Skip to main content

Home/ OARS funding Engineering/ Group items tagged chemical

Rss Feed Group items tagged

MiamiOH OARS

Catalysis | NSF - National Science Foundation - 0 views

  •  
    The goal of the Catalysis program is to advance research in catalytic engineering science and promote  fundamental understanding and the development of catalytic materials and reactions that are of benefit to society.  Research in this program should focus on new basic understanding of catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches.  Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization.
  •  
    The goal of the Catalysis program is to advance research in catalytic engineering science and promote  fundamental understanding and the development of catalytic materials and reactions that are of benefit to society.  Research in this program should focus on new basic understanding of catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches.  Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization.
MiamiOH OARS

Catalysis | NSF - National Science Foundation - 0 views

  •  
    The goal of the Catalysis program is to advance research in catalytic engineering science and promote  fundamental understanding and the development of catalytic materials and reactions that are of benefit to society.  Research in this program should focus on new basic understanding of catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches.  Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization.
  •  
    The goal of the Catalysis program is to advance research in catalytic engineering science and promote  fundamental understanding and the development of catalytic materials and reactions that are of benefit to society.  Research in this program should focus on new basic understanding of catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches.  Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization.
MiamiOH OARS

Catalysis and Biocatalysis - 0 views

  •  
    The goal of the Catalysis and Biocatalysis program is to drive innovation in the production of the myriad of goods and services that are derived from catalyst-driven reactions.  Research in this program encompasses a blend of fundamental, engineering research drivers that are interdisciplinary in nature.  Studies should focus on the catalysis of one or more use-inspired chemical reactions with products including fuels, energy, feedstocks, fine chemicals, bulk chemicals and specialized materials.  While proposals will be accepted in any of the above areas, an emphasis will be placed on proposals addressing the significant existing challenges in producing products for the service of mankind.
MiamiOH OARS

LOW TEMPERATURE PLASMA SCIENCE CENTERS AND FACILITIES - 0 views

  •  
    * interfacial plasma (i.e., low temperature plasma coming into contact with liquid to produce new chemical reactivity through a gas-liquid interface); * interaction of plasma with biomaterials (e.g., understanding how plasma-produced chemical reactivity is delivered through multiple interfaces, such as liquid, cells, tissue, polymers); * control of plasma-electromagnetic interaction (e.g., fundamental understanding of how radio-frequency electromagnetic power produces controllable plasmas to enable microelectronics processing); * Plasma catalysis (e.g., understanding the plasma reactivity and catalyst selectivity); * Plasma aided combustion (e.g., control of pulsed plasmas to improve the efficiency of chemical processing); * Interface between plasma and solid-state physics (e.g., understanding the boundary layer between plasma and solid-state surface); * Coherent structures (e.g., understanding electric self-organization in low temperature plasmas); * Other emerging areas such as plasma aided aeronautics, plasma process control through machine learning, etc.
MiamiOH OARS

Centers for Chemical Innovation (CCI) (nsf18555) | NSF - National Science Foundation - 0 views

  •  
    The Centers for Chemical Innovation (CCI) Program supports research centers focused on major, long-term fundamental chemical research challenges. CCIs that address these challenges will produce transformative research, lead to innovation, and attract broad scientific and public interest. CCIs are agile structures that can respond rapidly to emerging opportunities through enhanced collaborations. CCIs integrate research, innovation, education, broadening participation, and informal science communication. The FY 2019 Phase I CCI competition is open to projects in all fields supported by the Division of Chemistry, and must have scientific focus and the potential for transformative impact in chemistry. NSF Chemistry particularly encourages fundamental chemistry projects related to one or more of NSF's 10 Big Ideas. The CCI Program is a two-phase program. Both phases are described in this solicitation. Phase I CCIs receive significant resources to develop the science, management and broader impacts of a major research center before requesting Phase II funding. Satisfactory progress in Phase I is required for Phase II applications; Phase I proposals funded in FY 2019 will seek Phase II funding in FY 2022. This solicitation also covers the renewal application of the Phase II CCI initiated in FY 2014: the Center for Sustainable Polymers, led by the University of Minnesota.
MiamiOH OARS

Grant Programs - American Chemical Society - 0 views

  •  
    ACS PRF research grant programs support fundamental research in the petroleum field, and development of the next generation of engineers and scientists through advanced scientific education. Research areas supported include chemistry, the earth sciences, chemical and petroleum engineering, and related fields such as polymers and materials science. Membership in the American Chemical Society is not a requirement or a factor in awarding ACS PRF grants.
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    he Electrochemical Systems program is part of the Chemical Process Systems cluster, which includes also 1) Catalysis; 2) Molecular Separations; and 3) Process Systems, Reaction Engineering, and Molecular Thermodynamics. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (e.g., energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion
MiamiOH OARS

