Skip to main content

Home/ OARS funding Computer/ Group items tagged solar

Rss Feed Group items tagged

MiamiOH OARS

RFI: Solar Energy Technology Analysis & Data Needs - 0 views

  •  
    The Solar Energy Technologies Office (SETO), in the Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. Department of Energy (DOE), is requesting input on integrated data and analysis needs across the solar value chain to inform near to mid-term plans for the development of information based network planning, real time optimization, and bankability tools in the context of the SunShot 2030 goals. SETO aims to better understand the information-related problems and questions that exist for key stakeholders, including manufacturers, project developers, financiers, engineering procurement and construction businesses, state and local jurisdictions, researchers, analysts, and others supporting the technological advancement and wide scale adoption of solar technology.
MiamiOH OARS

Solar, Heliospheric, and INterplanetary Environment - 0 views

  •  
    The solar and heliospheric research communities are dedicated to promoting enhanced understanding of, and predictive capabilities for, solar disturbances that propagate to the Earth. Broad-based, grass-roots associations such as SHINE have developed to focus community effort on these scientific questions. Proposals are solicited for research directly related to topics under consideration and discussion at community workshops organized by SHINE. Information on the current activities of SHINE may be found at the following web site: http://www.shinecon.org
MiamiOH OARS

Faculty Development in the Space Sciences - 0 views

  •  
    The Geospace Section of the Division of Atmospheric and Geospace Sciences, to ensure the health and vitality of solar and space sciences on university teaching faculties, is pleased to offer awards for the creation of new tenure-track faculty positions within the intellectual disciplines which comprise the space sciences. The aim of these awards is to integrate research topics in solar and space physics into basic physics, astronomy, electrical engineering, geoscience, meteorology, computer science, and applied mathematics programs, and to develop space physics graduate programs capable of training the next generation of leaders in this field. Space Science is interdisciplinary in nature and the Faculty Development in the Space Sciences awardees will be expected to establish partnerships within the university community.
MiamiOH OARS

Faculty Development in the Space Sciences | NSF - National Science Foundation - 0 views

  •  
    The Geospace Section of the Division of Atmospheric and Geospace Sciences is pleased to offer awards for the creation of new tenure-track faculty positions within the intellectual disciplines which comprise the space sciences to ensure the health and vitality of solar and space sciences on university teaching faculties. The aim of these awards is to integrate research topics in solar and space physics into basic physics, astronomy, electrical engineering, geoscience, meteorology, computer science, and applied mathematics programs, and to develop space physics graduate programs capable of training the next generation of leaders in this field. Space Science is interdisciplinary in nature and the Faculty Development in the Space Sciences awardees will be expected to establish partnerships within the university community.  NSF funding will support the entire academic year salary and benefits of the newly recruited tenure-track faculty member for a duration of up to five years with a total award amount not to exceed $1,500,000.
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
1 - 5 of 5
Showing 20 items per page