Skip to main content

Home/ OARS funding Computer/ Group items tagged battery

Rss Feed Group items tagged

MiamiOH OARS

Office of Naval Research (ONR) Navy and Marine Corps Department of Defense University R... - 0 views

  •  
    1. Lithium-ion Battery Safety. Safety concerns continue to hamper full adoption of lithium-ion batteries for defense systems, despite significant research investments by the government and the private sector. This Defense initiative will advance promising lithium-ion battery safety technologies at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: improved electrolytes; stable high-energy anodes and cathodes; cell components and structures that enhance safety and reliability (e.g. use of electrode coatings and electrolyte additives); safety optimization through battery and battery module design and packaging; and battery management and state of health techniques that prevent and/or mitigate catastrophic failure. 2. Electrical Grid Reliability, Resiliency and Security. Both the defense and commercial sectors recognize the ever-growing criticality to enhance electrical grid reliability, resiliency and security through innovation at the component and system levels. This Defense initiative will advance relevant electrical grid innovations at university research laboratories into early laboratory prototypes and potentially minimum viable products for adoption by the defense and commercial sectors via early startups, small businesses and non-traditional defense contractors. Specific technical areas of interest include, but are not limited to, the following: advanced electrical power generation, transmission and distribution hardware and software; physical cyber secured industrial controls hardware and software; effective control of microgrids supporting high-dynamic loads; electrical grid protocols and controls to maintain secured operations of critical infrastructure under adverse conditions; hardening of e
MiamiOH OARS

Structurally Integrated Safe Advanced Battery Development - Federal Business Opportunit... - 0 views

  •  
    The Structurally Integrated Safe Advanced Battery Development program seeks possible solutions to the design, development, and demonstration of a structurally integrated battery into the body, chassis, or wing of a small unmanned aerial system (SUAS).
MiamiOH OARS

Energy, Power, Control, and Networks | NSF - National Science Foundation - 0 views

  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
  •  
    Recent advances in communications, computation, and sensing technologies offer unprecedented opportunities for the design of cyber-physical systems with increased responsiveness, interconnectivity and automation. To meet new challenges and societal needs, the Energy, Power, Control and Networks (EPCN) Program invests in systems and control methods for analysis and design of cyber-physical systems to ensure stability, performance, robustness, and security. Topics of interest include modeling, optimization, learning, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation as well as risk management in the presence of uncertainty, sub-system failures and stochastic disturbances. EPCN also invests in adaptive dynamic programing, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN supports innovative proposals dealing with systems research in such areas as energy, transportation, and nanotechnology. EPCN places emphasis on electric power systems, including generation, transmission, storage, and integration of renewables; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory and economic structures and with consumer behavior. Also of interest are interdependencies of power and energy systems with other critical infrastructures. Topics of interest also include systems analysis and design for energy scavenging and alternate energy technologies such as solar, wind, and hydrokinetic. The program also supports innovative tools and test beds, as well as curriculum development integrating research and education. In addition to single investigator projects, EPCN encourages cross-disciplinary proposals that benefit from active collaboration of researchers with complementary skills.
MiamiOH OARS

Energy, Power, Control, and Networks - 0 views

  •  
    The Energy, Power, Control, andNetworks (EPCN) Program supports innovative research in modeling, optimization, learning, adaptation, and control of networked multi-agent systems, higher-level decision making, and dynamic resource allocation, as well as risk management in the presence of uncertainty, sub-system failures, and stochastic disturbances. EPCN also invests in novel machine learning algorithms and analysis, adaptive dynamic programming, brain-like networked architectures performing real-time learning, and neuromorphic engineering. EPCN’s goal is to encourage research on emerging technologies and applications including energy, transportation, robotics, and biomedical devices & systems. EPCN also emphasizes electric power systems, including generation, transmission, storage, and integration of renewable energy sources into the grid; power electronics and drives; battery management systems; hybrid and electric vehicles; and understanding of the interplay of power systems with associated regulatory & economic structures and with consumer behavior.
1 - 4 of 4
Showing 20 items per page