Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Solar

Rss Feed Group items tagged

Weiye Loh

Solar Maps Reveal Exactly How Much Sun Hits Every Inch of a City | The Utopianist - Thi... - 0 views

  • The New York solar map just debuted at the fifth annual Solar Summit. Solvecimate News reports: “The map is an important part of this effort,” said Tria Case, who heads the New York City solar map project as director of sustainability for the university. “It’s a tool that building and homeowners, installers, city officials and Con Ed can use.” The map is exact. During night flights over New Yok in May 2010, a twin-engine plane equipped with lasers captured the architecture of the city. From these images, CUNY’s Center for Advanced Research of Spatial Information created a 3-D model of the city. “It’s as if we shrink-wrapped the entire city in paper lined with a one-meter grid and got the exact elevation and horizontal location of each square meter,” Sean Ahearn, the geographer who directs the center, told SolveClimate News. Ahearn said the site incorporates so many bytes of information that it took a supercomputer with 10 processors some 50 hours to generate the map interface. The website can calculate how much solar radiation hits every square meter of the city — every hour, every day for an entire year. For building owners it means they can size up of the solar energy potential of their rooftops within minutes.
  •  
    cities are turning to advanced, but easy-to-use solar maps that determine exactly how much sunlight falls on every inch of the city. That way, property owners can see upfront and center the clear benefits of installing solar. The latest - and by far the biggest - such initiative is coming to New York City, and well-received efforts have already spurred solar growth in San Francisco and Germany.
Weiye Loh

Climate cherry pickers: Falling humidity - 0 views

  • Scientific skepticism requires we consider the full body of evidence before coming to conclusions. The antithesis of genuine skepticism is ignoring all the evidence that contradicts a desired conclusion.
  • he article seems to overlook the relative importance of solar radiation and wind as being the two main drivers of evaporation, translating as the skin temperature of the evaporating surface rather than ambient temperature, and the airflow over it, which in the case of solar radiation would make water vapour more of a forcing than a feedback. This paper details the calculations and the various inputs that are involved BUREAU OF METEOROLOGY REFERENCE EVAPOTRANSPIRATION CALCULATIONS
  • This doesn't seem like a particularly relevant or useful start to the discussion of this topic. John's done some nice work looking at humidity trends wrt the water vapor feedback, and it would be a shame to divert the discussion right from the start into a lot of wrangling over minutia.
  • ...3 more annotations...
  • Ned, I feel it is both relevant and important enough to clarify given the statement in the article "Water vapor provides the most powerful feedback in the climate system. When surface temperature warms, this leads to an increase in atmospheric humidity." I feel that is not conveying a sense of the correct drivers that are most relevant to how water vapour enters the atmosphere in the first place. There is a need to be sure that the foundations any discussion is built upon are fully understood and solid.
  • Johnd, are you suggesting that the most solar radiation is absorbed by the skin of the ocean, rather than by layers beneathe the surface? The citation you refer to is for calculating evapotranspiration on land, where light does not penetrate beneathe the "skin", at least not far. Water is actually fairly transparent to light so the very thin "skin" accounts for little of the absorbance, although eventually most incoming light is absorbed at depth. The skin temperature of the ocean (where the vast majority of evaporation on earth happens) is largely a function of mixed water column temperature as a whole, which reflects the balance between inputs (solar radiation, incoming IR radiation) and outputs (outgoing IR radiation, evaporation, convection, mixing)of heat energy. As the earth's temperature increases that heat balance results in higher mixed layer temps, which leads to high skin temps and greater evaporation.
  • I also want to agree with Ned. This discussion of insolation and skin temperatures is a distraction. All other things being equal (insolation included), evaporation and water vapor should increase if the earth and atmosphere warm.
  •  
    Climate cherry pickers: Falling humidity
Weiye Loh

