Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged objectivity

Rss Feed Group items tagged

Weiye Loh

Epiphenom: Do people reject evolution because it unnerves them? - 0 views

  • people can't stomach the theory of natural selection is that they hate the idea that everything we see around us is the result of blind chance. Hostility to the notion of chance is certainly a recurrent theme in creationist objections.
  • evolution by natural selection is not really evolution by chance, as the creationists claim. But even so chance does play a role. Stephen Gould, in many of his essays, repeatedly drove home the importance of chance (or rather, contingency) in evolution
  • But there is another perspective, championed recently by Simon Conway Morris in his book Life's Solution. He emphasises rather more the many occasions of convergent evolution, and makes the controversial case that the development of sentient life was more-or-less inevitable - in flat contradiction to Stephen Gould.
  • ...1 more annotation...
  • Aaron Kay, at the University of Waterloo in Ontario, who has shown that making people feel like they are not in control causes them to activate beliefs that restore their sense that something, at least, is in control - like a belief in a controlling God, or support for a strong government. It's a theory called compensatory control.
  •  
    Evolution and the fear of chance. 
Weiye Loh

Epiphenom: Religion and suicide - a patchy global picture - 0 views

  • The main objective of this study is to understand the factors that contribute to suicide in different countries, and what can be done to reduce them. In each country, people who have attempted suicide are brought into the study and given a questionnaire to fill out. Another group of people, randomly chosen, are given the same questionnaire. That allows the team to compare religious affiliation, involvement in organised religion, and individual religiosity in suicide attempters and the general population. When they looked at the data, and adjusted them for a host of factors known to affect suicide risk (age, gender, marital status, employment, and education), a complex picture emerged.
  • In Iran, religion was highly protective, whether religion was measured as the rate of mosque attendance or as whether the individual thought of themselves as a religious person. In Brazil, going to religious services and personal religiosity were both highly protective. Bizarrely, however, religious affiliation was not. That might be because being Protestant was linked to greater risk, and Catholicism to lower risk. Put the two together, and it may balance out. In Estonia, suicides were lower in those who were affiliated to a religion, and those who said they were religious. They were also a bit lower in those who In India, there wasn't much effect of religion at all - a bit lower in those who go to religious services at least occasionally. Vietnam was similar. Those who went to religious services yearly were less likely to have attempted suicide, but no other measure of religion had any effect. In Sri Lanka, going to religious services had no protective effect, but subjective religiosity did. In South Africa, those who go to Church were no less likely to attempt suicide. In fact, those who said they were religious were actually nearly three times more likely to attempt suicide, and those who were affiliated to a religion were an incredible six times more likely!
  • In Brazil, religious people are six times less likely to commit suicide than the non religious. In South Africa, they are three times more likely. How to explain these national differences?
  • ...5 more annotations...
  • Part of it might be differences in the predominant religion. The protective effect of religion seems to be higher in monotheistic countries, and it's particularly high in the most fervently monotheistic country, Iran. In India, Sri Lanka, and Vietnam, the protective effect is smaller or non-existent.
  • But that doesn't explain South Africa. South Africa is unusual in that it is a highly diverse country, fractured by ethnic, social and religious boundaries. The researchers think that this might be a factor: South Africa has been described as ‘‘The Rainbow Nation’’ because of its cultural diversity. There are a variety of ethnic groups and a greater variety of cultures within each of these groups. While cultural diversity is seen as a national asset, the interaction of cultures results in the blurring of cultural norms and boundaries at the individual, family and cultural group levels. Subsequently, there is a large diversity of religious denominations and this does not seem favorable in terms of providing protection against attempted suicide.
  • earlier studies have shown that religious homogeneity is linked to lower suicide rates, and they suggest that the reverse might well be happening in South Africa.
  • this also could explain why, in Brazil, Protestants have a higher suicide rate than the unaffiliated. That too could be linked to their status as a religious minority.
  • we've got a study showing the double-edged nature of religion. For those inside the group, it provides support and comfort. But once fractures appear, religion just seems to turn up the heat!
  •  
     Religion and suicide
Weiye Loh

Skepticblog » Investing in Basic Science - 0 views

  • A recent editorial in the New York Times by Nicholas Wade raises some interesting points about the nature of basic science research – primarily that its’ risky.
  • As I have pointed out about the medical literature, researcher John Ioaniddis has explained why most published studies turn out in retrospect to be wrong. The same is true of most basic science research – and the underlying reason is the same. The world is complex, and most of our guesses about how it might work turn out to be either flat-out wrong, incomplete, or superficial. And so most of our probing and prodding of the natural world, looking for the path to the actual answer, turn out to miss the target.
  • research costs considerable resources of time, space, money, opportunity, and people-hours. There may also be some risk involved (such as to subjects in the clinical trial). Further, negative studies are actually valuable (more so than terrible pictures). They still teach us something about the world – they teach us what is not true. At the very least this narrows the field of possibilities. But the analogy holds in so far as the goal of scientific research is to improve our understanding of the world and to provide practical applications that make our lives better. Wade writes mostly about how we fund research, and this relates to our objectives. Most of the corporate research money is interested in the latter – practical (and profitable) applications. If this is your goal, than basic science research is a bad bet. Most investments will be losers, and for most companies this will not be offset by the big payoffs of the rare winners. So many companies will allow others to do the basic science (government, universities, start up companies) then raid the winners by using their resources to buy them out, and then bring them the final steps to a marketable application. There is nothing wrong or unethical about this. It’s a good business model.
  • ...8 more annotations...
  • What, then, is the role of public (government) funding of research? Primarily, Wade argues (and I agree), to provide infrastructure for expensive research programs, such as building large colliders.
  • the more the government invests in basic science and infrastructure, the more winners will emerge that private industry can then capitalize on. This is a good way to build a competitive dynamic economy.
  • But there is a pitfall – prematurely picking winners and losers. Wade give the example of California investing specifically into developing stem cell treatments. He argues that stem cells, while promising, do not hold a guarantee of eventual success, and perhaps there are other technologies that will work and are being neglected. The history of science and technology has clearly demonstrated that it is wickedly difficult to predict the future (and all those who try are destined to be mocked by future generations with the benefit of perfect hindsight). Prematurely committing to one technology therefore contains a high risk of wasting a great deal of limited resources, and missing other perhaps more fruitful opportunities.
  • The underlying concept is that science research is a long-term game. Many avenues of research will not pan out, and those that do will take time to inspire specific applications. The media, however, likes catchy headlines. That means when they are reporting on basic science research journalists ask themselves – why should people care? What is the application of this that the average person can relate to? This seems reasonable from a journalistic point of view, but with basic science reporting it leads to wild speculation about a distant possible future application. The public is then left with the impression that we are on the verge of curing the common cold or cancer, or developing invisibility cloaks or flying cars, or replacing organs and having household robot servants. When a few years go by and we don’t have our personal android butlers, the public then thinks that the basic science was a bust, when in fact there was never a reasonable expectation that it would lead to a specific application anytime soon. But it still may be on track for interesting applications in a decade or two.
  • this also means that the government, generally, should not be in the game of picking winners an losers – putting their thumb on the scale, as it were. Rather, they will get the most bang for the research buck if they simply invest in science infrastructure, and also fund scientists in broad areas.
  • The same is true of technology – don’t pick winners and losers. The much-hyped “hydrogen economy” comes to mind. Let industry and the free market sort out what will work. If you have to invest in infrastructure before a technology is mature, then at least hedge your bets and keep funding flexible. Fund “alternative fuel” as a general category, and reassess on a regular basis how funds should be allocated. But don’t get too specific.
  • Funding research but leaving the details to scientists may be optimal
  • The scientific community can do their part by getting better at communicating with the media and the public. Try to avoid the temptation to overhype your own research, just because it is the most interesting thing in the world to you personally and you feel hype will help your funding. Don’t make it easy for the media to sensationalize your research – you should be the ones trying to hold back the reigns. Perhaps this is too much to hope for – market forces conspire too much to promote sensationalism.
Weiye Loh

The Data-Driven Life - NYTimes.com - 0 views

  • Humans make errors. We make errors of fact and errors of judgment. We have blind spots in our field of vision and gaps in our stream of attention.
  • These weaknesses put us at a disadvantage. We make decisions with partial information. We are forced to steer by guesswork. We go with our gut.
  • Others use data.
  • ...3 more annotations...
  • Others use data. A timer running on Robin Barooah’s computer tells him that he has been living in the United States for 8 years, 2 months and 10 days. At various times in his life, Barooah — a 38-year-old self-employed software designer from England who now lives in Oakland, Calif. — has also made careful records of his work, his sleep and his diet.
  • A few months ago, Barooah began to wean himself from coffee. His method was precise. He made a large cup of coffee and removed 20 milliliters weekly. This went on for more than four months, until barely a sip remained in the cup. He drank it and called himself cured. Unlike his previous attempts to quit, this time there were no headaches, no extreme cravings. Still, he was tempted, and on Oct. 12 last year, while distracted at his desk, he told himself that he could probably concentrate better if he had a cup. Coffee may have been bad for his health, he thought, but perhaps it was good for his concentration. Barooah wasn’t about to try to answer a question like this with guesswork. He had a good data set that showed how many minutes he spent each day in focused work. With this, he could do an objective analysis. Barooah made a chart with dates on the bottom and his work time along the side. Running down the middle was a big black line labeled “Stopped drinking coffee.” On the left side of the line, low spikes and narrow columns. On the right side, high spikes and thick columns. The data had delivered their verdict, and coffee lost.
  • “People have such very poor sense of time,” Barooah says, and without good time calibration, it is much harder to see the consequences of your actions. If you want to replace the vagaries of intuition with something more reliable, you first need to gather data. Once you know the facts, you can live by them.
Weiye Loh

