repository.
D'coda Dcoda

Fast reactor advocates throw down gauntlet to MIT authors[24Jul11] - 0 views

  • Near the end of 2010, the Massachusetts Institute of Technology released a summary of a report titled The Future of the Nuclear Fuel Cycle as part of its MIT Energy Initiative. The complete report was released a few months ago. The conclusions published that report initiated a virtual firestorm of reaction among the members of the Integral Fast Reactor (IFR) Study group who strongly disagreed with the authors.
  • the following quote from the “Study Context” provides a good summary of why the fast reactor advocates were so dismayed by the report.
  • For decades, the discussion about future nuclear fuel cycles has been dominated by the expectation that a closed fuel cycle based on plutonium startup of fast reactors would eventually be deployed. However, this expectation is rooted in an out-of-date understanding about uranium scarcity. Our reexamination of fuel cycles suggests that there are many more viable fuel cycle options and that the optimum choice among them faces great uncertainty—some economic, such as the cost of advanced reactors, some technical such as implications for waste management, and some societal, such as the scale of nuclear power deployment and the management of nuclear proliferation risks. Greater clarity should emerge over the next few decades, assuming that the needed research is carried out for technological alternatives and that the global response to climate change risk mitigation comes together. A key message from our work is that we can and should preserve our options for fuel cycle choices by continuing with the open fuel cycle, implementing a system for managed LWR spent fuel storage, developing a geological repository, and researching technology alternatives appropriate to a range of nuclear energy futures.
  • ...10 more annotations...
  • The group of fast reactor supporters includes some notable scientists and engineers whose list of professional accomplishments is at least as long as those of the people who produced the MIT report. In addition, it includes people like Charles Till and Yoon Chang who were intimately involved in the US’s multi-decade long fast reactor development and demonstration program that resulted in demonstrating a passively safe, sodium cooled reactor and an integral recycling system based on metallic fuel and pyroprocessing.
  • That effort, known as the Integral Fast Reactor, was not just based on an out-dated concept of uranium availability, but also on the keen recognition that the public wants a clear solution to “the nuclear waste issue” that does not look like a decision to “kick the can down the road.”
  • he Science Council for Global Initiatives produced a detailed critique of the MIT paper and published that on Barry Brook’s Brave New Climate blog at the end of May 2011. The discussion has a great deal of interest for technical specialists and is supporting evidence that belies the often asserted falsehood (by people who oppose nuclear technology) that the people interested in developing and deploying nuclear technology speak with a single, almost brainwashed voice.
  • In recent days, however, the controversy has become more interesting because the IFR discussion group has decided to issue a public debate challenge and to allow people like me to write about that challenge in an attempt to produce some response.
  • I think your team is dead wrong on your conclusion that we don’t need fast reactors/closed fuel cycle for decades.Your study fails to take into account the political landscape the competitive landscape the safety issue environmental issues with uranium miningIt is unacceptable to the public to not have a solution to the waste issue. Nuclear power has been around for over 50 years, and we STILL HAVE NO OPTION FOR THE WASTE today other than interim dry cask storage. There is no national repository. Without that, the laws in my state forbid construction of a new nuclear power plant.
  • Other countries are pursuing fast reactors, we are not. Russia has 30 years of commercial operating history with fast reactors. The US has zero.We invented the best Gen IV technology according to the study done by the Gen IV International Forum. So what did we do with it? After spending $5B on the project, and after proving it met all expectations, we CANCELLED it (although the Senate voted to fund it).
  • An average investment of $300M a year could re-start our fast reactor program with a goal of actually commercializing our best reactor design (the IFR according the GIF study).
  • At least we’d have a bird in the hand that we know works, largely solves the waste problem, since the fast reactor waste needs only to be stored for a few hundred years at most, and doesn’t require electric power or any active systems to safely shut down.
  • Investing lots of money in a project and pulling the funding right before completion is a bad strategy for technology leadership.
  • MIT should be arguing for focusing and finishing what we started with the IFR. At least we’d have something that addresses safety, waste, and environmental issues. Uranium is cheap because we don’t have to pay for the environmental impact of uranium mining.
D'coda Dcoda

The Thorium Reactor, A Nuclear Energy Alternative [19Sep11] - 0 views

  • After Fukushima a great deal of awareness on the dangers of nuclear energy has ignited a series of reactions in society, mainly a generalized rejection to nuclear energy and a call to develop cleaner and safer sources of energy. When thinking about nuclear energy mainly 2 sources come to peoples minds, solar and wind power condemning any sort of nuclear power.  Nuclear power has been associated with Weapons of Mass Destruction, radiation sickness and disease.  However, this is not due to the nuclear power itself but due to the nuclear fuel used to generate this nuclear power.
  • In today’s world the main fuel for nuclear power is a naturally occurring radioactive mineral, Uranium.  This mineral is one of the most dense metals in the periodic table which allows it to reach a chain reaction that can yield huge amounts of energy that can be exploited for an extended period of time.  Unfortunately the nuclear fuel cycle of Uranium produced extremely dangerous byproducts, commonly known as nuclear waste.  These are produced in liquid, solid and gaseous form in a wide variety of deadly substances, such as: Iodine 131 Strontium 90 Cesium 137 Euricium 155 Krypton 85 Cadmium 113 Tin 121 Samarium 151 Technetium-99
  • The above are just some of the most common byproducts, (better known as nuclear waste) of a nuclear fuel cycle, all of these substances are extremely poisonous, causing a variety of diseases, cancers and genetic mutations to the victim.  The worst part is that most of them remain in the environment of decades or even thousands of years, so if accidentally released to the environment they become a problem that future generations have to deal with.  Therefore, in nuclear energy the problem is in the fuel not in the engine. Lets start with the Thorium Reactors.  Thorium is a naturally occurring radioactive chemical element, found in abundance throughout the world.  It is estimated that every cubic meter of earth’s crust contains about 12 grams of this mineral, enough quantity to power 1 person’s electricity consumption for 12-25 years.  Energy is produced from thorium in a process known as the Thorium Fuel Cycle, were a nuclear fuel cycle is derived from the natural abundant isotope of thorium.
  • ...2 more annotations...
  • Thorium can be used as fuel in a nuclear reactor, and it is a fertile material, which allows it to be used to produce nuclear fuel in a breeder reactor.  These are some of the benefits of Thorium reactors compared to Uranium. Weapons-grade fissionable material is harder to retrieve safely and clandestinely from a thorium reactor; Thorium produces 10 to 10,000 times less long-lived radioactive waste; Thorium comes out of the ground as a 100% pure, usable isotope, which does not require enrichment, whereas natural uranium contains only 0.7% fissionable U-235; Thorium cannot sustain a nuclear chain reaction without priming,[22] so fission stops by default. The following conference by Kirk Sorensen explains a Liquid-Fuoride Thorium Reactor a next generation nuclear reactor.
  • References Thorium – Wikipedia, the free encyclopedia http://bit.ly/qYwoAv Thorium fuel cycle – Wikipedia, the free encyclopedia http://bit.ly/piNoKb Molten salt reactor – Wikipedia, the free encyclopedia http://bit.ly/qlyAxe Thorium Costs http://bit.ly/oQRgXK Thorium – The Better Nuclear Fuel? http://bit.ly/r8xc92
D'coda Dcoda

NTI: Global Security Newswire - Senior U.S. Official Denies Talk of Foreign Nuclear Was... - 0 views

