Skip to main content

Home/ OARS funding Computer/ Group items tagged nano

Rss Feed Group items tagged

MiamiOH OARS

Communications, Circuits, and Sensing-Systems | NSF - National Science Foundation - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) Program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative engineering research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS supports innovative research and integrated educational activities in micro- and nano- electromechanical systems (MEMS/NEMS), communications and sensing systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra- and inter- chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Scalable Nanomanufacturing for Integrated Systems (SNM-IS) (nsf16604) | NSF - National ... - 0 views

  •  
    The SNM-IS solicitation seeks proposals that investigate novel scalable nanomanufacturing and integration methods for nano-enabled integrated systems with a clear commercial relevance. Proposals should consider addressing key aspects of the nanomanufacturing value chain comprised of nano-scale building-blocks → complex nanomaterials and nanostructures → functional components and devices → integrated sub-systems and systems
MiamiOH OARS

nsf.gov - Funding - Communications, Circuits, and Sensing-Systems - US National Science... - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS offers new challenges at all levels of systems integration to address future societal needs. CCSS supports innovative research and integrated educational activities in micro- and nano-systems, communications systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano, micro, and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental monitoring, communications, disaster mitigation, homeland security, transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra-and inter-chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems - 0 views

  •  
    The Communications, Circuits, and Sensing-Systems (CCSS) program is intended to spur visionary systems-oriented activities in collaborative, multidisciplinary, and integrative research. CCSS supports systems research in hardware, signal processing techniques, and architectures to enable the next generation of cyber-physical systems (CPS) that leverage computation, communication, and algorithms integrated with physical domains. CCSS offers new challenges at all levels of systems integration to address future societal needs. CCSS supports innovative research and integrated educational activities in micro- and nano-systems, communications systems, and cyber-physical systems. The goal is to design, develop, and implement new complex and hybrid systems at all scales, including nano, micro, and macro, that lead to innovative engineering principles and solutions for a variety of application domains including, but not limited to, healthcare, medicine, environmental monitoring, communications, disaster mitigation, homeland security, transportation, manufacturing, energy, and smart buildings. CCSS also supports integration technologies at both intra-and inter-chip levels, new and advanced radio frequency (RF), millimeter wave and optical wireless and hybrid communications systems architectures, and sensing and imaging at terahertz (THz) frequencies.
MiamiOH OARS

Communications, Circuits, and Sensing-Systems - 0 views

  •  
    Description: The Communications, Circuits, and Sensing-Systems (CCSS) Program supports innovative research in circuit and system hardware and signal processing techniques. CCSS also supports system and network architectures for communications and sensing to enable the next-generation cyber-physical systems (CPS) that leverage computation, communication, and sensing integrated with physical domains. CCSS invests in micro- and nano-electromechanical systems (MEMS/NEMS), physical, chemical, and biological sensing systems, neurotechnologies, and communication & sensing circuits and systems. The goal is to create new complex and hybrid systems ranging from nano- to macro-scale with innovative engineering principles and solutions for a variety of applications including but not limited to healthcare, medicine, environmental and biological monitoring, communications, disaster mitigation, homeland security, intelligent transportation, manufacturing, energy, and smart buildings. CCSS encourages research proposals based on emerging technologies and applications for communications and sensing such as high-speed communications of terabits per second and beyond, sensing and imaging covering microwave to terahertz frequencies, personalized health monitoring and assistance, secured wireless connectivity and sensing for the Internet of Things, and dynamic-data-enabled autonomous systems through real-time sensing and learning.
MiamiOH OARS

HUMAN PERFORMANCE SENSING - 0 views

  •  
    This BAA employs the Sense-Assess-Augment paradigm to accelerate research and development of technologies capable of detecting/assessing human performance. This BAA focuses on identifying, developing, characterizing, and accelerating sensing technologies that can be utilized to assess the physiological, cognitive, and psychological states of human operators. It is also anticipated that these technologies will be implemented into fieldable systems. Research will have an emphasis on developing technologies capable of detecting & sensing physiological, biomarker, and behavioral metrics which are or can be correlated with human state/performance. An emphasis will also be placed upon the development, integration, miniaturization, initial operational test and evaluation, and verification and validation of human-centric multi-sensor suite designs. Research focusing on the manufacturing of nano-biomaterial sensors are of particular interest. Research may also focus on developing and implementing empirically-based models, frameworks, and novel evaluation capabilities, to identify assessment linkages to performance. Initial testing & evaluation and verification and validation of the developed technologies is vital to ensure appropriate and proper performance in laboratory and operational-type settings. Relevant USAF application domains include Air, Special Operations, Intelligence, Surveillance, and Reconnaissance, Remotely Piloted Aircraft, and Cyber Operations, as well as training applications as afforded by Live, Virtual, and Constructive (LVC) environments.
MiamiOH OARS

Electronics, Photonics and Magnetic Devices | NSF - National Science Foundation - 0 views

  •  
    The Electronics, Photonics and Magnetic Devices (EPMD) Program supports innovative research on novel devices based on the principles of electronics, optics and photonics, optoelectronics, magnetics, opto- and electromechanics, electromagnetics, and related physical phenomena. EPMD's goal is to advance the frontiers of micro-, nano- and quantum-based devices operating within the electromagnetic spectrum and contributing to a broad range of application domains including information and communications, imaging and sensing, healthcare, Internet of Things, energy, infrastructure, and manufacturing. The program encourages research based on emerging technologies for miniaturization, integration, and energy efficiency as well as novel material-based devices with new functionalities, improved efficiency, flexibility, tunability, wearability, and enhanced reliability.
MiamiOH OARS

Research and Academics | Cisco Research Center - 0 views

  •  
    Pandemics have far reaching consequences that range from deaths to shutting down the economy as we have witnessed during the recent COVID19 crisis. Hence there is a need to be better prepared for such pandemics. We need to solve problems ranging from predictive analytics innovative devices for saving lives to technology for devising voting machines. The social and economic impact for the above areas is huge and some of the work can be transformative and save lives. Areas of interest to us include, but are not limited to: - Mathematical models for spread and the impact of pandemics. - Scalable simulation techniques for pandemics (e.g. with multi agents). - Biomedical/Nano sensor devices for detecting symptoms and agents. - Algorithms for rapid exploration of the drug screening and discovery workflows (e.g. use reinforcement learning) - Advanced computational biology techniques for sequencing, detecting viral evolution (e.g. in COVID-19). - Algorithms and systems for contact tracing (with privacy preserving). - Algorithms and recommendation systems for curating media and news. - Collaboration techniques for more effective health, and efficiency during pandemics. Improved identity and security techniques. - Distributed Ledgers, their applications and their governance for and during pandemics. - Pandemic data science - understanding the patterns and the impact of a pandemic like COVID-10. Creation of curated data sets. We are interested in both the science and technology aspects of these problem sets, and, particularly, in the intersections between them.
MiamiOH OARS

Innovation Corps- National Innovation Network Sites Program (I-Corps Sites) (nsf16547) ... - 0 views

  •  
    The National Science Foundation (NSF) seeks to develop and nurture a national innovation ecosystem that builds upon research to guide the output of scientific discoveries closer to the development of technologies, products and processes that benefit society.
1 - 9 of 9
Showing 20 items per page