Rationally Speaking: The sorry state of higher education - 0 views

  • two disconcerting articles crossed my computer screen, both highlighting the increasingly sorry state of higher education, though from very different perspectives. The first is “Ed Dante’s” (actually a pseudonym) piece in the Chronicle of Higher Education, entitled The Shadow Scholar. The second is Gregory Petsko’s A Faustian Bargain, published of all places in Genome Biology.
  • There is much to be learned by educators in the Shadow Scholar piece, except the moral that “Dante” would like us to take from it. The anonymous author writes:“Pointing the finger at me is too easy. Why does my business thrive? Why do so many students prefer to cheat rather than do their own work? Say what you want about me, but I am not the reason your students cheat.
  • The point is that plagiarism and cheating happen for a variety of reasons, one of which is the existence of people like Mr. Dante and his company, who set up a business that is clearly unethical and should be illegal. So, pointing fingers at him and his ilk is perfectly reasonable. Yes, there obviously is a “market” for cheating in higher education, and there are complex reasons for it, but he is in a position similar to that of the drug dealer who insists that he is simply providing the commodity to satisfy society’s demand. Much too easy of a way out, and one that doesn’t fly in the case of drug dealers, and shouldn’t fly in the case of ghost cheaters.
  • ...16 more annotations...
  • As a teacher at the City University of New York, I am constantly aware of the possibility that my students might cheat on their tests. I do take some elementary precautionary steps
  • Still, my job is not that of the policeman. My students are adults who theoretically are there to learn. If they don’t value that learning and prefer to pay someone else to fake it, so be it, ultimately it is they who lose in the most fundamental sense of the term. Just like drug addicts, to return to my earlier metaphor. And just as in that other case, it is enablers like Mr. Dante who simply can’t duck the moral blame.
  • n open letter to the president of SUNY-Albany, penned by molecular biologist Gregory Petsko. The SUNY-Albany president has recently announced the closing — for budgetary reasons — of the departments of French, Italian, Classics, Russian and Theater Arts at his university.
  • Petsko begins by taking on one of the alleged reasons why SUNY-Albany is slashing the humanities: low enrollment. He correctly points out that the problem can be solved overnight at the stroke of a pen: stop abdicating your responsibilities as educators and actually put constraints on what your students have to take in order to graduate. Make courses in English literature, foreign languages, philosophy and critical thinking, the arts and so on, mandatory or one of a small number of options that the students must consider in order to graduate.
  • But, you might say, that’s cheating the market! Students clearly don’t want to take those courses, and a business should cater to its customers. That type of reasoning is among the most pernicious and idiotic I’ve ever heard. Students are not clients (if anything, their parents, who usually pay the tuition, are), they are not shopping for a new bag or pair of shoes. They do not know what is best for them educationally, that’s why they go to college to begin with. If you are not convinced about how absurd the students-as-clients argument is, consider an analogy: does anyone with functioning brain cells argue that since patients in a hospital pay a bill, they should be dictating how the brain surgeon operates? I didn’t think so.
  • Petsko then tackles the second lame excuse given by the president of SUNY-Albany (and common among the upper administration of plenty of public universities): I can’t do otherwise because of the legislature’s draconian cuts. Except that university budgets are simply too complicated for there not to be any other option. I know this first hand, I’m on a special committee at my own college looking at how to creatively deal with budget cuts handed down to us from the very same (admittedly small minded and dysfunctional) New York state legislature that has prompted SUNY-Albany’s action. As Petsko points out, the president there didn’t even think of involving the faculty and staff in a broad discussion of how to deal with the crisis, he simply announced the cuts on a Friday afternoon and then ran for cover. An example of very poor leadership to say the least, and downright hypocrisy considering all the talk that the same administrator has been dishing out about the university “community.”
  • Finally, there is the argument that the humanities don’t pay for their own way, unlike (some of) the sciences (some of the time). That is indubitably true, but irrelevant. Universities are not businesses, they are places of higher learning. Yes, of course they need to deal with budgets, fund raising and all the rest. But the financial and administrative side has one goal and one goal only: to provide the best education to the students who attend that university.
  • That education simply must include the sciences, philosophy, literature, and the arts, as well as more technical or pragmatic offerings such as medicine, business and law. Why? Because that’s the kind of liberal education that makes for an informed and intelligent citizenry, without which our democracy is but empty talk, and our lives nothing but slavery to the marketplace.
  • Maybe this is not how education works in the US. I thought that general (or compulsory) education (ie. up to high school) is designed to make sure that citizens in a democratic country can perform their civil duties. A balanced and well-rounded education, which includes a healthy mixture of science and humanities, is indeed very important for this purpose. However, college-level education is for personal growth and therefore the person must have a large say about what kind of classes he or she chooses to take. I am disturbed by Massimo's hospital analogy. Students are not ill. They don't go to college to be cured, or to be good citizens. They go to college to learn things that *they* want to learn. Patients are passive. Students are not.I agree that students typically do not know what kind of education is good for them. But who does?
  • students do have a saying in their education. They pick their major, and there are electives. But I object to the idea that they can customize their major any way they want. That assumes they know what the best education for them is, they don't. That's the point of education.
  • The students are in your class to get a good grade, any learning that takes place is purely incidental. Those good grades will look good on their transcript and might convince a future employer that they are smart and thus are worth paying more.
  • I don't know what the dollar to GPA exchange rate is these days, but I don't doubt that there is one.
  • Just how many of your students do you think will remember the extensive complex jargon of philosophy more than a couple of months after they leave your classroom?
  • and our lives nothing but slavery to the marketplace.We are there. Welcome. Where have you been all this time? In a capitalistic/plutocratic society money is power (and free speech too according to the supreme court). Money means a larger/better house/car/clothing/vacation than your neighbor and consequently better mating opportunities. You can mostly blame the women for that one I think just like the peacock's tail.
  • If a student of surgery fails to learn they might maim, kill or cripple someone. If an engineer of airplanes fails to learn they might design a faulty aircraft that fails and kills people. If a student of chemistry fails to learn they might design a faulty drug with unintended and unfortunate side effects, but what exactly would be the harm if a student of philosophy fails to learn Aristotle had to say about elements or Plato had to say about perfect forms? These things are so divorced from people's everyday activities as to be rendered all but meaningless.
  • human knowledge grows by leaps and bounds every day, but human brain capacity does not, so the portion of human knowledge you can personally hold gets smaller by the minute. Learn (and remember) as much as you can as fast as you can and you will still lose ground. You certainly have your work cut out for you emphasizing the importance of Thales in the Age of Twitter and whatever follows it next year.
Weiye Loh

Skepticblog » The Decline Effect - 0 views

  • The first group are those with an overly simplistic or naive sense of how science functions. This is a view of science similar to those films created in the 1950s and meant to be watched by students, with the jaunty music playing in the background. This view generally respects science, but has a significant underappreciation for the flaws and complexity of science as a human endeavor. Those with this view are easily scandalized by revelations of the messiness of science.
  • The second cluster is what I would call scientific skepticism – which combines a respect for science and empiricism as a method (really “the” method) for understanding the natural world, with a deep appreciation for all the myriad ways in which the endeavor of science can go wrong. Scientific skeptics, in fact, seek to formally understand the process of science as a human endeavor with all its flaws. It is therefore often skeptics pointing out phenomena such as publication bias, the placebo effect, the need for rigorous controls and blinding, and the many vagaries of statistical analysis. But at the end of the day, as complex and messy the process of science is, a reliable picture of reality is slowly ground out.
  • The third group, often frustrating to scientific skeptics, are the science-deniers (for lack of a better term). They may take a postmodernist approach to science – science is just one narrative with no special relationship to the truth. Whatever you call it, what the science-deniers in essence do is describe all of the features of science that the skeptics do (sometimes annoyingly pretending that they are pointing these features out to skeptics) but then come to a different conclusion at the end – that science (essentially) does not work.
  • ...13 more annotations...
  • this third group – the science deniers – started out in the naive group, and then were so scandalized by the realization that science is a messy human endeavor that the leap right to the nihilistic conclusion that science must therefore be bunk.
  • The article by Lehrer falls generally into this third category. He is discussing what has been called “the decline effect” – the fact that effect sizes in scientific studies tend to decrease over time, sometime to nothing.
  • This term was first applied to the parapsychological literature, and was in fact proposed as a real phenomena of ESP – that ESP effects literally decline over time. Skeptics have criticized this view as magical thinking and hopelessly naive – Occam’s razor favors the conclusion that it is the flawed measurement of ESP, not ESP itself, that is declining over time. 
  • Lehrer, however, applies this idea to all of science, not just parapsychology. He writes: And this is why the decline effect is so troubling. Not because it reveals the human fallibility of science, in which data are tweaked and beliefs shape perceptions. (Such shortcomings aren’t surprising, at least for scientists.) And not because it reveals that many of our most exciting theories are fleeting fads and will soon be rejected. (That idea has been around since Thomas Kuhn.) The decline effect is troubling because it reminds us how difficult it is to prove anything. We like to pretend that our experiments define the truth for us. But that’s often not the case. Just because an idea is true doesn’t mean it can be proved. And just because an idea can be proved doesn’t mean it’s true. When the experiments are done, we still have to choose what to believe.
  • Lehrer is ultimately referring to aspects of science that skeptics have been pointing out for years (as a way of discerning science from pseudoscience), but Lehrer takes it to the nihilistic conclusion that it is difficult to prove anything, and that ultimately “we still have to choose what to believe.” Bollocks!
  • Lehrer is describing the cutting edge or the fringe of science, and then acting as if it applies all the way down to the core. I think the problem is that there is so much scientific knowledge that we take for granted – so much so that we forget it is knowledge that derived from the scientific method, and at one point was not known.
  • It is telling that Lehrer uses as his primary examples of the decline effect studies from medicine, psychology, and ecology – areas where the signal to noise ratio is lowest in the sciences, because of the highly variable and complex human element. We don’t see as much of a decline effect in physics, for example, where phenomena are more objective and concrete.
  • If the truth itself does not “wear off”, as the headline of Lehrer’s article provocatively states, then what is responsible for this decline effect?
  • it is no surprise that effect science in preliminary studies tend to be positive. This can be explained on the basis of experimenter bias – scientists want to find positive results, and initial experiments are often flawed or less than rigorous. It takes time to figure out how to rigorously study a question, and so early studies will tend not to control for all the necessary variables. There is further publication bias in which positive studies tend to be published more than negative studies.
  • Further, some preliminary research may be based upon chance observations – a false pattern based upon a quirky cluster of events. If these initial observations are used in the preliminary studies, then the statistical fluke will be carried forward. Later studies are then likely to exhibit a regression to the mean, or a return to more statistically likely results (which is exactly why you shouldn’t use initial data when replicating a result, but should use entirely fresh data – a mistake for which astrologers are infamous).
  • skeptics are frequently cautioning against new or preliminary scientific research. Don’t get excited by every new study touted in the lay press, or even by a university’s press release. Most new findings turn out to be wrong. In science, replication is king. Consensus and reliable conclusions are built upon multiple independent lines of evidence, replicated over time, all converging on one conclusion.
  • Lehrer does make some good points in his article, but they are points that skeptics are fond of making. In order to have a  mature and functional appreciation for the process and findings of science, it is necessary to understand how science works in the real world, as practiced by flawed scientists and scientific institutions. This is the skeptical message.
  • But at the same time reliable findings in science are possible, and happen frequently – when results can be replicated and when they fit into the expanding intricate weave of the picture of the natural world being generated by scientific investigation.
Weiye Loh