  • A senior U.S. Energy Department official on Wednesday disputed reports that the Obama administration has sought Mongolian support for construction of a storage site for international spent nuclear fuel in the Central Asian nation (see GSN, March 30).
  • The assertion -- made by a high-ranking official who asked not to be named in addressing a diplomatically sensitive issue -- directly countered remarks offered last spring by a veteran State Department official who leads U.S. nuclear trade pact negotiations. The diplomat, Richard Stratford, told a Washington audience in March that Energy Department leaders had made initial contacts with their counterparts in Ulaanbaatar about potential cooperation on a range of nuclear fuel services that Mongolia would like to develop for international buyers.
  • Among the possible features of a joint project, Stratford said, could be the creation of a repository for U.S.-origin fuel that has been used by Washington's partners in the region, potentially including Japan, South Korea and Taiwan. If brought to fruition, the proposal would be "a very positive step forward," he said at the time, because no nation around the globe thus far has successfully built a long-term storage facility for dangerous nuclear waste. The Obama administration in 2009 shuttered plans for a U.S. storage site at Yucca Mountain in Nevada -- which would have been the world's only permanent repository -- after prolonged debate over potential environmental and health hazards (see GSN, Sept. 13).
  • ...2 more annotations...
  • n an interview this week with Global Security Newswire, the high-level Energy Department official said that discussions have focused on an array of potential nuclear energy market roles for Mongolia, from mining its substantial uranium reserves to fabricating fuel and more. However, the unofficial talks have not broached the idea of Mongolia becoming a recipient of foreign-origin spent fuel, the senior figure said. "I never thought about U.S. spent fuel. Never," the Energy official said. "I never even thought about it, much less discussed it." The Obama administration generally supports the idea of creating international operations for waste storage and other fuel-cycle functions that might help stem global nuclear proliferation, but "what the Mongolian government and the Mongolian people end up deciding they want to do is completely their decision and I would not dream of imposing our views on that," the senior official said. "There's no discussion of an international spent-fuel repository," added a second Energy Department official who participated in the same interview. "What has been included as part of the comprehensive fuel services discussions are potential long-term storage of Mongolian-origin used fuel that has Mongolian uranium [in it]."
  • Adding Value An evolving concept of nuclear fuel "leasing" would have the Mongolians build on their existing uranium ore resources to ultimately provide reactor-ready fuel to foreign nations and, additionally, stand ready to take back used uranium fuel rods once they are depleted, according to reports. The idea, said the more junior Energy official, is that Mongolia could "potentially add long-term storage as part of the value of that uranium resource to potential buyers." Even if foreign-origin spent fuel cannot be stored in Mongolia, the nation's talks with its international partners might yet allow for U.S., Japanese or other companies to build facilities in the Central Asian nation to produce Mongolian fuel for sale abroad, which could later be returned to Ulaanbaatar for storage after it is used.
D'coda Dcoda

What do you do with the waste? - Kirk Sorensen's answers [13Oct11] - 0 views

  • What do you do with the waste? – Kirk Sorensen’s answers by Rod Adams on October 13, 2011 in Fuel Recycling , Nuclear Batteries , Nuclear Waste , Plutonium , Thorium Share3   Gordon McDowell, the film maker who produced Thorium Remix , has released some additional mixes of material gathered for that production effort. One in particular is aimed at those people whose main concern about using nuclear energy is the often repeated question “What do you do with the waste.” Many people who ask that question think that it is a trump card that should end all conversation and let them win the hand. I used to play bridge and enjoyed it when I could “no trump” a smug contestant who thought he had a winner. Kirk’s discussion below is one example of how that can be done in the nuclear energy field . My friends who like the Integral Fast Reactor have another answer . I am pretty certain there are dozens of other good answers to the question – the primary obstacle to implementing them comes from the nefarious forces that LIKE raising (artificial) barriers to the use of nuclear energy. On another note, I want to point to a story published in the evening of October 12, 2011 on the Wall Street Journal web site titled WSJ: Fluor Buys Stake In Reactor Maker NuScale Energy . I am happy to see that NuScale has found a suitable, deep pockets investor with a lot of nuclear plant engineering and construction experience. One more short note. Jay Hancock, a writer for the Baltimore Sun, has taken note of some of the work published on Atomic Insights regarding Exelon’s decision to destroy the Zion Nuclear power station rather than allowing it to compete against existing power plants to increase the supply and decrease the price of electricity. On October 8, 2011, Hancock published a column titled State should pull plug on Constellation-Exelon deal that explored whether or not it would be beneficial for Marylanders to allow a company like Exelon to own a dominant number of electrical power generation facilities in the state. One of the pieces of evidence that has convinced Hancock to oppose the proposed merger is the way that Exelon has acted with regard to the Zion nuclear station. He recognizes that the company has adequately demonstrated a history of using market power to drive up prices and profits at the expense of customer interests. Additional reading related to Exelon bear hug attempt: EDF Asks Maryland Regulators To Block Exelon-Constellation Merger
  • What do you do with the waste? – Kirk Sorensen’s answers by Rod Adams on October 13, 2011 in Fuel Recycling, Nuclear Batteries, Nuclear Waste, Plutonium, Thorium Share3  Gordon McDowell, the film maker who produced Thorium Remix , has released some additional mixes of material gathered for that production effort. One in particular is aimed at those people whose main concern about using nuclear energy is the often repeated question “What do you do with the waste.” Many people who ask that question think that it is a trump card that should end all conversation and let them win the hand. I used to play bridge and enjoyed it when I could “no trump” a smug contestant who thought he had a winner. Kirk’s discussion below is one example of how that can be done in the nuclear energy field . My friends who like the Integral Fast Reactor have another answer. I am pretty certain there are dozens of other good answers to the question – the primary obstacle to implementing them comes from the nefarious forces that LIKE raising (artificial) barriers to the use of nuclear energy. On another note, I want to point to a story published in the evening of October 12, 2011 on the Wall Street Journal web site titled WSJ: Fluor Buys Stake In Reactor Maker NuScale Energy. I am happy to see that NuScale has found a suitable, deep pockets investor with a lot of nuclear plant engineering and construction experience. One more short note. Jay Hancock, a writer for the Baltimore Sun, has taken note of some of the work published on Atomic Insights regarding Exelon’s decision to destroy the Zion Nuclear power station rather than allowing it to compete against existing power plants to increase the supply and decrease the price of electricity. On October 8, 2011, Hancock published a column titled State should pull plug on Constellation-Exelon deal that explored whether or not it would be beneficial for Marylanders to allow a company like Exelon to own a dominant number of electrical power generation facilities in the state.
  • Gordon McDowell, the film maker who produced Thorium Remix, has released some additional mixes of material gathered for that production effort. One in particular is aimed at those people whose main concern about using nuclear energy is the often repeated question “What do you do with the waste.” Many people who ask that question think that it is a trump card that should end all conversation and let them win the hand. I used to play bridge and enjoyed it when I could “no trump” a smug contestant who thought he had a winner. Kirk’s discussion below is one example of how that can be done in the nuclear energy field
D'coda Dcoda

