Skip to main content

Home/ OARS funding Engineering/ Group items tagged magnets

Rss Feed Group items tagged

1More

Electronics, Photonics and Magnetic Devices - 0 views

  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devicescomponent of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics. EPMD further supports topics in quantum devices and novel electromagnetic materials-based device solutions from DC to high-frequency, millimeter-wave and THz, monolithic integrated circuits built with them, and electromagnetic effects, components needed for communications, telemedicine, and other wireless applications. Wide bandgap semiconductor devices, device design, processing and characterization, as well as metamaterial and plasmonic based devices are of interest. Novel electronic, photonic and magnetic devices with organic, inorganic or hybrid materials on conformable or transparent substrates are also of interest, as are carbon-based and emerging 2D atomic-layered materials for electronic, photonic, magnetic, energy harvesting and other related device application areas. Interest also extends to novel ideas for next generation memory devices. The program supports cooperative efforts with the semiconduc
2More

Electronics, Photonics and Magnetic Devices | NSF - National Science Foundation - 0 views

  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devices component of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics.
  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) Program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nano-electronics, optics and photonics, optoelectronics, magnetics, electromechanics, electromagnetics, and related physical phenomena. The Electronics & Magnetic Devices component of EPMD enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, biomagnetics, non-silicon electronics, and flexible electronics. It also addresses advances in energy-efficient electronics, sensors, low-noise, power electronics, and mixed signal devices. The Optic & Photonic Devices component of EPMD supports research and engineering efforts leading to significant advances in novel optical sources and photodetectors, optical communication devices, photonic integrated circuits, single-photon quantum devices, and nanophotonics. It also addresses novel optical imaging and sensing applications and solar cell photovoltaics.
2More

Condensed Matter Physics | NSF - National Science Foundation - 0 views

  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
  •  
    The Condensed Matter Physics program supports experimental, as well as combined experiment and theory projects investigating the fundamental physics behind phenomena exhibited by condensed matter systems.  Representative research areas in such systems include: 1) phenomena at the nano- to macro-scale including: transport, magnetic, and optical phenomena; classical and quantum phase transitions; localization; electronic, magnetic, and lattice structure or excitations; superconductivity; and nonlinear dynamics. 2) low-temperature physics: quantum fluids and solids; 1D & 2D electron systems. 3) soft condensed matter: partially ordered fluids, granular and colloid physics, and 4) understanding the fundamental physics of new states of matter as well as the physical behavior of condensed matter under extreme conditions e.g., low temperatures, high pressures, and high magnetic fields.  Questions of current interest that span these research areas are:  How and why do complex macroscopic phenomena emerge from simple interacting microscopic constituents?  What new physics occurs far from equilibrium and why?  What is the physics behind the behavior of matter confined to the nanoscale in one or more dimensions?  What is the physics of spin systems and quantum states of matter that could lead to their coherent manipulation and control?
1More

Electronics, Photonics, and Magnetic Devices - 0 views

  •  
    The Electronics, Photonics, and Magnetic Devices (EPMD) program seeks to improve the fundamental understanding of devices and components based on the principles of micro- and nanoelectronics, photonics, magnetics, optoelectronics, electromechanics, electromagnetics, and related physical phenomena. The program enables discovery and innovation advancing the frontiers of nanoelectronics, spin electronics, molecular and organic electronics, bioelectronics, non-silicon electronics, flexible electronics, microwave photonics, micro/nano-electromechanical systems (MEMS/NEMS), sensors and actuators, power electronics, and mixed signal devices. EPMD supports related topics in quantum engineering and novel electromagnetic materials-based high frequency device solutions, radio frequency (RF) integrated circuits, and reconfigurable antennas needed for communications, telemedicine, and other wireless applications. The program supports cooperative efforts with the semiconductor industry on new nanoelectronics concepts beyond the scaling limits of silicon technology. EPMD additionally emphasizes emerging areas of diagnostic, wearable and implantable devices, and supports manipulation and measurement with nanoscale precision through new approaches to extreme ultraviolet metrology.
1More

Electronics, Photonics and Magnetic Devices - 0 views

  •  
    TheElectronics, Photonics and Magnetic Devices (EPMD) Programsupports innovative research on novel devices based on the principles of electronics, optics and photonics, optoelectronics, magnetics, opto- and electromechanics, electromagnetics, and related physical phenomena. EPMD’s goal is to advance the frontiers of micro-, nano- and quantum-based devices operating within the electromagnetic spectrum and contributing to a broad range of application domains including information and communications, imaging and sensing, healthcare, Internet of Things, energy, infrastructure, and manufacturing. The program encourages research based on emerging technologies for miniaturization, integration, and energy efficiency as well as novel material-based devices with new functionalities, improved efficiency, flexibility, tunability, wearability, and enhanced reliability.
1More