James Lovelock is an example to every scientist « Prospect Magazine - 0 views

  • Lovelock, creator of the controversial Gaia hypothesis, is certainly still capable of original thinking, and it was his verdict on recent environmental controversies—such as the leaked emails from the University of East Anglia—that his audience wanted to hear.
  • The Gaia hypothesis, which made Lovelock the darling of the emerging green movement of the 1960s, proposes that life on earth is closely coupled with the surface, ocean and atmosphere. Each element co-operates to keep conditions relatively constant—at least in the absence of exceptional external forces. Initially, he was ridiculed: the idea that inanimate objects such as rocks are active participants in a super-organism was understandably controversial, and rejected by most scientists. But the idea that life exerts a strong influence on the environment has come to be widely accepted.
  • Lovelock has tended to be at the apocalyptic end of the climate change spectrum. He predicted in 2006 that average temperatures would rise by 8°C in temperate regions by the end of the 21st century, leading to billions of deaths and leaving only the polar regions habitable.
  • ...4 more annotations...
  • He recently and rightly slated Ed Milliband, secretary of state for energy and climate change, for his ludicrous assertion that “opposition to wind farms should be as unacceptable as failing to wear a seatbelt,” describing this as political or environmental correctness veering towards fascism.
  • He has also retreated considerably from his extreme position of 2006, just as he earlier disassociated himself from some of the weirder extensions of the Gaia hypothesis, like the idea that the Earth as a whole is part of a universal consciousness.
  • Lovelock’s central point was that climate change models are not yet fit to make predictions even 40 years ahead. His position that continued release of carbon into the atmosphere constitutes a grave threat was unaltered, but he seemed to concede that the changes might not be as severe or rapid as he had earlier predicted.
  • It could be argued that Lovelock was over-hasty with his predictions of near extinction, but instead we should take heart that, almost half a century after developing his original hypothesis, he is still willing and capable of modifying his views on the basis of evidence. It is a good example not just for many younger scientists, but to everyone. On another level, it will perhaps raise hopes that some form of climate consensus can emerge out of the recent controversies. What we desperately need now is a more balanced and sustainable long-term energy strategy.
  •  
    James Lovelock is an example to every scientist
Weiye Loh

Let's make science metrics more scientific : Article : Nature - 0 views

  • Measuring and assessing academic performance is now a fact of scientific life.
  • Yet current systems of measurement are inadequate. Widely used metrics, from the newly-fashionable Hirsch index to the 50-year-old citation index, are of limited use1
  • Existing metrics do not capture the full range of activities that support and transmit scientific ideas, which can be as varied as mentoring, blogging or creating industrial prototypes.
  • ...15 more annotations...
  • narrow or biased measures of scientific achievement can lead to narrow and biased science.
  • Global demand for, and interest in, metrics should galvanize stakeholders — national funding agencies, scientific research organizations and publishing houses — to combine forces. They can set an agenda and foster research that establishes sound scientific metrics: grounded in theory, built with high-quality data and developed by a community with strong incentives to use them.
  • Scientists are often reticent to see themselves or their institutions labelled, categorized or ranked. Although happy to tag specimens as one species or another, many researchers do not like to see themselves as specimens under a microscope — they feel that their work is too complex to be evaluated in such simplistic terms. Some argue that science is unpredictable, and that any metric used to prioritize research money risks missing out on an important discovery from left field.
    • Weiye Loh
       
      It is ironic that while scientists feel that their work are too complex to be evaluated in simplistic terms or matrics, they nevertheless feel ok to evaluate the world in simplistic terms. 
  • It is true that good metrics are difficult to develop, but this is not a reason to abandon them. Rather it should be a spur to basing their development in sound science. If we do not press harder for better metrics, we risk making poor funding decisions or sidelining good scientists.
  • Metrics are data driven, so developing a reliable, joined-up infrastructure is a necessary first step.
  • We need a concerted international effort to combine, augment and institutionalize these databases within a cohesive infrastructure.
  • On an international level, the issue of a unique researcher identification system is one that needs urgent attention. There are various efforts under way in the open-source and publishing communities to create unique researcher identifiers using the same principles as the Digital Object Identifier (DOI) protocol, which has become the international standard for identifying unique documents. The ORCID (Open Researcher and Contributor ID) project, for example, was launched in December 2009 by parties including Thompson Reuters and Nature Publishing Group. The engagement of international funding agencies would help to push this movement towards an international standard.
  • if all funding agencies used a universal template for reporting scientific achievements, it could improve data quality and reduce the burden on investigators.
    • Weiye Loh
       
      So in future, we'll only have one robust matric to evaluate scientific contribution? hmm...
  • Importantly, data collected for use in metrics must be open to the scientific community, so that metric calculations can be reproduced. This also allows the data to be efficiently repurposed.
  • As well as building an open and consistent data infrastructure, there is the added challenge of deciding what data to collect and how to use them. This is not trivial. Knowledge creation is a complex process, so perhaps alternative measures of creativity and productivity should be included in scientific metrics, such as the filing of patents, the creation of prototypes4 and even the production of YouTube videos.
  • Perhaps publications in these different media should be weighted differently in different fields.
  • There needs to be a greater focus on what these data mean, and how they can be best interpreted.
  • This requires the input of social scientists, rather than just those more traditionally involved in data capture, such as computer scientists.
  • An international data platform supported by funding agencies could include a virtual 'collaboratory', in which ideas and potential solutions can be posited and discussed. This would bring social scientists together with working natural scientists to develop metrics and test their validity through wikis, blogs and discussion groups, thus building a community of practice. Such a discussion should be open to all ideas and theories and not restricted to traditional bibliometric approaches.
  • Far-sighted action can ensure that metrics goes beyond identifying 'star' researchers, nations or ideas, to capturing the essence of what it means to be a good scientist.
  •  
    Let's make science metrics more scientific Julia Lane1 Top of pageAbstract To capture the essence of good science, stakeholders must combine forces to create an open, sound and consistent system for measuring all the activities that make up academic productivity, says Julia Lane.
Weiye Loh

Science Warriors' Ego Trips - The Chronicle Review - The Chronicle of Higher Education - 0 views