Sellafield MOX plant to close - UK [03Aug11] - 0 views

  • The manufacture of mixed oxide (MOX) nuclear fuel at Sellafield is to stop "at the earliest practical opportunity" to reduce the financial risks to British taxpayers from events in Japan.  
  • The closure comes as a result of the Fukushima accident, which dramatically increased uncertainty for the ten Japanese utilities that had placed contracts for supplies of MOX fuel. This is made by combining uranium with plutonium recovered by reprocessing used nuclear fuel. The Nuclear Decommissioning Authority (NDA), which owns all the UK state's nuclear assets, said it reviewed the risk profile for operation of Sellafield MOX Plant (SMP) and "concluded that in order to ensure that the UK taxpayer does not carry a future financial burden from SMP that the only reasonable course of action is to close SMP at the earliest practical opportunity."
  • Separately Areva last week announced the cancellation of orders for uranium and nuclear fuel amounting to €191 million ($273 million) as a result of the shutdown of reactors in Japan and Germany.The NDA's move to close SMP will be a grave disappointment for the plant's 600 workers, who had celebrated success in raising performance to commercially acceptable levels. Despite being designed to produce 120 tonnes of fuel per year, it never operated properly and was downrated to just 40 tonnes per year. In its nine years of operation to 2010 it produced only 15 tonnes of fuel.
  • ...4 more annotations...
  • However, in 2010 the NDA and ten Japanese utilities agreed on a plan to refurbish the SMP "on the earliest timescale" using technology from France's Areva. A new rod manufacturing line was being installed which, as well as improving overall performance, was meant to ultimately replace the existing one. The NDA's Sellafield site – including the SMP - is managed by Nuclear Management Partners, a consortium of URS of the USA, AMEC of the UK and Areva of France. Taking the back-end forward
  • The two major elements in the UK's strategy for the back-end of the nuclear fuel cycle were SMP and the Thermal Oxide Reprocessing Plant (Thorp), at which used nuclear fuel is reprocessed to separate uranium and plutonium from wastes that go on to be vitrified ready for permanent disposal. A document released in March 2010 highlighted that Thorp would require refurbishment or replacement to handle the complete inventory of used nuclear fuel it was built to process - all that coming from the fleet of Advanced Gas-cooled Reactors (AGR) as well as international contracts. Some 6600 tonnes of AGR fuel remains outstanding, with options for storing it unclear until a permanent repository is available in about 2030.
  • Simultaneously, the UK is considering the future of some 100 tonnes of civil plutonium, which is currently classified as a 'zero value asset'. A public consultation on this ran from February to May. In late March the former science advisor to Tony Blair, Sir David King, presented a range of options which in essence showed it makes sense to produce MOX fuel from the plutonium. The question for the UK is whether it wants to offset the cost of this with extra savings and revenues from the potentially expensive return to the full nuclear fuel cycle that would come with a refurbishment of Thorp.
  • A cost-benefit analysis of a new MOX plant has been commissioned by the Department of Energy and Climate Change and a decision based on that is expected before the end of this year.
D'coda Dcoda

Thorium, Not The Nuclear Savior Claimed [14Sep11] - 0 views

  • The misinformation on thorium is highly promoted by the nuclear industry and various companies that want investment dollars for thorium reactors and fuel
  • One myth is that thorium is safe. Thorium-232 has a half life of 14 billion years (billions, not millions). Thorium-232 is also highly radiotoxic, with the same amount of radioactivity of uranium and thorium, thorium produces a far higher dose in the body. If someone inhaled an amount of thorium the bone surface dose is 200 times higher than if they inhaled the same amount of uranium. Thorium also requires longer spent fuel storage than uranium. With the daughter products of thorium like technetium‐99 with a half life of over 200,000 years, thorium is not safe nor a solution to spent fuel storage issues.
  • Another myth is that thorium reactors can run at atmospheric temperatures, in order to produce power they must be run differently and would not be at atmospheric temperatures. Many of the thorium reactors use liquid sodium fluoride in the reactor process. This material is highly toxic and has its own series of risks. The creation of thorium fuels is also not safer than creating uranium fuels. Thorium poses the same nuclear waste and toxic substance problems found in mining and fuel milling of uranium.
  • ...4 more annotations...
  • Thorium power production has been experimented with for over 50 years. Thorium breeder reactors have been experimented with but have technical issues and breed fuel at lower rates than tradiational breeder reactors. It is frequently claimed that India has a bunch of successful thorium commercial power reactors. The reality is that India has been trying for decades and still has not developed a commercial thorium reactor. Thorium is also not more economical to run. The fuel cycle is more costly and the needed protections for workers, plant safety and the public are considerably more than existing fuels.
  • The Germans experimented with a Thorium reactor, the THTR-300. They found even with the thorium reactor there were substantial risks in a loss of coolant event. They also had issues with concrete structures failing due to extremely high heat, fracturing thorium fuel and hot spots in the reactor. There was also a radioactive release into the air due to a malfunction. The reactor was eventually scrapped due to technical problems and costs.
  • Another rather silly claim going around is that “thorium is so safe you can handle it with your bare hands!”. Sorry, but you can do the same thing with a uranium fuel pellet.
  • More reading: http://de.wikipedia.org/wiki/Kernkraftwerk_THTR-300 http://www.ieer.org/fctsheet/thorium2009factsheet.pdf http://helian.net/blog/2010/09/01/nuclear-weapons/subcritical-thorium-reactors-dr-rubbias-really-bad-idea/ http://en.wikipedia.org/wiki/Molten_salt_reactor
D'coda Dcoda

Royal Society calls for long-term nuclear plans [13Oct11] - 0 views

  • The government must establish long-term plans for a new generation of nuclear power plants so future generations are not left dealing with its legacy, experts urged on Thursday.Ministers must work with the industry to create a "holistic" strategy which deals effectively with reprocessing and disposal of spent nuclear fuel and does not treat it simply as "an afterthought", they warned.The new build programme must also take into account the UK's stockpile of civil plutonium - the largest in the world - created as a waste fuel from nuclear reactors but which can potentially be reprocessed into new nuclear fuel.
  • The warning comes as the government pushes ahead with a new generation of nuclear power stations in a bid to meet electricity demand and cut carbon emissions from the energy sector.In a report from the Royal Society, the group of experts said the handling of nuclear fuel throughout its working cycle must be considered to reduce security risks and the danger of proliferation of nuclear weapons.Research and development programmes are needed from the outset of the new build project to ensure fuel is managed properly, they added.Roger Cashmore, chairman of the Royal Society working group and head of the UK Atomic Energy Authority, said: "The last time any UK government articulated a coherent long-term plan for nuclear power was in 1955.
  • "We need to ensure that government and industry work together now to develop a long-term, holistic strategy for nuclear power in the UK."This must encompass the entire nuclear fuel cycle, from fresh fuel manufacture to disposal. Indeed, spent fuel can no longer be an afterthought and governments worldwide need to face up to this issue."He added: "While the government has made some positive moves towards an integrated approach to nuclear power, more must be done."The call comes after the energy secretary, Chris Huhne, signalled that a new generation of nuclear power plants would go ahead after a government-ordered review into the Fukushima disaster in Japan found no reason to curtail the use of reactors in the UK.
  • ...1 more annotation...
  • The review by chief nuclear inspector Mike Weightman examined the lessons that could be learned from the crisis at the Fukushima reactor when it was hit by a magnitude nine earthquake and subsequent tsunami in March.It revealed no "fundamental weaknesses" in the regulatory or safety assessment regimes of the UK nuclear industry, although it did outline 38 areas where improvements could be made.Prof Cashmore added: "Fukushima has shown that we cannot be complacent about the safety of nuclear power."However, the same principle must apply to nuclear security and non-proliferation. Both governments and the nuclear industry need to seriously reassess their responsibilities in these areas."
D'coda Dcoda

Spent Nuclear Fuel Reprocessing Facilities, Reulations [10Jun11] - 0 views

  • The NRC has the authority under the Atomic Energy Act to license commercial spent fuel reprocessing facilities. Currently, Title 10 of the Code of Federal Regulations (10 CFR) Part 50, ``Domestic Licensing of Production and Utilization Facilities,'' provides the licensing framework for production and utilization facilities. Although a reprocessing facility is one type of production facility, its industrial processes are more akin to fuel cycle processes. This framework was established in the 1970's to license the first U.S. reprocessing facilities. The policy decision by the Carter Administration to cease reprocessing initiatives was based, in part, on the proliferation risks posed by the early reprocessing technology. While that policy was reversed during the Reagan Administration, until recently there was no commercial interest in reprocessing and, hence, no need to update the existing reprocessing regulatory framework in 10 CFR part 50.
  • Although commercial reprocessing interest waned, the Department of Energy (DOE) continued to pursue reprocessing technology development through the National Laboratories. The DOE has sought to decrease proliferation risk and spent fuel high-level waste through developing more sophisticated reprocessing technologies. During the Bush Administration, the Global Nuclear Energy Partnership (GNEP) renewed interest in commercial reprocessing. The GNEP sought to expand the use of civilian nuclear power globally and close the nuclear fuel cycle through reprocessing spent fuel and deploying fast reactors to burn long-lived actinides. In response to these initiatives, the Commission directed the staff to complete an analysis of 10 CFR part 50 to identify regulatory gaps for licensing an advanced reprocessing facility.
  • In mid-2008, two nuclear industry companies informed the NRC of their intent to seek a license for a reprocessing facility in the U.S. An additional company expressed its support for updating the regulatory framework for reprocessing, but stopped short of stating its intent to seek a license for such a facility. At the time, the NRC staff also noted that progress on some GNEP initiatives had waned and it appeared appropriate to shift the focus of the NRC staff's efforts from specific GNEP-facility regulations to a more broadly applicable framework for commercial reprocessing facilities.
  • ...1 more annotation...
  • In SECY-08-0134, the staff discussed the shift in its approach to developing the regulatory framework for commercial reprocessing facilities. The staff noted that it would defer additional work on regulatory framework development efforts for advanced recycling reactors and focus on the framework revisions necessary to license a commercial reprocessing facility. As a result of this shift, an additional review of the initial gap analysis was warranted. The NRC staff further refined the regulatory gap analysis by focusing on commercial reprocessing and recycling using existing reactor technology. The staff summarized this analysis in SECY-09-0082. The staff's gap analysis identified 14 ``high'' priority gaps that must be resolved to establish an effective and efficient regulatory framework. The NRC staff's regulatory gap analysis considered several documents in its analysis, including: NUREG-1909, a white paper authored by the Advisory Committee on Nuclear Waste and Materials, titled ``Background, Status and Issues Related to the Regulation of Advanced Spent Nuclear Fuel Recycle Facilities,'' issued June 2008; correspondence from the Union of Concerned Scientists titled, ``Revising the Rules for Materials Protection, Control and Accounting;'' and a Nuclear Energy Institute white [[Page 34009]] paper titled, ``Regulatory Framework for an NRC Licensed Recycling Facility.''
D'coda Dcoda