Collaborative Research in Magnetic Fusion Energy Sciences on Long-Pulse International S... - 0 views

  •  
    The Fusion Energy Sciences (FES) of the Office of Science (SC), U.S. Department of Energy (DOE), herby announces its interest in receiving applications to carry out experimental research in magnetic fusion energy sciences on long-pulse overseas stellarator facilities, namely Wendelstein 7-X (Germany) and the Large Helical Device (LHD - Japan). The research should be related to the planning, execution, and analysis of experiments concerning the topical areas described below. The FES Burning Plasma Science: Long Pulse portfolio supports U.S. researchers who work in collaboration with foreign scientists to explore critical science and technology issues at the frontiers of magnetic fusion research. These collaborations take advantage of the unique capabilities of the most advanced overseas research facilities.
1More

Scientific Discovery through Advanced Computing: Runaway Electron Avoidance and Mitigat... - 0 views

  •  
    The Office of Fusion Energy Sciences (FES) and the Office of Advanced Scientific Computing Research (ASCR) of the Office of Science (SC), U.S. Department of Energy (DOE), announce their interest in receiving applications from multi-institutional interdisciplinary teams to establish a scientific application partnership under the Scientific Discovery through Advanced Computing (SciDAC) program in the area of runaway electron physics in magnetically confined plasmas. The goal of this FOA is to select applications that can take advantage of today's multi-petascale DOE high-performance computing (DOE HPC) systems to accelerate scientific discovery in a strategically important area of magnetic fusion energy science and address high-priority issues identified in recent community studies.
1More

Enhanced Superconductors for Future Naval Applications - 0 views

  •  
    The Office of Naval Research (ONR) is interested in receiving white papers and proposals in support of advancing high temperature superconducting wire technology for future naval applications. Work under this program will consist of basic and applied research, and it will be funded under Budget Activity 1 and 2 (as defined in DoD Financial Management Regulation Vol. 2B, Ch. 5). The overall S&T effort is envisioned to be conducted at the TRL 1-3 stage. The overall objective of this program is to advance the state of art characteristics of high temperature superconductors to support applications demanding power delivery, pulsed current delivery, AC and DC magnetic fields, and magnetic energy storage.
1More

Enhanced Superconductors for Future Naval Applications - 0 views

  •  
    The Office of Naval Research (ONR) is interested in receiving white papers and proposals in support of advancing high temperature superconducting wire technology for future naval applications. Work under this program will consist of basic and applied research, and it will be funded under Budget Activity 1 and 2 (as defined in DoD Financial Management Regulation Vol. 2B, Ch. 5). The overall S&T effort is envisioned to be conducted at the TRL 1-3 stage. The overall objective of this program is to advance the state of art characteristics of high temperature superconductors to support applications demanding power delivery, pulsed current delivery, AC and DC magnetic fields, and magnetic energy storage. Interested parties are welcome to propose against one or more topics listed below. Topic Area 1: Superconducting Materials Topic Area 2: Superconducting Tape Processing and Modification Topic Area 3: Superconductors for Novel Applications Topic Area 4: Superconducting State Protections The research opportunity described in this announcement falls under the FY 18 Long Range BAA, Appendix 1, Section IV, entitled "Sea Warfare and Weapons Department (Code 33)," for the following specific thrusts and focused research areas: (1) Paragraph A "Ship Systems and Engineering Research," subparagraph 3, entitled "Electrical and Thermal Systems" and (2) Paragraph D "Naval Energy Resiliency and Sustainability."
1More

Theoretical Research in Magnetic Fusion Energy Science - 0 views

  •  
    The Office of Fusion Energy Sciences (FES) of the Office of Science (SC), U.S. Department of Energy (DOE), announces its interest in receiving new or renewal grant applications for theoretical and computational research relevant to the U.S. magnetic fusion energy sciences program. Applications selected in response to this FOA will be funded in Fiscal Year 2015, subject to the availability of appropriated funds. The specific areas of interest are: 1. Macroscopic Stability 2. Confinement and Transport 3. Boundary Physics 4. Plasma Heating & Non-inductive Current Drive, and 5. Energetic Particles Specific information about each topical area is included in the Supplementary information section of the full Funding Opportunity Announcement (FOA) document. Due to the limited availability of funds, Principal Investigators with continuing theory grants may not submit a new application in the same topical areas as their existing grant. A Principal Investigator may submit only one application in response to this FOA, but applications can target multiple topical areas. 
1More