  • By Carlin Romano Standing up for science excites some intellectuals the way beautiful actresses arouse Warren Beatty, or career liberals boil the blood of Glenn Beck and Rush Limbaugh. It's visceral.
  • A brave champion of beleaguered science in the modern age of pseudoscience, this Ayn Rand protagonist sarcastically derides the benighted irrationalists and glows with a self-anointed superiority. Who wouldn't want to feel that sense of power and rightness?
  • You hear the voice regularly—along with far more sensible stuff—in the latest of a now common genre of science patriotism, Nonsense on Stilts: How to Tell Science From Bunk (University of Chicago Press), by Massimo Pigliucci, a philosophy professor at the City University of New York.
  • ...24 more annotations...
  • it mixes eminent common sense and frequent good reporting with a cocksure hubris utterly inappropriate to the practice it apotheosizes.
  • According to Pigliucci, both Freudian psychoanalysis and Marxist theory of history "are too broad, too flexible with regard to observations, to actually tell us anything interesting." (That's right—not one "interesting" thing.) The idea of intelligent design in biology "has made no progress since its last serious articulation by natural theologian William Paley in 1802," and the empirical evidence for evolution is like that for "an open-and-shut murder case."
  • Pigliucci offers more hero sandwiches spiced with derision and certainty. Media coverage of science is "characterized by allegedly serious journalists who behave like comedians." Commenting on the highly publicized Dover, Pa., court case in which U.S. District Judge John E. Jones III ruled that intelligent-design theory is not science, Pigliucci labels the need for that judgment a "bizarre" consequence of the local school board's "inane" resolution. Noting the complaint of intelligent-design advocate William Buckingham that an approved science textbook didn't give creationism a fair shake, Pigliucci writes, "This is like complaining that a textbook in astronomy is too focused on the Copernican theory of the structure of the solar system and unfairly neglects the possibility that the Flying Spaghetti Monster is really pulling each planet's strings, unseen by the deluded scientists."
  • Or is it possible that the alternate view unfairly neglected could be more like that of Harvard scientist Owen Gingerich, who contends in God's Universe (Harvard University Press, 2006) that it is partly statistical arguments—the extraordinary unlikelihood eons ago of the physical conditions necessary for self-conscious life—that support his belief in a universe "congenially designed for the existence of intelligent, self-reflective life"?
  • Even if we agree that capital "I" and "D" intelligent-design of the scriptural sort—what Gingerich himself calls "primitive scriptural literalism"—is not scientifically credible, does that make Gingerich's assertion, "I believe in intelligent design, lowercase i and lowercase d," equivalent to Flying-Spaghetti-Monsterism? Tone matters. And sarcasm is not science.
  • The problem with polemicists like Pigliucci is that a chasm has opened up between two groups that might loosely be distinguished as "philosophers of science" and "science warriors."
  • Philosophers of science, often operating under the aegis of Thomas Kuhn, recognize that science is a diverse, social enterprise that has changed over time, developed different methodologies in different subsciences, and often advanced by taking putative pseudoscience seriously, as in debunking cold fusion
  • The science warriors, by contrast, often write as if our science of the moment is isomorphic with knowledge of an objective world-in-itself—Kant be damned!—and any form of inquiry that doesn't fit the writer's criteria of proper science must be banished as "bunk." Pigliucci, typically, hasn't much sympathy for radical philosophies of science. He calls the work of Paul Feyerabend "lunacy," deems Bruno Latour "a fool," and observes that "the great pronouncements of feminist science have fallen as flat as the similarly empty utterances of supporters of intelligent design."
  • It doesn't have to be this way. The noble enterprise of submitting nonscientific knowledge claims to critical scrutiny—an activity continuous with both philosophy and science—took off in an admirable way in the late 20th century when Paul Kurtz, of the University at Buffalo, established the Committee for the Scientific Investigation of Claims of the Paranormal (Csicop) in May 1976. Csicop soon after launched the marvelous journal Skeptical Inquirer
  • Although Pigliucci himself publishes in Skeptical Inquirer, his contributions there exhibit his signature smugness. For an antidote to Pigliucci's overweening scientism 'tude, it's refreshing to consult Kurtz's curtain-raising essay, "Science and the Public," in Science Under Siege (Prometheus Books, 2009, edited by Frazier)
  • Kurtz's commandment might be stated, "Don't mock or ridicule—investigate and explain." He writes: "We attempted to make it clear that we were interested in fair and impartial inquiry, that we were not dogmatic or closed-minded, and that skepticism did not imply a priori rejection of any reasonable claim. Indeed, I insisted that our skepticism was not totalistic or nihilistic about paranormal claims."
  • Kurtz combines the ethos of both critical investigator and philosopher of science. Describing modern science as a practice in which "hypotheses and theories are based upon rigorous methods of empirical investigation, experimental confirmation, and replication," he notes: "One must be prepared to overthrow an entire theoretical framework—and this has happened often in the history of science ... skeptical doubt is an integral part of the method of science, and scientists should be prepared to question received scientific doctrines and reject them in the light of new evidence."
  • Pigliucci, alas, allows his animus against the nonscientific to pull him away from sensitive distinctions among various sciences to sloppy arguments one didn't see in such earlier works of science patriotism as Carl Sagan's The Demon-Haunted World: Science as a Candle in the Dark (Random House, 1995). Indeed, he probably sets a world record for misuse of the word "fallacy."
  • To his credit, Pigliucci at times acknowledges the nondogmatic spine of science. He concedes that "science is characterized by a fuzzy borderline with other types of inquiry that may or may not one day become sciences." Science, he admits, "actually refers to a rather heterogeneous family of activities, not to a single and universal method." He rightly warns that some pseudoscience—for example, denial of HIV-AIDS causation—is dangerous and terrible.
  • But at other points, Pigliucci ferociously attacks opponents like the most unreflective science fanatic
  • He dismisses Feyerabend's view that "science is a religion" as simply "preposterous," even though he elsewhere admits that "methodological naturalism"—the commitment of all scientists to reject "supernatural" explanations—is itself not an empirically verifiable principle or fact, but rather an almost Kantian precondition of scientific knowledge. An article of faith, some cold-eyed Feyerabend fans might say.
  • He writes, "ID is not a scientific theory at all because there is no empirical observation that can possibly contradict it. Anything we observe in nature could, in principle, be attributed to an unspecified intelligent designer who works in mysterious ways." But earlier in the book, he correctly argues against Karl Popper that susceptibility to falsification cannot be the sole criterion of science, because science also confirms. It is, in principle, possible that an empirical observation could confirm intelligent design—i.e., that magic moment when the ultimate UFO lands with representatives of the intergalactic society that planted early life here, and we accept their evidence that they did it.
  • "As long as we do not venture to make hypotheses about who the designer is and why and how she operates," he writes, "there are no empirical constraints on the 'theory' at all. Anything goes, and therefore nothing holds, because a theory that 'explains' everything really explains nothing."
  • Here, Pigliucci again mixes up what's likely or provable with what's logically possible or rational. The creation stories of traditional religions and scriptures do, in effect, offer hypotheses, or claims, about who the designer is—e.g., see the Bible.
  • Far from explaining nothing because it explains everything, such an explanation explains a lot by explaining everything. It just doesn't explain it convincingly to a scientist with other evidentiary standards.
  • A sensible person can side with scientists on what's true, but not with Pigliucci on what's rational and possible. Pigliucci occasionally recognizes that. Late in his book, he concedes that "nonscientific claims may be true and still not qualify as science." But if that's so, and we care about truth, why exalt science to the degree he does? If there's really a heaven, and science can't (yet?) detect it, so much the worse for science.
  • Pigliucci quotes a line from Aristotle: "It is the mark of an educated mind to be able to entertain a thought without accepting it." Science warriors such as Pigliucci, or Michael Ruse in his recent clash with other philosophers in these pages, should reflect on a related modern sense of "entertain." One does not entertain a guest by mocking, deriding, and abusing the guest. Similarly, one does not entertain a thought or approach to knowledge by ridiculing it.
  • Long live Skeptical Inquirer! But can we deep-six the egomania and unearned arrogance of the science patriots? As Descartes, that immortal hero of scientists and skeptics everywhere, pointed out, true skepticism, like true charity, begins at home.
  • Carlin Romano, critic at large for The Chronicle Review, teaches philosophy and media theory at the University of Pennsylvania.
  •  
    April 25, 2010 Science Warriors' Ego Trips
Weiye Loh

The Mysterious Decline Effect | Wired Science | Wired.com - 0 views

  • Question #1: Does this mean I don’t have to believe in climate change? Me: I’m afraid not. One of the sad ironies of scientific denialism is that we tend to be skeptical of precisely the wrong kind of scientific claims. In poll after poll, Americans have dismissed two of the most robust and widely tested theories of modern science: evolution by natural selection and climate change. These are theories that have been verified in thousands of different ways by thousands of different scientists working in many different fields. (This doesn’t mean, of course, that such theories won’t change or get modified – the strength of science is that nothing is settled.) Instead of wasting public debate on creationism or the rhetoric of Senator Inhofe, I wish we’d spend more time considering the value of spinal fusion surgery, or second generation antipsychotics, or the verity of the latest gene association study. The larger point is that we need to be a better job of considering the context behind every claim. In 1952, the Harvard philosopher Willard Von Orman published “The Two Dogmas of Empiricism.” In the essay, Quine compared the truths of science to a spider’s web, in which the strength of the lattice depends upon its interconnectedness. (Quine: “The unit of empirical significance is the whole of science.”) One of the implications of Quine’s paper is that, when evaluating the power of a given study, we need to also consider the other studies and untested assumptions that it depends upon. Don’t just fixate on the effect size – look at the web. Unfortunately for the denialists, climate change and natural selection have very sturdy webs.
  • biases are not fraud. We sometimes forget that science is a human pursuit, mingled with all of our flaws and failings. (Perhaps that explains why an episode like Climategate gets so much attention.) If there’s a single theme that runs through the article it’s that finding the truth is really hard. It’s hard because reality is complicated, shaped by a surreal excess of variables. But it’s also hard because scientists aren’t robots: the act of observation is simultaneously an act of interpretation.
  • (As Paul Simon sang, “A man sees what he wants to see and disregards the rest.”) Most of the time, these distortions are unconscious – we don’t know even we are misperceiving the data. However, even when the distortion is intentional it’s still rarely rises to the level of outright fraud. Consider the story of Mike Rossner. He’s executive director of the Rockefeller University Press, and helps oversee several scientific publications, including The Journal of Cell Biology.  In 2002, while trying to format a scientific image in Photoshop that was going to appear in one of the journals, Rossner noticed that the background of the image contained distinct intensities of pixels. “That’s a hallmark of image manipulation,” Rossner told me. “It means the scientist has gone in and deliberately changed what the data looks like. What’s disturbing is just how easy this is to do.” This led Rossner and his colleagues to begin analyzing every image in every accepted paper. They soon discovered that approximately 25 percent of all papers contained at least one “inappropriately manipulated” picture. Interestingly, the vast, vast majority of these manipulations (~99 percent) didn’t affect the interpretation of the results. Instead, the scientists seemed to be photoshopping the pictures for aesthetic reasons: perhaps a line on a gel was erased, or a background blur was deleted, or the contrast was exaggerated. In other words, they wanted to publish pretty images. That’s a perfectly understandable desire, but it gets problematic when that same basic instinct – we want our data to be neat, our pictures to be clean, our charts to be clear – is transposed across the entire scientific process.
  • ...2 more annotations...
  • One of the philosophy papers that I kept on thinking about while writing the article was Nancy Cartwright’s essay “Do the Laws of Physics State the Facts?” Cartwright used numerous examples from modern physics to argue that there is often a basic trade-off between scientific “truth” and experimental validity, so that the laws that are the most true are also the most useless. “Despite their great explanatory power, these laws [such as gravity] do not describe reality,” Cartwright writes. “Instead, fundamental laws describe highly idealized objects in models.”  The problem, of course, is that experiments don’t test models. They test reality.
  • Cartwright’s larger point is that many essential scientific theories – those laws that explain things – are not actually provable, at least in the conventional sense. This doesn’t mean that gravity isn’t true or real. There is, perhaps, no truer idea in all of science. (Feynman famously referred to gravity as the “greatest generalization achieved by the human mind.”) Instead, what the anomalies of physics demonstrate is that there is no single test that can define the truth. Although we often pretend that experiments and peer-review and clinical trials settle the truth for us – that we are mere passive observers, dutifully recording the results – the actuality of science is a lot messier than that. Richard Rorty said it best: “To say that we should drop the idea of truth as out there waiting to be discovered is not to say that we have discovered that, out there, there is no truth.” Of course, the very fact that the facts aren’t obvious, that the truth isn’t “waiting to be discovered,” means that science is intensely human. It requires us to look, to search, to plead with nature for an answer.
Weiye Loh