Nuclear Waste Piles Up As Repository Plan Falters [28Jul11] - 0 views

  • Diablo Canyon nuclear power plant on California's central coast has more than 1,300 tons of nuclear waste sitting on its back porch, waiting for pickup. The problem is, there's no one to pick it up
  • The 103 other reactors in the country are in the same bind — it has now been more than 50 years since the first nuclear plant was switched on in the United States, and the federal government still hasn't found a permanent home for the nation's nuclear waste
  • The two nuclear reactors at the plant generate steam that drives giant turbines, which in turn generate electricity that powers about 3 million households. Once the uranium rods that fuel the reactors are used up, they're removed and cooled down underwater, in temporary storage pools.
  • ...11 more annotations...
  • The trouble is, those "temporary" pools have become pretty permanent and crowded, as utilities load them up with more fuel rods, squeezing them closer together
  • Since 1982, utility customers on the nuclear grid have paid $34 billion into a federal fund for moving the waste to some kind of permanent disposal site — something the federal government still hasn't done
  • 65,000 tons of nuclear waste have piled up at power plants — waste that produces more radioactivity than the reactors themselves
  • "It is clear that we lack a comprehensive national policy to address the nuclear fuel cycle, including management of nuclear waste
  • Yucca Mountain in Nevada was the leading contender, until Nevada's residents said "not in our backyard."
  • In the meantime, utility companies like PG&E are stuck with the waste. During a visit three years ago, engineers at Diablo Canyon were preparing to move older waste from storage in pools to containers called dry casks. "The spent fuel pools were not built large enough to hold all the fuel from the original 40-year license life, so we had to find alternatives for safe storage," said Pete Resler, head of PG&E's nuclear communications at the time. The company is now using some dry casks — huge concrete and steel canisters to store older, less radioactive waste. Each is anchored to its own concrete pad.
  • "Each one of those pads is 7-foot-thick concrete with steel rebar reinforcement in it," Resler says. Those pads are there as an extra measure because Diablo is situated near two significant seismic faults. There are now 16 of these canisters sitting on the plant grounds, with plans to fill 12 more in the next couple of years
  • Though most agree that dry-casking is safer than leaving the fuel rods in pools of water, nobody's proposing it as a permanent solution. The head of the Nuclear Regulatory Commission, Gregory Jaczko, told Sen. Feinstein's committee that it's the best we can do for now.
  • "Right now we believe that for at least 100 years, that fuel can be stored with very little impacts to health and safety, or to the environment," Jaczko said.
  • In the meantime, the Blue Ribbon Commission appointed by President Obama to find that way forward will issue another round of recommendations Friday
  • They're likely to include more stop-gap measures, while the holy grail of a permanent home for spent fuel remains decades away
  •  
    There's a detailed chart on the page showing how much waste is stored at sites, state by state
D'coda Dcoda

The Environmental Case for Nuclear Energy - Korea [26Sep11] - 0 views

  • Six months after the Fukushima disaster, the repercussions of history’s second-largest nuclear meltdown are still being felt, not only in Japan but around the world. Predictably, people are rethinking the wisdom of relying on nuclear power. The German and Swiss governments have pledged to phase out the use of nuclear power, and Italy has shelved plans to build new reactors. Public debate on future nuclear energy use continues in the United Kingdom, Japan, Finland, and other countries.So far, it is unclear what the reaction of the Korean government will be. Certainly, the public backlash to nuclear energy that has occurred elsewhere in the world is also evident in Korea; according to one study, opposition to nuclear energy in Korea has tripled since the Fukushima disaster. However, there are countervailing considerations here as well, which have caused policy-makers to move cautiously. Korea’s economy is often seen as particularly reliant on the use of nuclear power due to its lack of fossil fuel resources, while Korean companies are some of the world’s most important builders (and exporters) of nuclear power stations.
  • There are three primary reasons why nuclear power is safer and greener than power generated using conventional fossil fuels. First ― and most importantly ― nuclear power does not directly result in the emission of greenhouse gases. Even when you take a life-cycle approach and factor in the greenhouse gas emissions from the construction of the plant, there is no contest. Fossil fuels ― whether coal, oil, or natural gas ― create far more global warming.
  • The negative effects of climate change will vastly outweigh the human and environmental consequences of even a thousand Fukushimas. This is not the place to survey all the dire warnings that have been coming out of the scientific community; suffice it to quote U.N. Secretary General Ban Ki-moon’s concise statement that climate change is the world’s “only one truly existential threat … the great moral imperative of our era.” A warming earth will not only lead to death and displacement in far-off locales, either. Typhoons are already hitting the peninsula with greater intensity due to the warming air, and a recent study warns that global warming will cause Korea to see greatly increased rates of contagious diseases such as cholera and bacillary dysentery.
  • ...5 more annotations...
  • As the world’s ninth largest emitter of greenhouse gases, it should be (and is) a major priority for Korea to reduce emissions, and realistically that can only be accomplished by increasing the use of nuclear power. As Barack Obama noted with regard to the United States’ energy consumption, “Nuclear energy remains our largest source of fuel that produces no carbon emissions. It’s that simple. (One plant) will cut carbon pollution by 16 million tons each year when compared to a similar coal plant. That’s like taking 3.5 million cars off the road.” Environmentalists have traditionally disdained nuclear power, but even green activists cannot argue with that logic, and increasing numbers of them ― Patrick Moore, James Lovelock, Stewart Brand and the late Bishop Hugh Montefiore being prominent examples ― have become supporters of the smart use of nuclear power.
  • Second, the immediate dangers to human health of conventional air pollution outweigh the dangers of nuclear radiation. In 2009, the Seoul Metropolitan Government measured an average PM10 (particulate) concentration in the city of 53.8 g/m3, a figure that is roughly twice the level in other developed nations. According to the Gyeonggi Research Institute, PM10 pollution leads to 10,000 premature deaths per year in and around Seoul, while the Korea Economic Institute has estimated its social cost at 10 trillion won. While sulfur dioxide levels in the region have decreased significantly since the 1980s, the concentration of nitrogen dioxide in the air has not decreased, and ground-level ozone levels remain high. Unlike fossil fuels, nuclear power does not result in the release of any of these dangerous pollutants that fill the skies around Seoul, creating health hazards that are no less serious for often going unnoticed.
  • And third, the environmental and safety consequences of extracting and transporting fossil fuels are far greater than those involved with the production of nuclear power. Korea is one of the largest importers of Indonesian coal for use in power plants, for example. This coal is not always mined with a high level of environmental and safety protections, with a predictable result of air, water, and land pollution in one of Asia’s most biologically sensitive ecosystems. Coal mining is also one of the world’s more dangerous occupations, as evidenced by the many tragic disasters involving poorly managed Chinese mines. While natural gas is certainly a better option than coal, its distribution too can be problematic, whether by ship or through the recently proposed pipeline that would slice down through Siberia and North Korea to provide direct access to Russian gas.
  • What about truly green renewable energy, some might ask ― solar, wind, geothermal, hydroelectric, and tidal energy? Of course, Korea would be a safer and more sustainable place if these clean renewable resources were able to cover the country’s energy needs. However, the country is not particularly well suited for hydroelectric projects, while the other forms of renewable energy production are expensive, and are unfortunately likely to remain so for the foreseeable future. The fact is that most Koreans will not want to pay the significantly higher energy prices that would result from the widespread use of clean renewables, and in a democratic society, the government is unlikely to force them to do so. Thus, we are left with two realistic options: fossil fuels or nuclear. From an environmental perspective, it would truly be a disaster to abandon the latter.
  • By Andrew Wolman Andrew Wolman is an assistant professor at the Hankuk University of Foreign Studies Graduate School of International and Area Studies, where he teaches international law and human rights.
D'coda Dcoda