Theoretical Research in Magnetic Fusion Energy Science - 0 views

  •  
    The Fusion Energy Sciences (FES) program in the Office of Science (SC), U.S. Department of Energy (DOE), announces its interest in receiving new or renewal grant applications for theoretical and computational research relevant to the U.S. magnetic fusion energy sciences program. Applications selected in response to this Funding Opportunity Announcement (FOA) will be funded in Fiscal Year 2018, subject to the appropriation of funds by the Congress. The specific areas of interest are: 1. Macroscopic Stability 2. Confinement and Transport 3. Boundary Physics 4. Plasma Heating & Non-inductive Current Drive, and 5. Energetic Particles
1More

Geophysics - 0 views

  •  
    The Geophysics Program supports basic research in the physics of the solid earth to explore its composition, structure, and processes from the Earth's surface to its' deepest interior. Laboratory, field, theoretical, and computational studies are supported. Topics include (but are not limited to) seismicity, seismic wave propagation, and the nature and occurrence of geophysical hazards; the Earth's magnetic, gravity, and electrical fields; the Earth's thermal structure; and geodynamics. Supported research also includes geophysical studies of active deformation, including geodesy, and theoretical and experimental studies of the properties and behavior of Earth materials.
1More

Scientific Discovery through Advanced Computing: Integrated Simulation Partnerships in ... - 0 views

  •  
    The Office of Fusion Energy Sciences (FES) and the Office of Advanced Scientific Computing Research (ASCR) of the Office of Science (SC), U.S. Department of Energy (DOE), announce their interest in receiving applications from multi-institutional interdisciplinary teams to establish scientific application partnerships under the SC-wide Scientific Discovery through Advanced Computing (SciDAC) program in the area of integrated simulations for fusion energy sciences. The goal of this announcement is to select applications that can take advantage of today's multi-petascale DOE high-performance computing (DOE HPC) systems to accelerate scientific discovery in strategically important areas of magnetic fusion energy science and address high- priority issues identified in recent community studies. The specific areas of interest under this Funding Opportunity Announcement (FOA) are: 1. Plasma Disruptions in Tokamaks 2. Boundary Physics 3. Plasma-Materials Interactions 4. Whole Device Modeling
1More

Materials Engineering and Processing - 0 views

  •  
    The Materials Engineering and Processing (MEP) program supports fundamental research addressing the interrelationship of materials processing, structure, properties and/or life-cycle performance for targeted applications. Research proposals should be driven by the performance or output of the material system relative to the targeted application(s). Research plans driven by scientific hypotheses are encouraged when suitable. Materials in bulk form or focus on special zones such as surfaces or interfaces that are to be used in structural and/or functional applications are appropriate. All material systems are of interest including polymers, metals, ceramics, semiconductors, composites and hybrids thereof. Analytical, experimental, and numerical studies are supported and collaborative proposals with industry (GOALI) are encouraged.Areas of interest include: Functional Materials - materials that possess native properties and functions that can be controlled by external forces such as temperature, light, electric field, pH, etc. These include materials that exhibit properties such as electronic, magnetic, piezoelectric, ferroelectric, photovoltaic, chromogenic, shape memory, thermoelectric or self-healing, etc. Structural Materials - materials that, in service, bear mechanical load. Length scales from nano to meso to macro are of interest as are materials in the bulk or in special configuration such as thin film. These include materials such as metals, polymers, composites, biomaterials, ceramics, hybrids, cement, etc. Materials Processing - processes that convert material into useful form as either intermediate or final composition. These include processes such as extrusion, molding, casting, deposition, sintering, printing, etc. Proposed research should include the consideration of cost, performance, and feasibility of scale-up, as appropriate. Research that addresses multi-scale and/or multi-functional materials systems is encouraged as is research in support of envir
1More

Low-cost solution for cryogenic temperature measurement 2c (deadline Sept. 29) - 0 views

  •  
    A reliable and low-cost solution is required for measuring the temperature of components within a: Gaseous and liquid environment within a cryogenic helium vessel Vacuum vessel between the temperature range of 300-3K Magnetic fields up to 8T It may be acceptable for a solution to be proposed that can cover all the ranges of temperature however different solutions may also be considered for individual ranges if optimised solutions can be offered for some or all of the ranges.
1More

BRAIN Initiative: Optimization of Transformative Technologies for Large Scale Recording... - 0 views