Adventures in Flay-land: Dealing with Denialists - Delingpole Part III - 0 views

  • This post is about how one should deal with a denialist of Delingpole's ilk.
  • I saw someone I follow on Twitter retweet an update from another Twitter user called @AGW_IS_A_HOAX, which was this: "NZ #Climate Scientists Admit Faking Temperatures http://bit.ly/fHbdPI RT @admrich #AGW #Climategate #Cop16 #ClimateChange #GlobalWarming".
  • So I click on it. And this is how you deal with a denialist claim. You actually look into it. Here is the text of that article reproduced in full: New Zealand Climate Scientists Admit To Faking Temperatures: The Actual Temps Show Little Warming Over Last 50 YearsRead here and here. Climate "scientists" across the world have been blatantly fabricating temperatures in hopes of convincing the public and politicians that modern global warming is unprecedented and accelerating. The scientists doing the fabrication are usually employed by the government agencies or universities, which thrive and exist on taxpayer research dollars dedicated to global warming research. A classic example of this is the New Zealand climate agency, which is now admitting their scientists produced bogus "warming" temperatures for New Zealand. "NIWA makes the huge admission that New Zealand has experienced hardly any warming during the last half-century. For all their talk about warming, for all their rushed invention of the “Eleven-Station Series” to prove warming, this new series shows that no warming has occurred here since about 1960. Almost all the warming took place from 1940-60, when the IPCC says that the effect of CO2 concentrations was trivial. Indeed, global temperatures were falling during that period.....Almost all of the 34 adjustments made by Dr Jim Salinger to the 7SS have been abandoned, along with his version of the comparative station methodology."A collection of temperature-fabrication charts.
  • ...10 more annotations...
  • I check out the first link, the first "here" where the article says "Read here and here". I can see that there's been some sort of dispute between two New Zealand groups associated with climate change. One is New Zealand’s Climate Science Coalition (NZCSC) and the other is New Zealand’s National Institute of Water and Atmospheric Research (NIWA), but it doesn't tell me a whole lot more than I already got from the other article.
  • I check the second source behind that article. The second article, I now realize, is published on the website of a person called Andrew Montford with whom I've been speaking recently and who is the author of a book titled The Hockey Stick Illusion. I would not label Andrew a denialist. He makes some good points and seems to be a decent guy and geniune sceptic (This is not to suggest all denialists are outwardly dishonest; however, they do tend to be hard to reason with). Again, this article doesn't give me anything that I haven't already seen, except a link to another background source. I go there.
  • From this piece written up on Scoop NZNEWSUK I discover that a coalition group consisting of the NZCSC and the Climate Conversation Group (CCG) has pressured the NIWA into abandoning a set of temperature record adjustments of which the coalition dispute the validity. This was the culmination of a court proceeding in December 2010, last month. In dispute were 34 adjustments that had been made by Dr Jim Salinger to the 7SS temperature series, though I don't know what that is exactly. I also discover that there is a guy called Richard Treadgold, Convenor of the CCG, who is quoted several times. Some of the statements he makes are quoted in the articles I've already seen. They are of a somewhat snide tenor. The CSC object to the methodology used by the NIWA to adjust temperature measurements (one developed as part of a PhD thesis), which they critique in a paper in November 2009 with the title "Are we feeling warmer yet?", and are concerned about how this public agency is spending its money. I'm going to have to dig a bit deeper if I want to find out more. There is a section with links under the heading "Related Stories on Scoop". I click on a few of those.
  • One of these leads me to more. Of particular interest is a fairly neutral article outlining the progress of the court action. I get some more background: For the last ten years, visitors to NIWA’s official website have been greeted by a graph of the “seven-station series” (7SS), under the bold heading “New Zealand Temperature Record”. The graph covers the period from 1853 to the present, and is adorned by a prominent trend-line sloping sharply upwards. Accompanying text informs the world that “New Zealand has experienced a warming trend of approximately 0.9°C over the past 100 years.” The 7SS has been updated and used in every monthly issue of NIWA’s “Climate Digest” since January 1993. Its 0.9°C (sometimes 1.0°C) of warming has appeared in the Australia/NZ Chapter of the IPCC’s 2001 and 2007 Assessment Reports. It has been offered as sworn evidence in countless tribunals and judicial enquiries, and provides the historical base for all of NIWA’s reports to both Central and Local Governments on climate science issues and future projections.
  • now I can see why this is so important. The temperature record informs the conclusions of the IPCC assessment reports and provides crucial evidence for global warming.
  • Further down we get: NIWA announces that it has now completed a full internal examination of the Salinger adjustments in the 7SS, and has forwarded its “review papers” to its Australian counterpart, the Bureau of Meteorology (BOM) for peer review.and: So the old 7SS has already been repudiated. A replacement NZTR [New Zealand Temperature Record] is being prepared by NIWA – presumably the best effort they are capable of producing. NZCSC is about to receive what it asked for. On the face of it, there’s nothing much left for the Court to adjudicate.
  • NIWA has been forced to withdraw its earlier temperature record and replace it with a new one. Treadgold quite clearly states that "NIWA makes the huge admission that New Zealand has experienced hardly any warming during the last half-century" and that "the new temperature record shows no evidence of a connection with global warming." Earlier in the article he also stresses the role of the CSC in achieving these revisions, saying "after 12 months of futile attempts to persuade the public, misleading answers to questions in the Parliament from ACT and reluctant but gradual capitulation from NIWA, their relentless defence of the old temperature series has simply evaporated. They’ve finally given in, but without our efforts the faulty graph would still be there."
  • All this leads me to believe that if I look at the website of NIWA I will see a retraction of the earlier position and a new position that New Zealand has experienced no unusual warming. This is easy enough to check. I go there. Actually, I search for it to find the exact page. Here is the 7SS page on the NIWA site. Am I surprised that NIWA have retracted nothing and that in fact their revised graph shows similar results? Not really. However, I am somewhat surprised by this page on the Climate Conversation Group website which claims that the 7SS temperature record is as dead as the parrot in the Monty Python sketch. It says "On the eve of Christmas, when nobody was looking, NIWA declared that New Zealand had a new official temperature record (the NZT7) and whipped the 7SS off its website." However, I've already seen that this is not true. Perhaps there was once a 7SS graph and information about the temperature record on the site's homepage that can no longer be seen. I don't know. I can only speculate. I know that there is a section on the NIWA site about the 7SS temperature record that contains a number of graphs and figures and discusses recent revisions. It has been updated as recently as December 2010, last month. The NIWA page talks all about the 7SS series and has a heading that reads "Our new analysis confirms the warming trend".
  • The CCG page claims that the new NZT7 is not in fact a revision but rather a replacement. Although it results in a similar curve, the adjustments that were made are very different. Frankly I can't see how that matters at the end of the day. Now, I don't really know whether I can believe that the NIWA analysis is true, but what I am in no doubt of whatsoever is that the statements made by Richard Treadgold that were quoted in so many places are at best misleading. The NIWA has not changed its position in the slightest. The assertion that the NIWA have admitted that New Zealand has not warmed much since 1960 is a politician's careful argument. Both analyses showed the same result. This is a fact that NIWA have not disputed; however, they still maintain a connection to global warming. A document explaining the revisions talks about why the warming has slowed after 1960: The unusually steep warming in the 1940-1960 period is paralleled by an unusually large increase in northerly flow* during this same period. On a longer timeframe, there has been a trend towards less northerly flow (more southerly) since about 1960. However, New Zealand temperatures have continued to increase over this time, albeit at a reduced rate compared with earlier in the 20th century. This is consistent with a warming of the whole region of the southwest Pacific within which New Zealand is situated.
  • Denialists have taken Treadgold's misleading mantra and spread it far and wide including on Twitter and fringe websites, but it is faulty as I've just demonstrated. Why do people do this? Perhaps they are hoping that others won't check the sources. Most people don't. I hope this serves as a lesson for why you always should.
Weiye Loh

BBC News - Should victims have a say in sentencing criminals? - 0 views

  • If someone does you wrong, should you have a say in their punishment?
  • Should victims have a say in sentencing criminals? That partly depends upon what you mean by "have a say". A weak form of involvement would have a judge listen to a statement from victims, but ensure the judge alone does the sentencing. A slightly stronger form would be when the impact on victims is considered as part of assessing the moral seriousness of the crime. The strongest form would be when victims have a direct say in the type of sentence. So which is the more just?
  • A utilitarian approach, which seeks people's greatest happiness and is associated with the British philosopher Jeremy Bentham, can provide one reason why victims should, in part, play judge. It can be called the therapeutic argument.
  • ...6 more annotations...
  • However, this might backfire. Given the choice, many victims might desire longer sentences than the judiciary would allow. When that desire is not satisfied, their anguish might be exacerbated. The therapeutic argument has also been called the "Oprahisation" of sentencing.
  • The second, Kantian approach emphasises reason and rights.
  • It stresses the law should be rational, and that includes keeping careful tabs on the irrational feelings that are inevitably present during legal proceedings. This would be harder to do, the more the voice of victims is heard.
  • More seriously still, strong forms of victim sentencing would reflect the capabilities of the victim. A victim who could powerfully express their feelings might win a longer sentence. That would be irrational because it would suggest that a crime is more serious if the victim is more articulate.
  • Taking considerations of moral seriousness into account would fit within a third approach, the one that stresses the common good and virtue and is associated with Aristotle. Would you want to meet the person who did this to you? Understanding the moral seriousness of a crime is important because it helps the criminal to take responsibility for what they've done. Victim feelings are also a crucial component in so-called restorative justice, in which the criminal is confronted with their crime, perhaps by meeting the victim.
  • virtue ethics approach would be concerned with the moral state of the victim too. Victims may need to forgive those who have wronged them, in order that they might flourish in the future. An impersonal legal system, that does not allow victims a say, might actually help with that, as it ensures objectivity.
Weiye Loh

Approaching the cliffs of time - Plane Talking - 0 views

  • have you noticed how the capacity of the media to explain in lay terms such matters as quantum physics, or cosmology, is contracting faster than the universe is expanding? The more mind warping the discoveries the less opportunity there is to fit them into 30 seconds in a news cast, or 300 words in print.
  • There has been a long running conspiracy of convenience between science reporters and the science being reported to leave out inconvenient time and space consuming explanations, and go for the punch line that best suits the use of the media to lobby for more project funding.
  • Almost every space story I have written over 50 years has been about projects claiming to ‘discover the origins of the solar system/life on earth/life on Mars/discover the origins of the universe, or recover parts of things like comets because they are as old as the sun, except that we have discovered they aren’t ancient at all.’ None of them were ever designed to achieved those goals. They were brilliant projects, brilliantly misrepresented by the scientists and the reporters because an accurate story would have been incomprehensible to 99.9% of readers or viewers.
  • ...3 more annotations...
  • this push to abbreviate and banalify the more esoteric but truly intriguing mysteries of the universe has lurched close to parody yet failed to be as thoughtfully funny as Douglas Adams was with the Hitchhiker’s Guide to the Galaxy
  • Our most powerful telescopes are approaching what Columbia physicist and mathematician Brian Greene recently called the cliffs of time,  beyond which an infinitely large yet progressively emptier universe lies forever invisible to us and vice versa, since to that universe, we also lie beyond the cliffs of time. This capturing of images from the start of time is being done by finding incredibly faint and old light using computing power and forensic techniques not even devised when Hubble was assembled on earth. In this instance Hubble has found the faint image of an object that emitted light a mere 480 million years after the ‘big bang’ 13.7 billion years ago. It is, thus, nearly as old as time itself.
  • The conspiracy of over simplification has until now kept the really gnarly principles involved in big bang theory out of the general media because nothing short of a first class degree in theoretical and practical physics is going to suffice for a reasonable overview. Plus a 100,000 word article with a few thousand diagrams.
Weiye Loh

TPM: The Philosophers' Magazine | Is morality relative? Depends on your personality - 0 views