Electrochemical Systems - 0 views

  •  
    The Electrochemical Systems program is part of the Chemical Process Systems cluster, which also includes: 1) the Catalysis program; 2) the Interfacial Engineering program; and 3) the Process Systems, Reaction Engineering, and Molecular Thermodynamics program. The goal of the Electrochemical Systems program is to support fundamental engineering research that will enable innovative processes involving electro- or photochemistry for the sustainable production of electricity, fuels, and chemicals. Processes for sustainable energy and chemical production must be scalable, environmentally benign, reduce greenhouse gas production, and utilize renewable resources. Research projects that stress fundamental understanding of phenomena that directly impact key barriers to improved system or component-level performance (for example, energy efficiency, product yield, process intensification) are encouraged. Processes for energy storage should address fundamental research barriers for the applications of renewable electricity storage or for transport propulsion. For projects concerning energy storage materials, proposals should involve hypotheses that involve device or component performance characteristics that are tied to fundamental understanding of transport, kinetics, or thermodynamics. Advanced chemistries are encouraged. Proposed research should be inspired by the need for economic and impactful conversion processes. All proposal project descriptions should address how the proposed work, if successful, will improve process realization and economic feasibility and compare the proposed work against current state of the art. Highly integrated multidisciplinary projects are encouraged.
MiamiOH OARS

Henry Dreyfus Teacher-Scholar Awards Program - 0 views

  •  
    The New York City-based Camille & Henry Dreyfus Foundation is accepting nominations from academic institutions for its Henry Dreyfus Teacher-Scholar Awards Program. The annual program supports the research and teaching careers of talented young faculty in the chemical sciences at undergraduate institutions. Based on institutional nominations, the program provides discretionary funding to faculty at an early stage in their careers. The award is based on accomplishment in scholarly research with undergraduates, as well as a compelling commitment to teaching, and provides an unrestricted research grant of $60,000. The program is open to academic institutions in the states, districts, and territories of the United States that grant a bachelor's or master's degree in the chemical sciences, including biochemistry, materials chemistry, and chemical engineering. Nominees must hold a full-time tenure-track academic appointment; be after the fourth and not after the twelfth years of their independent academic careers; and be engaged in research and teaching primarily with undergraduates.
MiamiOH OARS

nsf.gov - Funding - Geomechanics & Geomaterials - US National Science Foundation (NSF) - 0 views

  •  
    The GEOMM program supports fundamental research on the mechanical and engineering properties of geologic materials including natural, mechanically stabilized, and biologically or chemically modified soil and rock.  The program also addresses hydraulic, biological, chemical and thermal processes that affect the behavior of geologic materials.  Research at the micro-scale on soil-structure interaction and liquefaction are included in the scope of this program.  Support is provided for theoretical studies, constitutive and numerical modeling, laboratory, centrifuge, and field testing.  Cross-disciplinary and international collaborations are encouraged.
MiamiOH OARS

Living Foundries: 1000 Molecules - Federal Business Opportunities: Opportunities - 0 views

  •  
    DARPA's Living Foundries: 1000 Molecules program seeks to build a scalable, integrated, rapid design and prototyping infrastructure for the facile engineering of biology. This infrastructure will enable transformative and currently inaccessible projects to develop advanced chemicals, materials, sensing capabilities, and therapeutics. Furthermore, the infrastructure will provide a flexible, efficient, and continuously improving capability to Department of Defense (DoD) and the engineering biology community. A final proof-of-principle demonstration of capabilities will require rapid design and prototyping centers to generate 1000 novel molecules and chemical building blocks, thus enabling access to radical new materials.
MiamiOH OARS

Innovative Analytics Technologies - 0 views

  •  
    On the occasion of its 350th anniversary, Merck KGaA, Darmstadt, Germany will fund innovative projects in applied biophysical & analytical research. Projects will be based on the following challenges: · Challenge 1: Analytical technologies for antibodies and antibody-drug conjugates, as well as technologies to determine drug target engagement, or the level of protein or nucleic acid or metabolic biomarkers. · Challenge 2: Analytical technologies for display materials or semiconductors (Liquid Crystals, OLED Materials, Quantum Materials, Reactive Mesogens, Photoresist Materials). E.g. Spectroscopic Methods, MS Hyphenation, Capillary Chromatography and Comprehensive Separation Technologies; Surface analytics for displays (non- or destructive), Sample preparation techniques for ultra-sensitive investigations · Challenge 3: Analytical technologies for the characterization of polymers, chemical imaging, bioanalytical methods or new methods in molecular biology. Technologies of interest for example are: field flow floractionation (FFF), dynamic light scattering (DLS), chemical imaging, new chromatographic techniques, spectroscopic and spectrometric methods, electron paramagnetic resonance (EPR), microwave analytics
MiamiOH OARS