  •  
    Although invention and proof-of-concept testing of new technologies are a key component of the BRAIN Initiative, to achieve their potential these technologies must also be optimized through feedback from end-users in the context of the intended experimental use. This seeks applications for the optimization of existing and emerging technologies and approaches that have potential to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and temporal scales, in any region and throughout the entire depth of the brain. This FOA is intended for the iterative refinement of emergent technologies and approaches that have already demonstrated their transformative potential through initial proof-of-concept testing, and are appropriate for accelerated development of hardware and software while scaling manufacturing techniques towards sustainable, broad dissemination and user-friendly incorporation into regular neuroscience practice. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Applications are expected to integrate appropriate domains of expertise, including where appropriate biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
1More

RFA-NS-18-019: BRAIN Initiative: Optimization of Transformative Technologies for Large ... - 0 views

  •  
    Understanding the dynamic activity of neural circuits is central to the NIH BRAIN Initiative. Although invention and proof-of-concept testing of new technologies are a key component of the BRAIN Initiative, to achieve their potential these technologies must also be optimized through feedback from end-users in the context of the intended experimental use. This FOA seeks applications for the optimization of existing and emerging technologies and approaches that have potential to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and temporal scales, in any region and throughout the entire depth of the brain. This FOA is intended for the iterative refinement of emergent technologies and approaches that have already demonstrated their transformative potential through initial proof-of-concept testing, and are appropriate for accelerated development of hardware and software while scaling manufacturing techniques towards sustainable, broad dissemination and user-friendly incorporation into regular neuroscience practice. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Applications are expected to integrate appropriate domains of expertise, including where appropriate biological, chemical and physical sciences, engineering, computational modeling and statistical analysis. Also listed under R01
1More

BRAIN Initiative: New Technologies and Novel Approaches for Large-Scale Recording and M... - 0 views

  •  
    Understanding the dynamic activity of neural circuits is central to the NIH BRAIN Initiative. This FOA seeks applications for proof-of-concept testing and development of new technologies and novel approaches for largescale recording and manipulation of neural activity to enable transformative understanding of dynamic signaling in the nervous system. In particular, we seek exceptionally creative approaches to address major challenges associated with recording and manipulating neural activity, at or near cellular resolution, at multiple spatial and/or temporal scales, in any region and throughout the entire depth of the brain. It is expected that the proposed research may be high-risk, but if successful could profoundly change the course of neuroscience research. Proposed technologies should be compatible with experiments in behaving animals, and should include advancements that enable or reduce major barriers to hypothesis-driven experiments. Technologies may engage diverse types of signaling beyond neuronal electrical activity for large-scale analysis, and may utilize any modality such as optical, electrical, magnetic, acoustic or genetic recording/manipulation. Applications that seek to integrate multiple approaches are encouraged. Where appropriate, applications are expected to integrate appropriate domains of expertise, including biological, chemical and physical sciences, engineering, computational modeling and statistical analysis.
1More

RFA-EB-18-004: Limited Competition: NeuroImaging Tools and Resources Collaboratory (R24... - 0 views

  •  
    The functionality of the NeuroImaging Tools and Resources Collaboratory (NITRC) has enabled three distinct components to flourish: Resources Registry (NITRC-R): a collaboratory enabling the distribution, enhancement, and adoption of neuroimaging tools and resources. Image Repository (NITRC-IR): a curated repository of free neuroimaging datasets meeting global standards. Computational Environment (NITRC-CE): a freely downloadable or pay-as-you-go virtual computing cloud-based platform that is pre-configured with popular neuroimaging tools. NITRC-R has become the major web-based collaborative environment enabling the distribution, enhancement, and adoption of neuroinformatics resources. It currently hosts more than 1,000 tools and resources in areas such as magnetic resonance imaging (MRI), computed tomography (CT), optical imaging, positron emission tomography/single-photon emission computed tomography (PET/SPECT), electroencephalography/magnetoencephalography/electrocorticography (EEG/MEG/ECoG), computational neuroscience, and imaging genomics. Since NITRC's inception, there have been more than 10 million total downloads of tools from NITRC-R.
1More

PAR-18-600: Shared Instrumentation Grant (SIG) Program (S10 Clinical Trial Not Allowed) - 0 views

  •  
    The Shared Instrument Grant (SIG) Program encourages applications from groups of NIH-supported investigators to purchase or upgrade a single item of expensive, specialized, commercially available instruments or integrated systems. The minimum award is $50,000. There is no maximum price requirement; however, the maximum award is $600,000. Types of instruments supported include, but are not limited to: X-ray diffractometers, mass and nuclear magnetic resonance (NMR) spectrometers, DNA and protein sequencers, biosensors, electron and light microscopes, cell sorters, and biomedical imagers.
1 - 20 of 26 Next ›
Showing 20 items per page