  • no real evidence is ever offered for the original assumption that ordinary moral thought and talk has this objective character. Instead, philosophers tend simply to assert that people’s ordinary practice is objectivist and then begin arguing from there.
  • If we really want to go after these issues in a rigorous way, it seems that we should adopt a different approach. The first step is to engage in systematic empirical research to figure out how the ordinary practice actually works. Then, once we have the relevant data in hand, we can begin looking more deeply into the philosophical implications – secure in the knowledge that we are not just engaging in a philosophical fiction but rather looking into the philosophical implications of people’s actual practices.
  • in the past few years, experimental philosophers have been gathering a wealth of new data on these issues, and we now have at least the first glimmerings of a real empirical research program here
  • ...8 more annotations...
  • when researchers took up these questions experimentally, they did not end up confirming the traditional view. They did not find that people overwhelmingly favoured objectivism. Instead, the results consistently point to a more complex picture. There seems to be a striking degree of conflict even in the intuitions of ordinary folks, with some people under some circumstances offering objectivist answers, while other people under other circumstances offer more relativist views. And that is not all. The experimental results seem to be giving us an ever deeper understanding of why it is that people are drawn in these different directions, what it is that makes some people move toward objectivism and others toward more relativist views.
  • consider a study by Adam Feltz and Edward Cokely. They were interested in the relationship between belief in moral relativism and the personality trait openness to experience. Accordingly, they conducted a study in which they measured both openness to experience and belief in moral relativism. To get at people’s degree of openness to experience, they used a standard measure designed by researchers in personality psychology. To get at people’s agreement with moral relativism, they told participants about two characters – John and Fred – who held opposite opinions about whether some given act was morally bad. Participants were then asked whether one of these two characters had to be wrong (the objectivist answer) or whether it could be that neither of them was wrong (the relativist answer). What they found was a quite surprising result. It just wasn’t the case that participants overwhelmingly favoured the objectivist answer. Instead, people’s answers were correlated with their personality traits. The higher a participant was in openness to experience, the more likely that participant was to give a relativist answer.
  • Geoffrey Goodwin and John Darley pursued a similar approach, this time looking at the relationship between people’s belief in moral relativism and their tendency to approach questions by considering a whole variety of possibilities. They proceeded by giving participants mathematical puzzles that could only be solved by looking at multiple different possibilities. Thus, participants who considered all these possibilities would tend to get these problems right, whereas those who failed to consider all the possibilities would tend to get the problems wrong. Now comes the surprising result: those participants who got these problems right were significantly more inclined to offer relativist answers than were those participants who got the problems wrong.
  • Shaun Nichols and Tricia Folds-Bennett looked at how people’s moral conceptions develop as they grow older. Research in developmental psychology has shown that as children grow up, they develop different understandings of the physical world, of numbers, of other people’s minds. So what about morality? Do people have a different understanding of morality when they are twenty years old than they do when they are only four years old? What the results revealed was a systematic developmental difference. Young children show a strong preference for objectivism, but as they grow older, they become more inclined to adopt relativist views. In other words, there appears to be a developmental shift toward increasing relativism as children mature. (In an exciting new twist on this approach, James Beebe and David Sackris have shown that this pattern eventually reverses, with middle-aged people showing less inclination toward relativism than college students do.)
  • People are more inclined to be relativists when they score highly in openness to experience, when they have an especially good ability to consider multiple possibilities, when they have matured past childhood (but not when they get to be middle-aged). Looking at these various effects, my collaborators and I thought that it might be possible to offer a single unifying account that explained them all. Specifically, our thought was that people might be drawn to relativism to the extent that they open their minds to alternative perspectives. There could be all sorts of different factors that lead people to open their minds in this way (personality traits, cognitive dispositions, age), but regardless of the instigating factor, researchers seemed always to be finding the same basic effect. The more people have a capacity to truly engage with other perspectives, the more they seem to turn toward moral relativism.
  • To really put this hypothesis to the test, Hagop Sarkissian, Jennifer Wright, John Park, David Tien and I teamed up to run a series of new studies. Our aim was to actually manipulate the degree to which people considered alternative perspectives. That is, we wanted to randomly assign people to different conditions in which they would end up thinking in different ways, so that we could then examine the impact of these different conditions on their intuitions about moral relativism.
  • The results of the study showed a systematic difference between conditions. In particular, as we moved toward more distant cultures, we found a steady shift toward more relativist answers – with people in the first condition tending to agree with the statement that at least one of them had to be wrong, people in the second being pretty evenly split between the two answers, and people in the third tending to reject the statement quite decisively.
  • If we learn that people’s ordinary practice is not an objectivist one – that it actually varies depending on the degree to which people take other perspectives into account – how can we then use this information to address the deeper philosophical issues about the true nature of morality? The answer here is in one way very complex and in another very simple. It is complex in that one can answer such questions only by making use of very sophisticated and subtle philosophical methods. Yet, at the same time, it is simple in that such methods have already been developed and are being continually refined and elaborated within the literature in analytic philosophy. The trick now is just to take these methods and apply them to working out the implications of an ordinary practice that actually exists.
Weiye Loh

Happiness: Do we have a choice? » Scienceline - 0 views

  • “Objective choices make a difference to happiness over and above genetics and personality,” said Bruce Headey, a psychologist at Melbourne University in Australia. Headey and his colleagues analyzed annual self-reports of life satisfaction from over 20,000 Germans who have been interviewed every year since 1984. He compared five-year averages of people’s reported life satisfaction, and plotted their relative happiness on a percentile scale from 1 to 100. Heady found that as time went on, more and more people recorded substantial changes in their life satisfaction. By 2008, more than a third had moved up or down on the happiness scale by at least 25 percent, compared to where they had started in 1984.
  • Headey’s findings, published in the October 19th issue of Proceedings of the National Academy of Sciences, run contrary to what is known as the happiness set-point theory — the idea that even if you win the lottery or become a paraplegic, you’ll revert back to the same fixed level of happiness within a year or two. This psychological theory was widely accepted in the 1990s because it explained why happiness levels seemed to remain stable over the long term: They were mainly determined early in life by genetic factors including personality traits.
  • But even this dynamic choice-driven picture does not fully capture the nuance of what it means to be happy, said Jerome Kagan, a Harvard University developmental psychologist. He warns against conflating two distinct dimensions of happiness: everyday emotional experience (an assessment of how you feel at the moment) and life evaluation (a judgment of how satisfied you are with your life). It’s the difference between “how often did you smile yesterday?” and “how does your life compare to the best possible life you can imagine?”
  • ...4 more annotations...
  • Kagan suggests that we may have more choice over the latter, because life evaluation is not a function of how we currently feel — it is a comparison of our life to what we decide the good life should be.
  • Kagan has found that young children differ biologically in the ease with which they can feel happy, or tense, or distressed, or sad — what he calls temperament. People establish temperament early in life and have little capacity to change it. But they can change their life evaluation, which Kagan describes as an ethical concept synonymous with “how good of a life have I led?” The answer will depend on individual choices and the purpose they create for themselves. A painter who is constantly stressed and moody (unhappy in the moment) may still feel validation in creating good artwork and may be very satisfied with his life (happy as a judgment).
  • when it comes to happiness, our choices may matter — but it depends on what the choices are about, and how we define what we want to change.
  • Graham thinks that people may evaluate their happiness based on whichever dimension — happiness at the moment, or life evaluation — they have a choice over.
  •  
    Instead of existing as a stable equilibrium, Headey suggests that happiness is much more dynamic, and that individual choices - about one's partner, working hours, social participation and lifestyle - make substantial and permanent changes to reported happiness levels. For example, doing more or fewer paid hours of work than you want, or exercising regularly, can have just as much impact on life satisfaction as having an extroverted personality.
Weiye Loh

Roger Pielke Jr.'s Blog: Science Impact - 0 views

  • The Guardian has a blog post up by three neuroscientists decrying the state of hype in the media related to their field, which is fueled in part by their colleagues seeking "impact." 
  • Anyone who has followed recent media reports that electrical brain stimulation "sparks bright ideas" or "unshackles the genius within" could be forgiven for believing that we stand on the frontier of a brave new world. As James Gallagher of the BBC put it, "Are we entering the era of the thinking cap – a device to supercharge our brains?" The answer, we would suggest, is a categorical no. Such speculations begin and end in the colourful realm of science fiction. But we are also in danger of entering the era of the "neuro-myth", where neuroscientists sensationalise and distort their own findings in the name of publicity. The tendency for scientists to over-egg the cake when dealing with the media is nothing new, but recent examples are striking in their disregard for accurate reporting to the public. We believe the media and academic community share a collective responsibility to prevent pseudoscience from masquerading as neuroscience.
  • They identify an . . . . . . unacceptable gulf between, on the one hand, the evidence-bound conclusions reached in peer-reviewed scientific journals, and on the other, the heavy spin applied by scientists to achieve publicity in the media. Are we as neuroscientists so unskilled at communicating with the public, or so low in our estimation of the public's intelligence, that we see no alternative but to mislead and exaggerate?
  • ...1 more annotation...
  • Somewhere down the line, achieving an impact in the media seems to have become the goal in itself, rather than what it should be: a way to inform and engage the public with clarity and objectivity, without bias or prejudice. Our obsession with impact is not one-sided. The craving of scientists for publicity is fuelled by a hurried and unquestioning media, an academic community that disproportionately rewards publication in "high impact" journals such as Nature, and by research councils that emphasise the importance of achieving "impact" while at the same time delivering funding cuts. Academics are now pushed to attend media training courses, instructed about "pathways to impact", required to include detailed "impact summaries" when applying for grant funding, and constantly reminded about the importance of media engagement to further their careers. Yet where in all of this strategising and careerism is it made clear why public engagement is important? Where is it emphasised that the most crucial consideration in our interactions with the media is that we are accurate, honest and open about the limitations of our research?
  •  
    The Guardian has a blog post up by three neuroscientists decrying the state of hype in the media related to their field, which is fueled in part by their colleagues seeking "impact." 
Weiye Loh

Mike Adams Remains True to Form « Alternative Medicine « Health « Skeptic North - 0 views