Materials and Chemical Sciences Research for Quantum Information Science - 0 views

  •  
    The Office of Basic Energy Sciences (BES), U.S. Department of Energy (DOE), announces its interest in receiving applications from single investigator or small groups of investigators for support of experimental and theoretical efforts to advance materials and chemical sciences research for quantum information sciences (QIS).
MiamiOH OARS

Dear Colleague Letter: Collaborative Funding Opportunitites in the Division of Chemical... - 0 views

  •  
    The Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) will consider proposals for collaborative funding with the Electric Power Research Institute (EPRI), the Water Environment & Reuse Foundation (WE&RF) [formerly the Water Environment Research Foundation], and/or the Water Research Foundation (WRF). For a proposal to be considered for collaborative funding, the proposal must be submitted to the appropriate NSF-CBET program as an unsolicited proposal during the CBET unsolicited submission window, which is October 1, 2016 - October 20, 2016. The same dates will apply in future years. Proposals will be reviewed as part of the unsolicited program(s). Proposals must follow guidelines for the CBET program to which they are submitted. Proposals will be evaluated according to the NSF criteria of intellectual merit and broader impacts.
  •  
    The Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) will consider proposals for collaborative funding with the Electric Power Research Institute (EPRI), the Water Environment & Reuse Foundation (WE&RF) [formerly the Water Environment Research Foundation], and/or the Water Research Foundation (WRF). For a proposal to be considered for collaborative funding, the proposal must be submitted to the appropriate NSF-CBET program as an unsolicited proposal during the CBET unsolicited submission window, which is October 1, 2016 - October 20, 2016. The same dates will apply in future years. Proposals will be reviewed as part of the unsolicited program(s). Proposals must follow guidelines for the CBET program to which they are submitted. Proposals will be evaluated according to the NSF criteria of intellectual merit and broader impacts.
MiamiOH OARS

Biosensing - 0 views

  •  
    ) multiplex biosensing platforms that exceed the performance of current state-of-the-art devices; 2) novel transduction principles, mechanisms and sensor designs suitable for measurement in practical matrix and sample-preparation-free approaches, including error-free detection of pathogens and toxins in food matrices, waterborne pathogens, parasites, toxins, biomarkers in body fluids, neuron chemicals, and others that improve human condition; 3) biosensors that enable measurement of biomolecular interactions in their native states, transmembrane transport, intracellular transport and reactions, and other biological phenomena; 4) biosensing performance optimization for specific health applications such as point-of-care testing and personalized health monitoring; and 5) miniaturization of biosensors for lab-on-a-chip and cell/organ-on-a-chip applications to enable measurement of biological properties and functions of cell/tissues in vitro. The Biosensors Program does not encourage proposals addressing surface functionalization and modulation of bio-recognition molecules, development of basic chemical mechanisms for biosensing applications, circuit design for signal processing and amplification, computational modeling, and microfluidics for sample separation and filtration.
MiamiOH OARS

Environmental Engineering - 0 views

  •  
    The Environmental Engineering program is part of the Environmental Engineering and Sustainability cluster together with 1) the Biological and Environmental Interactions of Nanoscale Materials program and 2) the Environmental Sustainability program. Environmental engineering is an interdisciplinary field that applies chemical, biological, and physical scientific principles to protect human and ecological health. The goal of the Environmental Engineering program is tosupport potentially transformative fundamental research that applies scientific and engineering principles to 1) prevent or minimize solid, liquid, and gaseous discharges of pollution to soil, water, and air; 2) mitigate the ecological and human-health impacts of such releases by smart/adaptive/reactive amendments or manipulation of the environment, and 3) remediate polluted environments through engineered chemical, biological, and/or geo-physical processes. Integral to achieving these goals is a fundamental understanding of the transport and biogeochemical reactivity of pollutants in the environment. Therefore, research on environmental micro/biology, environmental chemistry, and environmental geophysics may be relevant providing there is a clear connection to the application of environmental engineering to protect human and ecological health.
MiamiOH OARS