Federation of American Scientists :U.S. Leadership Essential for International Nuclear ... - 0 views

  • Global growth in the civilian nuclear energy sector represents an annual trade market estimated at $500 billion to $740 billion over the next 10 years.  As new nations consider nuclear energy technology to produce low-carbon electricity, the United States should take a leadership role that will enhance the safety and nuclear nonproliferation regimes globally, while creating tens of thousands of new American jobs. The United States is the world leader in safe and efficient operation of nuclear power plants, with an average capacity factor of 90 percent or higher in each of the past 10 years.  When ranked by 36-month unit capability factor, the United States has the top three best performing nuclear reactors in the world, seven of the top 10, and 16 of the top 20.  Nuclear energy facilities produce electricity in 31 states and have attained a four-fold improvement in safety during the past 20 years.  This underpinning in safety and reliability is one reason why America generates more electricity from nuclear energy than the next two largest nuclear programs combined.
  • Bilateral agreements on nuclear energy cooperation are vital to advancing global nonproliferation and safety goals as well as America’s interests in global nuclear energy trade.  A 123 agreement, named after section 123 of the Atomic Energy Act, establishes an accord for cooperation as a prerequisite for nuclear energy trade between the United States and other nations.  The agreement contains valuable nonproliferation controls and commitments.  One of the most significant elements of U.S. agreements is approval granted by our government as to how other countries process uranium fuel after it is used in a commercial reactor.  Under U.S. agreements, these nations cannot reprocess the fuel—chemically separating the uranium and plutonium—without U.S. notification and consent to do so.  This is a significant safeguard against the potential misuse of low-enriched uranium from the commercial sector.
  • Several public policy considerations must be weighed in evaluating the impact of 123 agreements, including those related to national security, economic development, energy production, and environmental protection. In the competitive global marketplace for commercial nuclear technology, inconsistent bilateral agreements will have unintended consequences for U.S. suppliers.  Imposing overly restrictive commercial restrictions or conditions in U.S. 123 agreements that are not matched by other nations’ bilateral agreements may significantly bias the country against selecting U.S.-based suppliers, even if the agreements don’t have malicious intentions. 
  • ...4 more annotations...
  • The imposition of requirements that seem unnecessary and unfair can affect commercial decision-making by the affected country.  Such conditions put U.S. commercial contracts and jobs at risk. Moreover, if the country does not use U.S.-based technology, fuels or services, the value of conditions in the 123 agreement (i.e., consent rights) would be lost. Some U.S. leaders are proposing a prohibition on uranium enrichment and reprocessing as part of all bilateral nuclear energy agreements for cooperation.  Ensuring enrichment technology and reprocessing technology are used only for peaceful purposes is a paramount goal for government and industry. But U.S. 123 agreements are neither the best, nor in most cases, the appropriate mechanism to achieve that goal. 
  • Multilateral agreements are more appropriate mechanisms for policy regarding the global challenge of nuclear proliferation.  Promising mechanisms include the decision by the International Atomic Energy Agency to establish a uranium fuel bank, potential nuclear fuel lease/takeback contracts, and other multilateral, institutional nonproliferation arrangements.  In addition, the Nuclear Suppliers Group (an international body of 46 nuclear technology supplier nations that sets standards for commercial nuclear trade) recently adopted new clear and strict criteria for the transfer of nuclear energy technology.  These institutional controls do not require the receiving country to cede sovereign rights, which the U.S. government and other countries with civilian nuclear energy programs would never give up. 
  • Fast-growing electricity needs in developing countries and concern about air quality and climate change are stimulating significant global demand for nuclear energy.  Sixty-six plants are being built worldwide and another 154 are in the licensing and advanced planning stage. U.S. suppliers are vying for business around the world – including China, Poland and India.  Continued U.S. leadership in global nuclear safety and nonproliferation matters go hand-in-hand with a strong presence in the global marketplace.  Both are critical to our national and global security.  We must continue to participate in worldwide trade and nonproliferation policy discussions, or cede leadership in these areas to other governments and industrial competitors.  Unless we choose engagement, America will lose tens of thousands of jobs and other benefits such trade has for our economy while forfeiting the nonproliferation benefits that 123 agreements are intended to achieve.
  • BIO- Everett Redmond is director of nonproliferation and fuel cycle policy at the Nuclear Energy Institute in Washington, D.C.
  •  
    From the "Opinion" section
D'coda Dcoda

Nuclear energy ~ Think again [22Oct11] - 0 views

  • It is fashionable among green groups and others who have utopian visions of a low tech post industrial society to say that nuclear energy is finished as a result of the Fukushima crisis. This is dead wrong. Charles D. Ferguson, President of the Federation of American Scientists, has an important essay in Foreign Policy Magazine on the subject. In an article titled, "Think Again: Nuclear Power," he writes that while Japan has "melted down, that doesn't mean the end of the atomic age."His point is that the fashionable approach to the nuclear fuel cycle is sometimes wrong.Also, there is other positive news about nuclear energy. The NRC is making headway with the final design certification of the Westinghouse AP1000. South Africa will try again to get financing and build new nuclear reactors instead of more coal plants.
  • Here's a quick summary of Ferguson's essay.First, Fukushima did not kill the nuclear renaissance. Germany already had a significant anti-nuclear political constituency well before March 11, 2011. Fukushima simply accelerated a process that was already underway. Meanwhile, China, India, and South Korea are moving ahead with their plans to rely on nuclear energy.Second, nuclear energy is not "an accident waiting to happen." The accidents which have happened are mostly the result of issues with organizational culture, and not technology failures.
  • Third, the expense of building nuclear power plants is offset by the low cost of running them. Once you factor in the benefits of stopping carbon emissions and the issue of climate change, nuclear energy looks like a bargain. While nuclear energy has been good for highly industrialized countries, it doesn't have nearly the same potential in the developing world for two reasons – cost and lack of robust electrical grids. Ferguson doesn't address small modular reactors which could find a niche in these markets.Fourth, commercial nuclear development does not necessarily lead to bomb making. Most of the 30 or so countries that use nuclear power have not built their own enrichment plants nor reprocessing centers.
  • ...5 more annotations...
  • Firth, management of radioactive waste and spent fuel are solvable problems. Dry cask storage works and deep geologic repositories are feasible once you get the politics right.Sixth, windmills will not replace reactors nor will solar nor anytime soon. These are intermittent and niche technologies which require massive government subsidies to get their electricity to market. Smart grids will improve the use of these technologies, but claimed improvements in energy storage technologies contain some starry eyed projections.The FAS describes itself as being focused on national and international security issues connected to applied science and technology. 
  • NRC progress with AP1000The Nuclear Regulatory Commission's technical staff has recommended to the full commission that it approve final design certification of the Westinghouse AP1000. According to agency officials, the commission will vote on the matter by the end of the year. Eight new reactors in the southeast have referenced the AP1000 design. Construction of four units is already underway in China.The NRC rejected a petition by anti-nuclear groups to stop all new licensing until safety improvements related to the Fukushima crisis are issued as regulatory requirements. The commission said that the Part 52 licensing process allows for new safety measures to be added to licenses as the commission approves them.
  • The first U.S. utility to break ground for twin AP1000s is Southern at its Vogtle site in Georgia. Southern says it expects a combined construction and operating license sometime in the first months of 2012. At that time it will also ink the final term sheet of its $8.3 billion loan guarantee with the Department of Energy.Other utilities which plan to build twin AP1000s include Scana (2 at V.C. Summer site in South Carolina, Florida Power & Light at Turkey Point and Progress at Levy County. Both sites are in Florida.
  • South Africa new buildThe South African government, which tried to offer a tender for 12 new nuclear reactors in 2008, but failed to arrange the financing for them, is making a second attempt. Energy Minister Dipuo Peters told financial wire services Oct 19 a tender for 9.6 GWe is under review by the government.The reactors would be built over a period of two decades. The bid process could begin as early as winter 2012.
  • The value at $4,000/kw could be in the range of $38 billion for the reactors, but as much as three times that amount in total for turbines, upgrades to the grid, including lines and substations, first fuel loads, and spent fuel management.A critical issue remains which is how the government will finance the new build. The country has suffered through a series of power crisis because in prior years the government failed to raise rates or diverted money from Eskom, the state owned utility, to social welfare purposes. As a result, the country's overall GDP suffered as manufacturing plants and mines had to close periodically or reduce operations due to problems with electricity supply.Since then the government has imposed rate increases, but faces some political opposition because of chronically high unemployment officially measured at 25% of the workforce. New coal plants are being built along with wind and solar plants.An interesting note is that China's Guangdong Nuclear Power Group has indicated interest in providing the financing in return for the right to build and operating the plants. Other bidders include the major developed country vendors.
D'coda Dcoda