  • The 10:23 demonstrations and the CBC Marketplace coverage have elicited fascinating case studies in CAM professionalism. Rather than offering any new information or evidence about homeopathy itself, some homeopaths have spuriously accused skeptical groups of being malicious Big Pharma shills.
  • Mike Adams of the Natural News website
  • has decided to provide his own coverage of the 10:23 campaign
  • ...17 more annotations...
  • Mike’s thesis is essentially: Silly skeptics, it’s impossible to OD on homeopathy!
  • 1. “Notice that they never consume their own medicines in large doses? Chemotherapy? Statin drugs? Blood thinners? They wouldn’t dare drink those.
  • Of course we wouldn’t. Steven Novella rightly points out that, though Mike thinks he’s being clever here, he’s actually demonstrating a lack of understanding for what the 10:23 campaign is about by using a straw man. Mike later issues a challenge for skeptics to drink their favourite medicines while he drinks homeopathy. Since no one will agree to that for the reasons explained above, he can claim some sort of victory — hence his smugness. But no one is saying that drugs aren’t harmful.
  • The difference between medicine and poison is in the dose. The vitamins and herbs promoted by the CAM industry are just as potentially harmful as any pharmaceutical drug, given enough of it. Would Adams be willing to OD on the vitamins or herbal remedies that he sells?
  • Even Adams’ favorite panacea, vitamin D, is toxic if you take enough of it (just ask Gary Null). Notice how skeptics don’t consume those either, because that is not the point they’re making.
  • The point of these demonstrations is that homeopathy has nothing in it, has no measurable physiological effects, and does not do what is advertised on the package.
  • 2. “Homeopathy, you see, isn’t a drug. It’s not a chemical.” Well, he’s got that right. “You know the drugs are kicking in when you start getting worse. Toxicity and conventional medicine go hand in hand.” [emphasis his]
  • Here I have to wonder if Adams knows any people with diabetes, AIDS, or any other illness that used to mean a death sentence before the significant medical advances of the 20th century that we now take for granted. So far he seems to be a firm believer in the false dichotomy that drugs are bad and natural products are good, regardless of what’s in them or how they’re used (as we know, natural products can have biologically active substances and effectively act as impure drugs – but leave it to Adams not to get bogged down with details). There is nothing to support the assertion that conventional medicine is nothing but toxic symptom-inducers.
  • 3-11. “But homeopathy isn’t a chemical. It’s a resonance. A vibration, or a harmony. It’s the restructuring of water to resonate with the particular energy of a plant or substance. We can get into the physics of it in a subsequent article, but for now it’s easy to recognize that even from a conventional physics point of view, liquid water has tremendous energy, and it’s constantly in motion, not just at the molecular level but also at the level of its subatomic particles and so-called “orbiting electrons” which aren’t even orbiting in the first place. Electrons are vibrations and not physical objects.” [emphasis his]
  • This is Star Trek-like technobabble – lots of sciency words
  • if something — anything — has an effect, then that effect is measurable by definition. Either something works or it doesn’t, regardless of mechanism. In any case, I’d like to see the well-documented series of research that conclusively proves this supposed mechanism. Actually, I’d like to see any credible research at all. I know what the answer will be to that: science can’t detect this yet. Well if you agree with that statement, reader, ask yourself this: then how does Adams know? Where did he get this information? Without evidence, he is guessing, and what is that really worth?
  • 13. “But getting back to water and vibrations, which isn’t magic but rather vibrational physics, you can’t overdose on a harmony. If you have one violin playing a note in your room, and you add ten more violins — or a hundred more — it’s all still the same harmony (with all its complex higher frequencies, too). There’s no toxicity to it.” [emphasis his]
  • Homeopathy has standard dosing regimes (they’re all the same), but there is no “dose” to speak of: the ingredients have usually been diluted out to nothing. But Adams is also saying that homeopathy doesn’t work by dose at all, it works by the properties of “resonance” and “vibration”. Then why any dosing regimen? To maintain the resonance? How is this resonance measured? How long does the “resonance” last? Why does it wear off? Why does he think televisions can inactivate homeopathy? (I think I might know the answer to that last one, as electronic interference is a handy excuse for inefficacy.)
  • “These skeptics just want to kill themselves… and they wouldn’t mind taking a few of you along with them, too. Hence their promotion of vaccines, pharmaceuticals, chemotherapy and water fluoridation. We’ll title the video, “SKEPTICS COMMIT MASS SUICIDE BY DRINKING PHARMACEUTICALS AS IF THEY WERE KOOL-AID.” Jonestown, anyone?”
  • “Do you notice the irony here? The only medicines they’re willing to consume in large doses in public are homeopathic remedies! They won’t dare consume large quantities of the medicines they all say YOU should be taking! (The pharma drugs.)” [emphasis his]
  • what Adams seems to have missed is that the skeptics have no intention of killing themselves, so his bizarre claims that the 10:23 participants are psychopathic, self-loathing, and suicidal makes not even a little bit of sense. Skeptics know they aren’t going to die with these demonstrations, because homeopathy has no active ingredients and no evidence of efficacy.
  • The inventor of homeopathy himself, Samuel Hahnemann believed that excessive doses of homeopathy could be harmful (see sections 275 and 276 of his Organon). Homeopaths are pros at retconning their own field to fit in with Hahnemann’s original ideas (inventing new mechanisms, such as water memory and resonance, in the face of germ theory). So how does Adams reconcile this claim?
Weiye Loh

Can a group of scientists in California end the war on climate change? | Science | The ... - 0 views

  • Muller calls his latest obsession the Berkeley Earth project. The aim is so simple that the complexity and magnitude of the undertaking is easy to miss. Starting from scratch, with new computer tools and more data than has ever been used, they will arrive at an independent assessment of global warming. The team will also make every piece of data it uses – 1.6bn data points – freely available on a website. It will post its workings alongside, including full information on how more than 100 years of data from thousands of instruments around the world are stitched together to give a historic record of the planet's temperature.
  • Muller is fed up with the politicised row that all too often engulfs climate science. By laying all its data and workings out in the open, where they can be checked and challenged by anyone, the Berkeley team hopes to achieve something remarkable: a broader consensus on global warming. In no other field would Muller's dream seem so ambitious, or perhaps, so naive.
  • "We are bringing the spirit of science back to a subject that has become too argumentative and too contentious," Muller says, over a cup of tea. "We are an independent, non-political, non-partisan group. We will gather the data, do the analysis, present the results and make all of it available. There will be no spin, whatever we find." Why does Muller feel compelled to shake up the world of climate change? "We are doing this because it is the most important project in the world today. Nothing else comes close," he says.
  • ...20 more annotations...
  • There are already three heavyweight groups that could be considered the official keepers of the world's climate data. Each publishes its own figures that feed into the UN's Intergovernmental Panel on Climate Change. Nasa's Goddard Institute for Space Studies in New York City produces a rolling estimate of the world's warming. A separate assessment comes from another US agency, the National Oceanic and Atmospheric Administration (Noaa). The third group is based in the UK and led by the Met Office. They all take readings from instruments around the world to come up with a rolling record of the Earth's mean surface temperature. The numbers differ because each group uses its own dataset and does its own analysis, but they show a similar trend. Since pre-industrial times, all point to a warming of around 0.75C.
  • You might think three groups was enough, but Muller rolls out a list of shortcomings, some real, some perceived, that he suspects might undermine public confidence in global warming records. For a start, he says, warming trends are not based on all the available temperature records. The data that is used is filtered and might not be as representative as it could be. He also cites a poor history of transparency in climate science, though others argue many climate records and the tools to analyse them have been public for years.
  • Then there is the fiasco of 2009 that saw roughly 1,000 emails from a server at the University of East Anglia's Climatic Research Unit (CRU) find their way on to the internet. The fuss over the messages, inevitably dubbed Climategate, gave Muller's nascent project added impetus. Climate sceptics had already attacked James Hansen, head of the Nasa group, for making political statements on climate change while maintaining his role as an objective scientist. The Climategate emails fuelled their protests. "With CRU's credibility undergoing a severe test, it was all the more important to have a new team jump in, do the analysis fresh and address all of the legitimate issues raised by sceptics," says Muller.
  • This latest point is where Muller faces his most delicate challenge. To concede that climate sceptics raise fair criticisms means acknowledging that scientists and government agencies have got things wrong, or at least could do better. But the debate around global warming is so highly charged that open discussion, which science requires, can be difficult to hold in public. At worst, criticising poor climate science can be taken as an attack on science itself, a knee-jerk reaction that has unhealthy consequences. "Scientists will jump to the defence of alarmists because they don't recognise that the alarmists are exaggerating," Muller says.
  • The Berkeley Earth project came together more than a year ago, when Muller rang David Brillinger, a statistics professor at Berkeley and the man Nasa called when it wanted someone to check its risk estimates of space debris smashing into the International Space Station. He wanted Brillinger to oversee every stage of the project. Brillinger accepted straight away. Since the first meeting he has advised the scientists on how best to analyse their data and what pitfalls to avoid. "You can think of statisticians as the keepers of the scientific method, " Brillinger told me. "Can scientists and doctors reasonably draw the conclusions they are setting down? That's what we're here for."
  • For the rest of the team, Muller says he picked scientists known for original thinking. One is Saul Perlmutter, the Berkeley physicist who found evidence that the universe is expanding at an ever faster rate, courtesy of mysterious "dark energy" that pushes against gravity. Another is Art Rosenfeld, the last student of the legendary Manhattan Project physicist Enrico Fermi, and something of a legend himself in energy research. Then there is Robert Jacobsen, a Berkeley physicist who is an expert on giant datasets; and Judith Curry, a climatologist at Georgia Institute of Technology, who has raised concerns over tribalism and hubris in climate science.
  • Robert Rohde, a young physicist who left Berkeley with a PhD last year, does most of the hard work. He has written software that trawls public databases, themselves the product of years of painstaking work, for global temperature records. These are compiled, de-duplicated and merged into one huge historical temperature record. The data, by all accounts, are a mess. There are 16 separate datasets in 14 different formats and they overlap, but not completely. Muller likens Rohde's achievement to Hercules's enormous task of cleaning the Augean stables.
  • The wealth of data Rohde has collected so far – and some dates back to the 1700s – makes for what Muller believes is the most complete historical record of land temperatures ever compiled. It will, of itself, Muller claims, be a priceless resource for anyone who wishes to study climate change. So far, Rohde has gathered records from 39,340 individual stations worldwide.
  • Publishing an extensive set of temperature records is the first goal of Muller's project. The second is to turn this vast haul of data into an assessment on global warming.
  • The big three groups – Nasa, Noaa and the Met Office – work out global warming trends by placing an imaginary grid over the planet and averaging temperatures records in each square. So for a given month, all the records in England and Wales might be averaged out to give one number. Muller's team will take temperature records from individual stations and weight them according to how reliable they are.
  • This is where the Berkeley group faces its toughest task by far and it will be judged on how well it deals with it. There are errors running through global warming data that arise from the simple fact that the global network of temperature stations was never designed or maintained to monitor climate change. The network grew in a piecemeal fashion, starting with temperature stations installed here and there, usually to record local weather.
  • Among the trickiest errors to deal with are so-called systematic biases, which skew temperature measurements in fiendishly complex ways. Stations get moved around, replaced with newer models, or swapped for instruments that record in celsius instead of fahrenheit. The times measurements are taken varies, from say 6am to 9pm. The accuracy of individual stations drift over time and even changes in the surroundings, such as growing trees, can shield a station more from wind and sun one year to the next. Each of these interferes with a station's temperature measurements, perhaps making it read too cold, or too hot. And these errors combine and build up.
  • This is the real mess that will take a Herculean effort to clean up. The Berkeley Earth team is using algorithms that automatically correct for some of the errors, a strategy Muller favours because it doesn't rely on human interference. When the team publishes its results, this is where the scrutiny will be most intense.
  • Despite the scale of the task, and the fact that world-class scientific organisations have been wrestling with it for decades, Muller is convinced his approach will lead to a better assessment of how much the world is warming. "I've told the team I don't know if global warming is more or less than we hear, but I do believe we can get a more precise number, and we can do it in a way that will cool the arguments over climate change, if nothing else," says Muller. "Science has its weaknesses and it doesn't have a stranglehold on the truth, but it has a way of approaching technical issues that is a closer approximation of truth than any other method we have."
  • It might not be a good sign that one prominent climate sceptic contacted by the Guardian, Canadian economist Ross McKitrick, had never heard of the project. Another, Stephen McIntyre, whom Muller has defended on some issues, hasn't followed the project either, but said "anything that [Muller] does will be well done". Phil Jones at the University of East Anglia was unclear on the details of the Berkeley project and didn't comment.
  • Elsewhere, Muller has qualified support from some of the biggest names in the business. At Nasa, Hansen welcomed the project, but warned against over-emphasising what he expects to be the minor differences between Berkeley's global warming assessment and those from the other groups. "We have enough trouble communicating with the public already," Hansen says. At the Met Office, Peter Stott, head of climate monitoring and attribution, was in favour of the project if it was open and peer-reviewed.
  • Peter Thorne, who left the Met Office's Hadley Centre last year to join the Co-operative Institute for Climate and Satellites in North Carolina, is enthusiastic about the Berkeley project but raises an eyebrow at some of Muller's claims. The Berkeley group will not be the first to put its data and tools online, he says. Teams at Nasa and Noaa have been doing this for many years. And while Muller may have more data, they add little real value, Thorne says. Most are records from stations installed from the 1950s onwards, and then only in a few regions, such as North America. "Do you really need 20 stations in one region to get a monthly temperature figure? The answer is no. Supersaturating your coverage doesn't give you much more bang for your buck," he says. They will, however, help researchers spot short-term regional variations in climate change, something that is likely to be valuable as climate change takes hold.
  • Despite his reservations, Thorne says climate science stands to benefit from Muller's project. "We need groups like Berkeley stepping up to the plate and taking this challenge on, because it's the only way we're going to move forwards. I wish there were 10 other groups doing this," he says.
  • Muller's project is organised under the auspices of Novim, a Santa Barbara-based non-profit organisation that uses science to find answers to the most pressing issues facing society and to publish them "without advocacy or agenda". Funding has come from a variety of places, including the Fund for Innovative Climate and Energy Research (funded by Bill Gates), and the Department of Energy's Lawrence Berkeley Lab. One donor has had some climate bloggers up in arms: the man behind the Charles G Koch Charitable Foundation owns, with his brother David, Koch Industries, a company Greenpeace called a "kingpin of climate science denial". On this point, Muller says the project has taken money from right and left alike.
  • No one who spoke to the Guardian about the Berkeley Earth project believed it would shake the faith of the minority who have set their minds against global warming. "As new kids on the block, I think they will be given a favourable view by people, but I don't think it will fundamentally change people's minds," says Thorne. Brillinger has reservations too. "There are people you are never going to change. They have their beliefs and they're not going to back away from them."
Weiye Loh

