Skip to main content

Home/ Groups/ OARS funding Chemistry
MiamiOH OARS

Coalition to Cure Calpain 3 - 0 views

  •  
    The goal of this program is to provide funding support for projects that are likely to expand the understanding of calpain 3 and limb girdle muscular dystrophy type 2A (LGMD2A), also known as calpainopathy. This type of research will move us toward our ultimate goal of identifying a therapeutic approach for this disease.
MiamiOH OARS

BRAIN Initiative: New Concepts and Early-Stage Research for Large-Scale Recording and M... - 0 views

  •  
    A central goal of the BRAIN Initiative is to understand how electrical and chemical signals code information in neural circuits and give rise to sensations, thoughts, emotions and actions. While currently available technologies can provide some understanding, they may not be sufficient to accomplish this goal. For example, non-invasive technologies are low resolution and/or provide indirect measures such as blood flow, which are imprecise; invasive technologies can provide information at the level of single neurons producing the fundamental biophysical signals, but they can only be applied to tens or hundreds of neurons, out of a total number in the human brain estimated at 85 billion. Other BRAIN FOAs seek to develop novel technology (RFA-NS-16-006) or to optimize existing technology ready for in-vivo proof-of-concept testing and collection of preliminary data (RFA-NS-16-007) for recording or manipulating neural activity on a scale that is beyond what is currently possible. This FOA seeks applications for unique and innovative technologies that are in an even earlier stage of development than that sought in other FOAs, including new and untested ideas that are in the initial stages of conceptualization.
MiamiOH OARS

Advanced Biomanufacturing of Therapeutic Cells (ABTC) (nsf17502) | NSF - National Scien... - 0 views

  •  
    In recent years, somatic cells as therapeutic agents have provided new treatment approaches for a number of pathological conditions that were deemed untreatable, or difficult to treat. Several successful cell therapies using T cells have been demonstrated for cancer and autoimmune diseases, while stem cell therapies have given relief for heart disease and stroke. Hundreds of clinical trials are ongoing to examine efficacy of cell therapies for a variety of other diseases including diabetes, Alzheimer's, Parkinson's, and Crohn's disease. Production of therapeutic cells is currently expensive and, therefore, cost prohibitive for the large number of people who might benefit from these treatments. The overarching goal of this Advanced Biomanufacturing of Therapeutic Cells (ABTC) solicitation is to catalyze well-integrated interdisciplinary research to understand, design, and control cell manufacturing systems and processes that will enable reproducible, cost-effective, and high-quality production of cells with predictable performance for the identified therapeutic function.
  •  
    In recent years, somatic cells as therapeutic agents have provided new treatment approaches for a number of pathological conditions that were deemed untreatable, or difficult to treat. Several successful cell therapies using T cells have been demonstrated for cancer and autoimmune diseases, while stem cell therapies have given relief for heart disease and stroke. Hundreds of clinical trials are ongoing to examine efficacy of cell therapies for a variety of other diseases including diabetes, Alzheimer's, Parkinson's, and Crohn's disease. Production of therapeutic cells is currently expensive and, therefore, cost prohibitive for the large number of people who might benefit from these treatments. The overarching goal of this Advanced Biomanufacturing of Therapeutic Cells (ABTC) solicitation is to catalyze well-integrated interdisciplinary research to understand, design, and control cell manufacturing systems and processes that will enable reproducible, cost-effective, and high-quality production of cells with predictable performance for the identified therapeutic function.
MiamiOH OARS

Chemistry of Life Processes | NSF - National Science Foundation - 0 views

  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
  •  
    The Chemistry of Life Processes (CLP) Program supports fundamental studies of biomolecules or biological systems at the interface of chemistry and biology. The primary contributions and innovations of the proposed research focus on the chemical aspects of the project. The Program supports studies that investigate how molecular structure, dynamics and interactions, as well as reaction thermodynamics and mechanisms are integrated with the chemistry performed by, or intrinsic to, the biological systems.
MiamiOH OARS

Exosomes: From Biogenesis and Secretion to the Early Pathogenesis of Alzheimer's Diseas... - 0 views