Environmental Engineering - 0 views

  •  
    The Environmental Engineering program is part of the Environmental Engineering and Sustainability cluster, which also includes 1) the Nanoscale Interactions program; and 2) the Environmental Sustainability program. Environmental engineering is an interdisciplinary field that applies chemical, biological, and physical scientific principles to protect human and ecological health. The goal of the Environmental Engineering program is tosupport potentially transformative fundamental research that applies scientific and engineering principles to 1) prevent, minimize, or re-use solid, liquid, and gaseous discharges of pollution to soil, water, and air by closing resource loops or through other measures; 2) mitigate the ecological and human-health impacts of such releases by smart/adaptive/reactive amendments or manipulation of the environment, and 3) remediate polluted environments through engineered chemical, biological, and/or geo-physical processes. Integral to achieving these goals is a fundamental understanding of the transport and biogeochemical reactivity of pollutants in the environment.
MiamiOH OARS

Joint FY20 Bioenergy and Advanced Manufacturing FOA BOTTLE: Bio-Optimized Technologies ... - 0 views

  •  
    This FOA will support high-impact R&D for plastics by developing new plastics that are capable of efficient recyclability and improving recycling strategies that can break existing plastics into chemical building blocks that can be used to make higher-value products. DOE's Bioenergy Technologies Office (BETO) develops technologies that convert domestic biomass and waste resources into fuels, products, and power to enable affordable energy, economic growth, and innovation in renewable energy and chemicals production. DOE's Advanced Manufacturing Office (AMO) develops technologies that drive energy productivity improvements in the U.S. manufacturing sector, efficiently utilize abundant and available domestic energy resources, and support the manufacture of clean energy products with benefits extending across the economy. This Funding Opportunity Announcement (FOA) will support high-impact technology research and development (R&D) to enable the development of technologies that overcome the challenges associated with plastic waste. Topic Areas include: 1) Highly Recyclable or Biodegradable Plastics: develop new plastics that have improved performance attributes over a comparable existing plastic that can be cost-effectively recycled or biodegrade completely in the environment or in compost facilities. 2) Novel Methods for Deconstructing and Upcycling Existing Plastics: generate energy efficient recycling technologies (mechanical, chemical, or biological) that are capable of breaking plastic streams into intermediates which can be upgraded into higher value products. 3) BOTTLE Consortium Collaborations to Tackle Challenges in Plastic Waste: create collaborations with the Bio-Optimized Technologies to Keep Thermoplastics out of Landfills and the Environment (BOTTLE) Laboratory Consortium to further the long-term goals of the Consortium and the Plastics Innovation Challenge.
MiamiOH OARS

View Opportunity | GRANTS.GOV - 0 views

  •  
    The Understanding the Rules of Life: Microbiome Theory and Mechanisms (URoL:MTM) program is an integrative collaborationacross Directorates and Offices within the National Science Foundation. The objective of URoL:MTM is to understand and establish the theory and mechanisms that govern the structure and function of microbiomes, a collection of microbes in a specific habitat/environment. This may include but is not limited to host-associated microbiomes, such as those with humans and other organisms, where i) the microbiome impacts host physiology, behavior, development, and fitness; ii) the host influences the metabolic activity, dynamics and evolution of the microbiome, and iii) the environment (biological, chemical, physical, and social) influences and is influenced by both the host and the microbiome. Recent progress has transformed our ability to identify and catalogue the microbes present in a given environment and measure multiple aspects ofbiological, chemical, physical, and social environments that affect the interactions among the members of the microbiome, the host, and/or habitat. Much descriptive and correlative work has been performed on many microbiome systems, particularly those in the human, soil, aquatic, and built environments. This research has resulted in new hypotheses about the microbiome's contributions to potential system function or dysfunction. The current challenge is to integrate the wide range of accumulated data and information and build on them to develop new causal/mechanistic models or theories of interactions and interdependencies across scales and systems.
MiamiOH OARS

Nanomanufacturing | NSF - National Science Foundation - 0 views

  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
  •  
    Nanomanufacturing is the production of useful nano-scale materials, structures, devices and systems in an economically viable manner. The NSF Nanomanufacturing Program supports fundamental research in novel methods and techniques for batch and continuous processes, top-down (addition/subtraction) and bottom-up (directed self-assembly) processes leading to the formation of complex heterogeneous nanosystems. The program supports basic research in nanostructure and process design principles, integration across length-scales, and system-level integration. The Program leverages advances in the understanding of nano-scale phenomena and processes (physical, chemical, electrical, thermal, mechanical and biological), nanomaterials discovery, novel nanostructure architectures, and new nanodevice and nanosystem concepts. It seeks to address quality, efficiency, scalability, reliability, safety and affordability issues that are relevant to manufacturing. To address these issues, the Program encourages research on processes and production systems based on computation, modeling and simulation, use of process metrology, sensing, monitoring, and control, and assessment of product (nanomaterial, nanostructure, nanodevice or nanosystem) quality and performance.
‹ Previous 21 - 40 of 127 Next › Last »
Showing 20 items per page