Do Fights Over Climate Communication Reflect the End of 'Scientism'? - NYTimes.com - 0 views

  • climate (mis)communication. Two sessions explored a focal point of this blog, the interface of climate science and policy, and the roles of scientists and the media in fostering productive discourse. Both discussions homed in on an uncomfortable reality — the erosion of a longstanding presumption that scientific information, if communicated more effectively, will end up framing policy choices.
  • First I sat in on a symposium on the  future of climate communication in a world where traditional science journalism is a shrinking wedge of a growing pie of communication options. The discussion didn’t really provide many answers, but did reveal the persistent frustrations of some scientists with the way the media cover their field.
  • Sparks flew between Kerry Emanuel, a climatologist long focused on hurricanes and warming, and Seth Borenstein, who covers climate and other science for the Associated Press. Borenstein spoke highly of a Boston Globe dual profile of Emanuel and his colleague at the Massachusetts Institute of Technology,  Richard Lindzen. To Emanuel, the piece was a great example of what he described as “he said, he said” coverage of science. Borenstein replied that this particular piece was not centered on the science, but on the men — in the context of their relationship, research and worldviews. (It’s worth noting that Emanuel, whom I’ve been interviewing on hurricanes and climate since 1988, describes himself as  a conservative and, mainly, Republican voter.)
  • ...11 more annotations...
  • Keith Kloor, blogging on the session  at Collide-a-Scape, included a sobering assessment of the scientist-journalist tensions over global warming from Tom Rosensteil, a panelist and long-time journalist who now heads up Pew’s Project for Excellence in Journalism: If you’re waiting for the press to persuade the public, you’re going to lose. The press doesn’t see that as its job.
  • scientists have  a great opportunity, and responsibility, to tell their own story more directly, as some are doing occasionally through Dot Earth “ Post Cards” and The Times’ Scientist at Work blog.
  • Naomi Oreskes, a political scientist at the University of California, San Diego, and co-author of “Merchants of Doubt“: Of Mavericks and Mules Gavin Schmidt of NASA’s Goddard Institute for Space Studies and Realclimate.org: Between Sound Bites and the Scientific Paper: Communicating in the Hinterland Thomas Lessl, a scholar at the University of Georgia focused on the cultural history of science: Reforming Scientific Communication About Anthropogenic Climate Change
  • I focused on two words in the title of the session — diversity and denial. The diversity of lines of inquiry in climate science has a two-pronged impact. It helps build a robust overall picture of a growing human influence on a complex system. But for many of the most important  pixel points in that picture, there is robust, durable and un-manufactured debate. That debate can then be exploited by naysayers eager to cast doubt on the enterprise, when in fact — as I’ve written here before — it’s simply the (sometimes ugly) way that science progresses.
  • My denial, I said, lay in my longstanding presumption, like that of many scientists and journalists, that better communication of information will tend to change people’s perceptions, priorities and behavior. This attitude, in my view, crested for climate scientists in the wake of the 2007 report from the Intergovernmental Panel on Climate Change.
  • In his talk, Thomas Lessl said much of this attitude is rooted in what he and some other social science scholars call “scientism,” the idea — rooted in the 19th century — that scientific inquiry is a “distinctive mode of inquiry that promises to bring clarity to all human endeavors.” [5:45 p.m. | Updated Chris Mooney sent an e-mail noting how the discussion below resonates with "Do Scientists Understand the Public," a report he wrote last year for the American Academy of Arts and Sciences and explored here.]
  • Scientism, though it is good at promoting the recognition that scientific knowledge is the only kind of knowledge, also promotes communication behavior that is bad for the scientific ethos. By this I mean that it turns such communication into combat. By presuming that scientific understanding is the only criterion that matters, scientism inclines public actors to treat resistant audiences as an enemy: If the public doesn’t get the science, shame on the public. If the public rejects a scientific claim, it is either because they don’t get it or because they operate upon some sinister motive.
  • Scientific knowledge cannot take the place of prudence in public affairs.
  • Prudence, according to Robert Harriman, “is the mode of reasoning about contingent matters in order to select the best course of action. Contingent events cannot be known with certainty, and actions are intelligible only with regard to some idea of what is good.”
  • Scientism tends to suppose a one-size-fits-all notion of truth telling. But in the public sphere, people don’t think that way. They bring to the table a variety of truth standards: moral judgment, common-sense judgment, a variety of metaphysical perspectives, and ideological frameworks. The scientists who communicate about climate change may regard these standards as wrong-headed or at best irrelevant, but scientists don’t get to decide this in a democratic debate. When scientists become public actors, they have stepped outside of science, and they are obliged to honor the rules of communication and thought that govern the rest of the world. This might be different, if climate change was just about determining the causes of climate change, but it never is. Getting from the acceptance of ACC to acceptance of the kinds of emissions-reducing policies that are being advocated takes us from one domain of knowing into another.
  • One might object by saying that the formation of public policy depends upon first establishing the scientific bases of ACC, and that the first question can be considered independently of the second. Of course that is right, but that is an abstract academic distinction that does not hold in public debates. In public debates a different set of norms and assumptions apply: motive is not to be casually set aside as a nonfactor. Just because scientists customarily bracket off scientific topics from their policy implications does not mean that lay people do this—or even that they should be compelled to do so. When scientists talk about one thing, they seem to imply the other. But which is the motive force? Are they advocating for ACC because they subscribe to a political worldview that supports legal curtailments upon free enterprise? Or do they support such a political worldview because they are convinced of ACC? The fact that they speak as scientists may mean to other scientists that they reason from evidence alone. But the public does not necessarily share this assumption. If scientists don’t respect this fact about their audiences, they are bound to get in trouble. [Read the rest.]
Weiye Loh

Skepticblog » Kirsten Sanford - 0 views

  • This Sunday before game-time you might want to set your Tivos to record Dateline. This week, supposedly, Matt Lauer interviews Dr. Andrew Wakefield and several other affiliates of the Thoughtful House Center for Children, along with Dr. Paul Offit and journalist Brian Deer.
  • Please, Matt… don’t go Jenny McCarthy on us. Don’t do the usual journalistic job of being “fair-and-balanced”. This is not a “he said, she said” issue. This is science. Do tell the world what the science supports.
  • Depending on how this major media outlet writes the script, it could either be a major affirmation of what many within the science community already know, or it could increase the divide between anti-vax’ers and science.
« First ‹ Previous 61 - 80 of 100 Next ›
Showing 20 items per page