  •  
    This Funding Opportunity Announcement (FOA) invites innovative research focused on understanding the role of exosome biogenesis and secretion in modulating and propagation of early pathogenesis in sporadic and late-onset Alzheimer's disease (AD). Specifically, this FOA encourages collaborative approaches designed to identify and characterize the regulation of molecular machines that are responsible for exosome biogenesis and the secretion of exosomal cargo molecules in AD.
MiamiOH OARS

Powering Research through Innovative Methods for mixtures in Epidemiology (PRIME) (R01) - 0 views

  •  
    The purpose of this Funding Opportunity Announcement (FOA) is to stimulate the development of innovative statistical, data science, or other quantitative approaches to studying the health effects of complex chemical mixtures in environmental epidemiology. 
MiamiOH OARS

Water Tech Showcase - Confluence - 0 views

  •  
    The Confluence Tech Showcase will connect vendors, manufacturers, developers, entrepreneurs, technologists, engineers, and students to our regional utilities to share solutions to the top challenges that have been identified by the utilities. This call for abstracts is addressed to vendors, manufacturers, developers, researchers, technologists, engineers, utilities, entrepreneurs, students and anyone with a solution to the challenges outlined by the Regional Utility Network.   Topics: (Sessions have been categorized into the following tracks: financial innovations, operational efficiencies, business drivers, resiliency opportunities, regulatory concerns, and water sector challenges for utilities within the water cycle (stormwater, drinking water, wastewater).  Abstracts should provide a technology, process, and/or case study of solutions related to these topics, and clearly indicate their value proposition and unique aspects in addressing the problem.  )
MiamiOH OARS

Macromolecular, Supramolecular and Nanochemistry | NSF - National Science Foundation - 0 views

  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
  •  
    The Macromolecular, Supramolecular and Nanochemistry (MSN) Program focuses on basic research that addresses fundamental questions regarding the chemistry of macromolecular, supramolecular and nanoscopic species and other organized structures and that advances chemistry knowledge in these areas.  Research of interest to this program will explore novel chemistry concepts in the following topics: (1) The development of novel synthetic approaches to clusters, nanoparticles, polymers, and supramolecular architectures; innovative surface functionalization methodologies; surface monolayer chemistry; and template-directed synthesis.  (2) The study of molecular-scale interactions that give rise to macromolecular, supramolecular or nanoparticulate self-assembly into discrete structures; and the study of chemical forces and dynamics that are responsible for spatial organization in discrete organic, inorganic, or hybrid systems (excluding extended solids).  (3) Investigations that utilize advanced experimental or computational methods to understand or to predict the chemical structure, unique chemical and physicochemical properties, and chemical reactivities that result from the organized or nanoscopic structures.  Research in which theory advances experiment and experiment advances theory synergistically is of special interest.
MiamiOH OARS

Particulate and Multiphase Processes | NSF - National Science Foundation - 0 views

  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
  •  
    The goal of the Particulate and Multiphase Processes (PMP) program is to support fundamental research on physico-chemical phenomena that govern particulate and multiphase systems, including flow of suspensions, drops and bubbles, granular and granular-fluid flows, behavior of micro- and nanostructured fluids, and self-assembly/directed-assembly processes that involve particulates.  The program encourages transformative research to improve our basic understanding of particulate and multiphase processes with emphasis on research that demonstrates how particle-scale phenomena affect the behavior and dynamics of larger-scale systems.  Although proposed research should focus on fundamentals, a clear vision is required that anticipates how results could benefit important applications in advanced manufacturing, energy harvesting, transport in biological systems, biotechnology, or environmental sustainability.  Collaborative and interdisciplinary proposals are encouraged, especially those that involve a combination of experiment with theory or modeling.
MiamiOH OARS