Fuel cycle roundp #3 [24Aug12] - 0 views

  • Indian JV to buy into overseas mines  The government of India is proposing to set up a joint venture company to look into acquiring uranium assets in other countries
  • Final EIS for US deconversion plant  No environmental impacts would preclude the licensing of International Isotope Inc's proposed uranium deconversion facility in New Mexico, the US Nuclear Regulatory Commission (NRC) has found. The NRC has issued its final environmental impact statement (EIS) for the plant, which would recover high-quality fluorine products from the depleted uranium hexafluoride tailings from uranium enrichment plants
  • Offtake agreements for Paladin  Paladin Energy has secured two mid-term offtake agreements for the purchase of a total of 6.3 million pounds U3O8 (2423 tU) from its Langer Heinrich (Namibia) and Kayelekera (Malawi) operations. The material is to be delivered from late 2012 to the end of 2015.
  • ...1 more annotation...
  • Epangelo out of Etango  A deal that would have seen Namibian state mining company Epangelo take a 5% interest in Bannerman Resources's Etango project has come to an end with the parties unable to agree terms. The two parties signed an agreement earlier this year setting out the terms and conditions for Epangelo to buy into Bannerman's Namibian subsidiary, Bannerman Mining Resources Namibia (BMRN), for a total of approximately A$3.9 million ($4.1 million) with an option to acquire a further interest at a later date.
D'coda Dcoda

The Dispatch Queue - An Alternative Means of Accounting for External Costs? [28Sep11] - 0 views

  • Without much going on recently that hasn’t been covered by other blog posts, I’d like to explore a topic not specifically tied to nuclear power or to activities currently going on in Washington, D.C. It involves an idea I have about a possible alternative means of having the electricity market account for the public health and environmental costs of various energy sources, and encouraging the development and use of cleaner sources (including nuclear) without requiring legislation. Given the failure of Congress to take action on global warming, as well as environmental issues in general, non-legislative approaches to accomplishing environmental goals may be necessary. The Problem
  • One may say that the best response would be to significantly tighten pollution regulations, perhaps to the point where no sources have significant external costs. There are problems with this approach, however, above and beyond the fact that the energy industry has (and will?) successfully blocked the legislation that would be required. Significant tightening of regulations raises issues such as how expensive compliance will be, and whether or not viable alternative (cleaner) sources would be available. The beauty of simply placing a cost (or tax) on pollution that reflects its costs to public health and the environment is that those issues need not be addressed. The market just decides between sources based on the true, overall cost of each, resulting in the minimum overall (economic + environmental) cost-generation portfolio
  • The above reasoning is what led to policies like cap-and-trade or a CO2 emissions tax being proposed as a solution for the global warming problem. This has not flown politically, however. Policies that attempt to have external costs included in the market cost of energy have been labeled a “tax increase.” This is particularly true given that the associated pollution taxes (or emissions credit costs) would have largely gone to the government.
  • ...15 more annotations...
  • Well, if we can’t tax pollution, how about encouraging the use of clean sources by giving them subsidies? This has proved to be more popular so far, but this idea has also recently run into trouble, given the current situation with the budget deficit and national debt. Events like the Solyndra bankruptcy have put government clean energy subsidies even more on the defensive. Thus, it seems that neither policies involving money flowing to the government nor policies involving money flowing from the government are politically viable at this point.
  • One final idea, which does not involve money going to or from government, is simply requiring that cleaner sources provide a certain fraction of our overall power generation. The many state Renewable Portfolio Standards (that do not include nuclear) and the Clean Energy Standard being considered by Congress and the Obama administration (which does include nuclear) are examples of this policy. While better than nothing, such policies are not ideal in that they are crude, and don’t involve a quantitative incentive based on real external costs. An energy source is either defined as “clean,” or it is not. Note that the definition of “clean” would be decided politically, as opposed to objectively based on tangible external costs determined by scientific studies (nuclear’s exclusion from state Renewable Portfolio Standards policies being one outrageous example). Finally, there is the fact that any such policy would require legislation.
  • All of the above begs the question whether there is a policy available that will encourage the use of cleaner energy sources that is revenue-neutral (i.e., does not involve money flowing to or from the government), does not involve the outright (political) selection of certain energy sources over others, and does not require legislation. Enter the Dispatch Queue
  • There must be enough power plants in a given region to meet the maximum load (or demand) expected to occur. In fact, total generation capacity must exceed maximum demand by a specified “reserve margin,” to address the possibility of a plant going offline, or other possible considerations. Due to the fact that demand varies significantly with time, a significant fraction of the generation capacity remains offline, some or most of the time. The dispatch queue is a means by which utilities, or independent regional grid operators, decide which power plants will operate in order to meet demand at any given instant. A good discussion of dispatch queues and how they operate can be found in this Department of Energy report.
  • The general goal of the methodology used to set the dispatch queue order is to minimize overall generation cost, while staying in compliance with all federal or state laws (environmental rules, etc.). This is done by placing the power plants with the lowest “variable” cost first in the queue. Plants with the highest “variable” cost are placed last. The “variable” cost of a plant represents how much more it costs to operate the plant than it costs to leave it idle (i.e., it includes the fuel cost and maintenance costs that arise from operation, but does not include the plant capital cost, personnel costs, or any fixed maintenance costs). Thus, one starts with the least expensive plants, and moves up (in cost) until generation meets demand. The remaining, more expensive plants are not fired up. This ensures that the lowest-operating-cost set of plants is used to meet demand at any given time
  • As far as who makes the decisions is concerned, in many cases the local utility itself runs the dispatch for its own service territory. In most of the United States, however, there is a large regional grid (covering several utilities) that is operated by an Independent System Operator (ISO) or Regional Transmission Organization (RTO), and those organizations, which are independent of the utilities, set the dispatch queue for the region. The Idea
  • As discussed above, a plant’s place in the dispatch queue is based upon variable cost, with the lowest variable cost plants being first in the queue. As discussed in the DOE report, all the dispatch queues in the country base the dispatch order almost entirely on variable cost, with the only possible exceptions being issues related to maximizing grid reliability. What if the plant dispatch methodology were revised so that environmental costs were also considered? Ideally, the public health and environmental costs would be objectively and scientifically determined and cast in terms of an equivalent economic cost (as has been done in many scientific studies such as the ExternE study referenced earlier). The calculated external cost would be added to a plant’s variable cost, and its place in the dispatch queue would be adjusted accordingly. The net effect would be that dirtier plants would be run much less often, resulting in greatly reduced pollution.
  • This could have a huge impact in the United States, especially at the current time. Currently, natural gas prices are so low that the variable costs of combine-cycle natural gas plants are not much higher than those of coal plants, even without considering environmental impacts. Also, there is a large amount of natural gas generation capacity sitting idle.
  • More specifically, if dispatch queue ordering methods were revised to even place a small (economic) weight on environmental costs, there would be a large switch from coal to gas generation, with coal plants (especially the older, dirtier ones) moving to the back of the dispatch queue, and only running very rarely (at times of very high demand). The specific idea of putting gas plants ahead of coal plants in the dispatch queue is being discussed by others.
  • The beauty of this idea is that it does not involve any type of tax or government subsidy. It is revenue neutral. Also, depending on the specifics of how it’s implemented, it can be quantitative in nature, with environmental costs of various power plants being objectively weighed, as opposed certain sources simply being chosen, by government/political fiat, over others. It also may not require legislation (see below). Finally, dispatch queues and their policies and methods are a rather arcane subject and are generally below the political radar (many folks haven’t even heard of them). Thus, this approach may allow the nation’s environmental goals to be (quietly) met without causing a political uproar. It could allow policy makers to do the right thing without paying too high of a political cost.
  • Questions/Issues The DOE report does mention some examples of dispatch queue methods factoring in issues other than just the variable cost. It is fairly common for issues of grid reliability to be considered. Also, compliance with federal or state environmental requirements can have some impacts. Examples of such laws include limits on the hours of operation for certain polluting facilities, or state requirements that a “renewable” facility generate a certain amount of power over the year. The report also discusses the possibility of favoring more fuel efficient gas plants over less efficient ones in the queue, even if using the less efficient plants at that moment would have cost less, in order to save natural gas. Thus, the report does discuss deviations from the pure cost model, to consider things like environmental impact and resource conservation.
  • I could not ascertain from the DOE report, however, what legal authorities govern the entities that make the plant dispatch decisions (i.e., the ISOs and RTOs), and what types of action would be required in order to change the dispatch methodology (e.g., whether legislation would be required). The DOE report was a study that was called for by the Energy Policy Act of 2005, which implies that its conclusions would be considered in future congressional legislation. I could not tell from reading the report if the lowest cost (only) method of dispatch is actually enshrined somewhere in state or federal law. If so, the changes I’m proposing would require legislation, of course.
  • The DOE report states that in some regions the local utility runs the dispatch queue itself. In the case of the larger grids run by the ISOs and RTOs (which cover most of the country), the report implies that those entities are heavily influenced, if not governed, by the Federal Energy Regulatory Commission (FERC), which is part of the executive branch of the federal government. In the case of utility-run dispatch queues, it seems that nothing short of new regulations (on pollution limits, or direct guidance on dispatch queue ordering) would result in a change in dispatch policy. Whereas reducing cost and maximizing grid reliability would be directly in the utility’s interest, favoring cleaner generation sources in the queue would not, unless it is driven by regulations. Thus, in this case, legislation would probably be necessary, although it’s conceivable that the EPA could act (like it’s about to on CO2).
  • In the case of the large grids run by ISOs and RTOs, it’s possible that such a change in dispatch methodology could be made by the federal executive branch, if indeed the FERC has the power to mandate such a change
  • Effect on Nuclear With respect to the impacts of including environmental costs in plant dispatch order determination, I’ve mainly discussed the effects on gas vs. coal. Indeed, a switch from coal to gas would be the main impact of such a policy change. As for nuclear, as well as renewables, the direct/immediate impact would be minimal. That is because both nuclear and renewable sources have high capital costs but very low variable costs. They also have very low environmental impacts; much lower than those of coal or gas. Thus, they will remain at the front of the dispatch queue, ahead of both coal and gas.
D'coda Dcoda