Environmental Chemical Sciences | NSF - National Science Foundation - 0 views

  •  
    The Environmental Chemical Sciences (ECS) Program supports basic research in chemistry that promotes the understanding of natural and anthropogenic chemical processes in our environment.  Projects supported by this program enable fundamentally new avenues of basic research and transformative technologies. The program is particularly interested in studying molecular phenomena on surfaces and interfaces in order to understand the inherently complex and heterogeneous environment.  Projects utilize advanced experimental, modeling and computational approaches, as well as developing new approaches.  Topics include studies of environmental surfaces and interfaces under laboratory conditions, the fundamental properties of water and water solutions important in environmental processes, dissolution, composition, origin and behavior of molecular scale systems under a variety of naturally occurring environmental conditions, chemical reactivity of synthetic nanoparticles and their molecular level interactions with the environment, and application of theoretical models and computational approaches to discover and predict environmental phenomena at the molecular scale.
  •  
    The Environmental Chemical Sciences (ECS) Program supports basic research in chemistry that promotes the understanding of natural and anthropogenic chemical processes in our environment.  Projects supported by this program enable fundamentally new avenues of basic research and transformative technologies. The program is particularly interested in studying molecular phenomena on surfaces and interfaces in order to understand the inherently complex and heterogeneous environment.  Projects utilize advanced experimental, modeling and computational approaches, as well as developing new approaches.  Topics include studies of environmental surfaces and interfaces under laboratory conditions, the fundamental properties of water and water solutions important in environmental processes, dissolution, composition, origin and behavior of molecular scale systems under a variety of naturally occurring environmental conditions, chemical reactivity of synthetic nanoparticles and their molecular level interactions with the environment, and application of theoretical models and computational approaches to discover and predict environmental phenomena at the molecular scale.
MiamiOH OARS

Process Systems, Reaction Engineering and Molecular Thermodynamics | NSF - National Sci... - 0 views

  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
  •  
    The goal of the Process Systems, Reaction Engineering and Molecular Thermodynamics (PRM) program is to advance fundamental engineering research on the rates and mechanisms of important classes of catalyzed and uncatalyzed chemical reactions as they relate to the design, production, and application of catalysts, chemical processes, biochemical processes, and specialized materials that have important impacts on society.  The program seeks to advance electrochemical and photochemical processes of engineering significance or with commercial potential, design and optimization of complex chemical and biochemical processes, thermodynamic modeling and experiments that relate molecular dynamics to macroscopic properties and behavior, dynamic modeling and control of process systems and individual process units, reactive processing of polymers/ceramics/thin films, and interactions between chemical reactions and transport processes in reactive systems, for the integration of this information into the design of complex chemical and biochemical reactors.  A substantial focus of the PRM program is to impact the chemical manufacturing enterprise by funding projects aimed at zero emissions and environmentally-friendly, smart manufacturing using sustainable materials.  Areas that focus on reactors of all types (fuel cells, batteries, microreactors, biochemical reactors, etc.), reactor design in general, and design and control of all systems associated with energy from renewable sources have a high priority for funding
MiamiOH OARS

Biotechnology and Biochemical Engineering | NSF - National Science Foundation - 0 views

  •  
    The Biotechnology and Biochemical Engineering (BBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes in engineering biology and eventually leads to the development of enabling technology for advanced manufacturing and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  A quantitative treatment of biological and engineering problems of biological processes is considered vital to successful research projects in the BBE program.
  •  
    The Biotechnology and Biochemical Engineering (BBE) program supports fundamental engineering research that advances the understanding of cellular and biomolecular processes in engineering biology and eventually leads to the development of enabling technology for advanced manufacturing and/or applications in support of the biopharmaceutical, biotechnology, and bioenergy industries, or with applications in health or the environment.  A quantitative treatment of biological and engineering problems of biological processes is considered vital to successful research projects in the BBE program.
MiamiOH OARS

Catalysis | NSF - National Science Foundation - 0 views

  •  
    The goal of the Catalysis program is to advance research in catalytic engineering science and promote  fundamental understanding and the development of catalytic materials and reactions that are of benefit to society.  Research in this program should focus on new basic understanding of catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches.  Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization.
  •  
    The goal of the Catalysis program is to advance research in catalytic engineering science and promote  fundamental understanding and the development of catalytic materials and reactions that are of benefit to society.  Research in this program should focus on new basic understanding of catalytic materials and reactions, utilizing synthetic, theoretical, and experimental approaches.  Target applications include fuels, specialty and bulk chemicals, environmental catalysis, biomass conversion to fuels and chemicals, conversion of greenhouse gases, and generation of solar hydrogen, as well as efficient routes to energy utilization.
MiamiOH OARS