There are at least 10 reasons to say 'no' to nuclear energy (India) [09Oct11] - 0 views

  • 1. Nuclear power involves radiation exposure at all stages of its fuel cycle: from uranium mining and fuel fabrication to reactor operation and maintenance; to spent-fuel handling, storage and re-processing. 2. Reactors leave a toxic trail of high-level radioactive wastes which remain hazardous for thousands of years.
  • 3. The half-life of plutonium-239 produced by fission is 24,000 years. We have neither any way of storing nuclear wastes safely for such long periods nor nuetralising or disposing of them. Should we burden posterity with such a legacy?
  • 4. Nuclear power is exorbitantly expensive if all the hidden costs are taken into account. That is why the private sector has not come forward to set up a nuclear power plant. 5. The industry claims nuclear power is safe but it is not. That is why it expends considerable effort in lobbying for laws to limit the operator’s or supplier’s liability for accidents to artificially low levels.
  • ...3 more annotations...
  • 6. The industry acknowledges that nuclear power carries high risks of damage but wants governments, that is, the public, to subsidise and absorb them. 7. India has no independent authority that can evolve safety standards and regulate reactors for safety.
  • 8. India’s energy security could be achieved by a careful mix of conventional with biomass, solar-thermal and wind, as experts have pointed out. 9. After Fukushima, advanced countries had a rethink on nuclear power expansion plans and imposed a moratorium on new reactors. India, on the other hand, is planning a necklace of nuclear power plants along its coastline, unmindful of what it means to its fragile ecology and displacement of traditional fishermen.
  • 10. Last, but not the least, there are better and safer ways of boiling water to produce steam to turn turbines that generate electricity.
D'coda Dcoda

India's nuclear future put on hold [06Oct11] - 1 views

  • An increase in anti-nuclear sentiment after the Fukushima disaster in Japan in March has stalled India's ambitious plan for nuclear expansion. The plan, pushed forward by Prime Minister Manmohan Singh, aims to use reactors imported from the United States, France and Russia to increase the country's nuclear-power capacity from the present 4,780 megawatts to 60,000 megawatts by 2035, and to provide one-quarter of the country's energy by 2050. But now there are doubts that the targets will ever be met if safety fears persist.
  • Officials say that safety precautions are sufficient to make the proposed reactors, some of which are to be sited along the coasts, immune to natural disasters. But protesters are not listening. In April, violent protests halted construction in Jaitapur in the western state of Maharashtra, where Parisian company Areva is expected to build six 1,650-megawatt European Pressurized Reactors. In August, West Bengal state refused permission for a proposed 6,000-megawatt 'nuclear park' near the town of Haripur, which was slated to host six Russian reactors. The state government said that the area is densely populated, and the hot water discharged from the plants would affect local fishing.
  • On 19 September, following hunger strikes by activists from the People's Movement Against Nuclear Technology, the chief minister of Tamil Nadu state asked Prime Minister Singh to halt work at Koodankulam, about 650 kilometres south of Chennai, where Russia's Atomstroyexport is building two reactors and plans to build four more.
  • ...3 more annotations...
  • The opposition has focused mainly on imported reactors, the designs of which are untried. "The French reactor offered to India is not working anywhere in the world and the Russian reactor had to undergo several design changes before we accepted it," says Annaswamy Prasad, retired director of the Bhabha Atomic Research Centre in Mumbai. "If any accident happens in India it will be in imported reactor and not in our home-made pressurized heavy water reactors" (PHWRs), he adds.
  • Ideally, says Prasad, India should boost its nuclear capacity by building more PHWRs fuelled by natural uranium, instead of importing reactors that require enriched uranium. Although the foreign vendors have agreed to supply fuel for the lifetime of their reactors, overreliance on imports will derail India's home-grown programme, the Bhabha scheme, he warns.
  • The Bhabha scheme involves building PHWRs, which would produce enough plutonium as a by-product to fuel fast-breeder reactors that would in turn convert thorium — which is abundantly available in India — into fissile uranium-233. In the third and final phase, India hopes to run its reactors using the 233U–Th cycle without any need for new uranium. Gopalakrishnan says that building indigenous reactors is not enough: the country must also invest in renewable energy sources, such as wind and solar power. But a survey by Subhas Sukhatme, a former chairman of the Atomic Energy Regulatory Board, warns that India's renewable energy sources, even stretched to their full potential, can at best supply 36.1% of the country's total energy needs by the year 2070. The balance would have to come from fossil fuels and nuclear energy. 
D'coda Dcoda