Chemical Measurement and Imaging | NSF - National Science Foundation - 0 views

  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and chemical imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments.  Research areas include but are not limited to sampling and separation science; electroanalytical chemistry; spectrometry; and frequency- and time-domain spectroscopy.  Development of new chemical imaging and measurement tools probing chemical properties and processes are supported.  Innovations enabling the monitoring and imaging of chemical and electronic processes across a wide range of time and length scales are also relevant.  New approaches to data analysis and interpretation (including chemometrics) are encouraged.  Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability.  Sensor-related proposals should address new approaches to chemical sensing, with prospects for broad utility and significant enhancement of current capabilities.
  •  
    The Chemical Measurement and Imaging Program supports research focusing on chemically-relevant measurement science and chemical imaging, targeting both improved understanding of new and existing methods and development of innovative approaches and instruments.  Research areas include but are not limited to sampling and separation science; electroanalytical chemistry; spectrometry; and frequency- and time-domain spectroscopy.  Development of new chemical imaging and measurement tools probing chemical properties and processes are supported.  Innovations enabling the monitoring and imaging of chemical and electronic processes across a wide range of time and length scales are also relevant.  New approaches to data analysis and interpretation (including chemometrics) are encouraged.  Proposals addressing established techniques must seek improved understanding and/or innovative approaches to substantially broaden applicability.  Sensor-related proposals should address new approaches to chemical sensing, with prospects for broad utility and significant enhancement of current capabilities.
MiamiOH OARS

Forest Service - 0 views

  •  
    The goal of this program is to detect, prevent, eradicate, and/or control invasive plant species to promote resiliency, watershed stability, and biological diversity on federal, state, or private land.
MiamiOH OARS

Alternatives Research Grants | Alternatives Research & Development Foundation (ARDF) - 0 views

  •  
    The Alternatives Research & Development Foundation, a U.S. leader in the funding and promotion of alternatives to the use of laboratory animals in research, testing, and education, is currently soliciting research proposals for its 2017 Alternatives Research Grant Program. For over 20 years, this innovative program has created opportunities for scientists who have interest and expertise in alternatives research.
MiamiOH OARS

2017 SACNAS - The National Diversity in STEM Conference - Travel Scholarships | Online ... - 0 views

  •  
    The Society for the Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS) invests in top STEM talent. (That's you!) Travel scholarships are just one aspect of this investment in your academic and professional success. We encourage you to apply for a SACNAS Travel Scholarship to advance your professional development and join our community at 2017 SACNAS.
MiamiOH OARS

Collaborative Fusion Energy Research in the DIII-D National Program - 0 views

  •  
    The Fusion Energy Sciences (FES) Program of the Office of Science (SC), U.S. Department of Energy (DOE), hereby announces its interest in receiving grant applications for collaborative research in fusion energy science as part of the DIII-D national research program. The mission of the DIII-D program is to establish the scientific basis for the optimization of the tokamak approach to fusion energy production. The primary means to accomplish this mission is research utilizing the DIII-D tokamak to develop the ultimate potential of the tokamak concept as a magnetic confinement system.
MiamiOH OARS

Professional Research Experience Program - 0 views

  •  
    NIST is soliciting applications from eligible institutions of higher education in the U.S. and its territories that offer two- or four- year degrees in academic science, technology, engineering and mathematics (STEM) disciplines, which include but are not limited to biochemistry, biological sciences, chemistry, computer science, engineering, electronics, materials science, mathematics, nanoscale science, neutron science, physical sciences, physics, and statistics, to establish and manage a program to support collaborative research relationships among NIST staff, undergraduate and graduate students, individuals with bachelor's or master's degrees, post-doctoral fellows, and academic affiliates, and the PREP researchers' academic institutions. These collaborative relationships will include research opportunities at the relevant NIST campuses in Boulder, Colorado (CO) (PREP Boulder), or Gaithersburg, Maryland (MD), and/or Charleston, South Carolina (SC) (PREP Gaithersburg). Eligible applicants may apply to establish and manage a PREP Boulder program or a PREP Gaithersburg program or may apply to establish and manage programs for both.
MiamiOH OARS

Centers for Chemical Innovation (CCI) (nsf17564) | NSF - National Science Foundation - 0 views

  •  
    The Centers for Chemical Innovation (CCI) Program supports research centers focused on major, long-term fundamental chemical research challenges. CCIs that address these challenges will produce transformative research, lead to innovation, and attract broad scientific and public interest. CCIs are agile structures that can respond rapidly to emerging opportunities through enhanced collaborations. CCIs integrate research, innovation, education, broadening participation, and informal science communication.
« First ‹ Previous 621 - 640 Next › Last »
Showing 20 items per page