Interaction Between Social Media and Nuclear Energy [17Jul11] - 0 views

  • As blogger on nuclear energy for the past five years, I realize I’m writing on a niche subject that isn’t going to pull in millions of readers. Unlike some entertainment blogs, a site on nuclear energy is never going to be able to link the words “reactor pressure vessel” with the antics of a Hollywood celebrity at a New York night club. So, what can be said about the use of social media and how it has evolved as a new communication tool in a mature industry?
  • EBR-1 chalkboard ~ the 1st known nuclear energy blog post 12/21/51 on the Arco desert of eastern Idaho
  • Evidence of acceptance of social media is widespread, with the most recent example being the launch of the Nuclear Information Center, a social media presence by Duke Energy (NYSE:DUK). Content written for the Nuclear Information Center by a team of the utility’s employees is clearly designed to reach out to the general public. This effort goes beyond the usual scope of a utility Web site, which includes things like how to pay your bill online, where to call when the lights go out, and so forth.
  • ...13 more annotations...
  • Most nuclear blogs have a “blog roll”which list other publishers of information on the nuclear energy field.  Areva has done this on its North American blog. Areva handles the issue of avoiding any appearance of endorsement by noting that the list with more than two dozen entries is one of “blogs we read.” Areva also has several years of experience reaching out to the nuclear blogger community with monthly conference calls. The blog of the Nuclear Energy Institute, NEI Nuclear Notes,  lists a wide range of nuclear blogs including this one as well as the blogs published by independent analysts.
  • Duke’s Web site is a completely modern effort set up like a blog, with new entries on a frequent basis. On the right column, the site has a list of other places to get nuclear energy information, including the American Nuclear Society (ANS), the Nuclear Energy Institute (NEI), and the Nuclear Regulatory Commission (NRC).
  • The Nuclear Information Center announces right at the top that “In this online space, you will find educational information on the nuclear industry and the nuclear stations operated by Duke Energy. We will feature insights into radiation, new nuclear, emergency planning and more . . . allowing readers to get an inside view of the industry.” That’s a big step for a nuclear utility. The reason is that like many publicly traded electric utilities, it generates electricity from several fuel sources, including coal, natural gas, solar, wind, and nuclear. Because these utilities have huge customer rate bases and supply chains, they are inherently conservative about the information they publish on their Web sites. Also, there are significant legal and financial reasons why a utility might or might not put information out there for public consumption. Press releases receive scrutiny from the general counsel and chief financial officer for very important reasons having to do with regulatory oversight and shareholder value.
  • Idaho National Laboratory, Areva, and recruiter CoolHandNuke.
  • Taken together, the four blogs that reported monthly page views represent 100,000 visits to online information pages on nuclear energy or an effective rate of well over 1 million page views per year. These are real numbers and the data are just for a small sample of the more than two dozen blogs on nuclear energy that update at least once a week. Another interesting set of statistics is who reads North American blogs overseas? It turns out that the international readership is concentrated in a small group of countries. They include, in alphabetical order for the same sample of blogs, the following countries: Australia Canada France Germany India Japan United Kingdom
  • Who reads nuclear energy blogs? So, who is reading nuclear blogs? On the ANS Social Media listserv, I asked this question recently and got some interesting results for the month of May 2011. Here’s a sample of the replies: Michele Kearny, at the Nuclear Wire, a news service, reports for the month of May 18,812 page views. Michele’s blog is a fast-moving series of news links that keeps readers coming back for updates. Will Davis, at Atomic Power Review, who has been publishing high quality, in-depth technical updates about Fukushima, reports 31,613 page views for the same month. Rod Adams, who recently updated the template at his blog at Atomic Insights, reported his numbers in terms of absolute visitors. He cites Google Analytics as reporting 10,583 unique visitors for May. Rod emphasizes commentary and analysis across a wide range of nuclear subjects. At my blog Idaho Samizdat, I can report 6,945 visitors and 24,938 page views for May 2011. The blog covers economic and political news about nuclear energy and nonproliferation issues. At ANS Nuclear Cafe, this blog uses WordPress to track readers, reporting 24,476 page views for the same four-week period as the other blogs. During the height of the Fukushima crisis on a single day, March 14, 2011, the blog attained over 55,000 page views as people poured on to the Internet in search of information about the situation in Japan.
  • 5,000 people interact on LinkedIn, moderated by nuclear industry consultant Ed Kee. It is called “Nuclear Power Next Generation” and is one of dozens of such groups related to nuclear energy on the professional networking site.
  • Nuclear energy is not so widely represented on Facebook as on LinkedIn, despite its enormous popularity, and isn’t conducive to the kinds of technical dialogs that populate other nuclear social media sites. While the Facebook format is attractive to lifestyle information such as dating and the promotion of entertainment, sports, and consumer packaged goods, it doesn’t seem to work as well for business and engineering topics. It turns out Facebook is a good way to offer a “soft sell” for recruitment purposes to drive traffic to nuclear energy organization recruitment pages. It can answer the questions of what’s it like to work for an organization and the attractive amenities of life in the employer’s home town. Videos and photos can help deliver these messages.
  • On the other hand, Twitter, even with its limits of 140 characters, is enormously useful for the nuclear energy field. Twitter users who follow the output of nuclear bloggers number in the tens of thousands, and many nuclear energy organizations, including the major utilities such as Entergy, have invested in a Twitter account to have a presence on the service. The American Nuclear Society “tweets” under @ans_org and posts updates daily on the situation at Fukushima
  • Web sites maintained by NEI and the World Nuclear Organization had to make fast upgrades to their computer servers to handle millions of inquires from the media and the public and on a global scale. Getting out the facts of the situation to respond to these inquiries was facilitated by this online presence at an unprecedented scale. Even so, newspapers often had anti-nuclear groups on speed dial early in the crisis and their voices reached an unsettled public with messages of fear, uncertainty, and doubt. In response, ANS used technical experts on its social media listserv to information media engagements, which reached millions of views on network television and major newspapers like the New York Times and Washington Post.
  • This useful mix of free form communication on the listserv and excellent outreach by Clark Communications, working for ANS, made a difference in getting the facts about Fukushima to an understandably anxious public. Margaret Harding, a consulting nuclear engineer with deep experience with boiling water reactor fuels, was one of the people tapped by ANS to be a spokesperson for the society. She wrote to me in a personal e-mail that social media made a difference for her in many ways.
  • In summary, she said that it would have been impossible for her to fulfill this role without many hands helping her from various quarters at ANS. She pointed out that the ANS Social Media listserv group “provided invaluable background information . . that helped me keep up-to-date and ready for the question from the next reporter.” In fact, she said, she might not have even started down this road if the listserv hadn’t already proven itself as a source of information and expertise.
  • Another take on the news media’s shift into anti-nuclear skepticism following Fukushima comes from Andrea Jennetta, publisher of Fuel Cycle Week.  Writing in the March 17 issue, she said that this time the “bunker mentality” that has characterized communications in prior years by the nuclear industry gave way to something new. “But instead of rolling over, the nuclear community for once is mobilizing and fighting back. I am impressed at the efforts of various pronuclear activists, bloggers, advocates and professional organizations.
  •  
    important one
1 - 20 of 28 Next ›
Showing 20 items per page