Skepticblog » A Creationist Challenge - 0 views

  • The commenter starts with some ad hominems, asserting that my post is biased and emotional. They provide no evidence or argument to support this assertion. And of course they don’t even attempt to counter any of the arguments I laid out. They then follow up with an argument from authority – he can link to a PhD creationist – so there.
  • The article that the commenter links to is by Henry M. Morris, founder for the Institute for Creation Research (ICR) – a young-earth creationist organization. Morris was (he died in 2006 following a stroke) a PhD – in civil engineering. This point is irrelevant to his actual arguments. I bring it up only to put the commenter’s argument from authority into perspective. No disrespect to engineers – but they are not biologists. They have no expertise relevant to the question of evolution – no more than my MD. So let’s stick to the arguments themselves.
  • The article by Morris is an overview of so-called Creation Science, of which Morris was a major architect. The arguments he presents are all old creationist canards, long deconstructed by scientists. In fact I address many of them in my original refutation. Creationists generally are not very original – they recycle old arguments endlessly, regardless of how many times they have been destroyed.
  • ...26 more annotations...
  • Morris also makes heavy use of the “taking a quote out of context” strategy favored by creationists. His quotes are often from secondary sources and are incomplete.
  • A more scholarly (i.e. intellectually honest) approach would be to cite actual evidence to support a point. If you are going to cite an authority, then make sure the quote is relevant, in context, and complete.
  • And even better, cite a number of sources to show that the opinion is representative. Rather we get single, partial, and often outdated quotes without context.
  • (nature is not, it turns out, cleanly divided into “kinds”, which have no operational definition). He also repeats this canard: Such variation is often called microevolution, and these minor horizontal (or downward) changes occur fairly often, but such changes are not true “vertical” evolution. This is the microevolution/macroevolution false dichotomy. It is only “often called” this by creationists – not by actual evolutionary scientists. There is no theoretical or empirical division between macro and micro evolution. There is just evolution, which can result in the full spectrum of change from minor tweaks to major changes.
  • Morris wonders why there are no “dats” – dog-cat transitional species. He misses the hierarchical nature of evolution. As evolution proceeds, and creatures develop a greater and greater evolutionary history behind them, they increasingly are committed to their body plan. This results in a nestled hierarchy of groups – which is reflected in taxonomy (the naming scheme of living things).
  • once our distant ancestors developed the basic body plan of chordates, they were committed to that body plan. Subsequent evolution resulted in variations on that plan, each of which then developed further variations, etc. But evolution cannot go backward, undo evolutionary changes and then proceed down a different path. Once an evolutionary line has developed into a dog, evolution can produce variations on the dog, but it cannot go backwards and produce a cat.
  • Stephen J. Gould described this distinction as the difference between disparity and diversity. Disparity (the degree of morphological difference) actually decreases over evolutionary time, as lineages go extinct and the surviving lineages are committed to fewer and fewer basic body plans. Meanwhile, diversity (the number of variations on a body plan) within groups tends to increase over time.
  • the kind of evolutionary changes that were happening in the past, when species were relatively undifferentiated (compared to contemporary species) is indeed not happening today. Modern multi-cellular life has 600 million years of evolutionary history constraining their future evolution – which was not true of species at the base of the evolutionary tree. But modern species are indeed still evolving.
  • Here is a list of research documenting observed instances of speciation. The list is from 1995, and there are more recent examples to add to the list. Here are some more. And here is a good list with references of more recent cases.
  • Next Morris tries to convince the reader that there is no evidence for evolution in the past, focusing on the fossil record. He repeats the false claim (again, which I already dealt with) that there are no transitional fossils: Even those who believe in rapid evolution recognize that a considerable number of generations would be required for one distinct “kind” to evolve into another more complex kind. There ought, therefore, to be a considerable number of true transitional structures preserved in the fossils — after all, there are billions of non-transitional structures there! But (with the exception of a few very doubtful creatures such as the controversial feathered dinosaurs and the alleged walking whales), they are not there.
  • I deal with this question at length here, pointing out that there are numerous transitional fossils for the evolution of terrestrial vertebrates, mammals, whales, birds, turtles, and yes – humans from ape ancestors. There are many more examples, these are just some of my favorites.
  • Much of what follows (as you can see it takes far more space to correct the lies and distortions of Morris than it did to create them) is classic denialism – misinterpreting the state of the science, and confusing lack of information about the details of evolution with lack of confidence in the fact of evolution. Here are some examples – he quotes Niles Eldridge: “It is a simple ineluctable truth that virtually all members of a biota remain basically stable, with minor fluctuations, throughout their durations. . . .“ So how do evolutionists arrive at their evolutionary trees from fossils of organisms which didn’t change during their durations? Beware the “….” – that means that meaningful parts of the quote are being omitted. I happen to have the book (The Pattern of Evolution) from which Morris mined that particular quote. Here’s the rest of it: (Remember, by “biota” we mean the commonly preserved plants and animals of a particular geological interval, which occupy regions often as large as Roger Tory Peterson’s “eastern” region of North American birds.) And when these systems change – when the older species disappear, and new ones take their place – the change happens relatively abruptly and in lockstep fashion.”
  • Eldridge was one of the authors (with Gould) of punctuated equilibrium theory. This states that, if you look at the fossil record, what we see are species emerging, persisting with little change for a while, and then disappearing from the fossil record. They theorize that most species most of the time are at equilibrium with their environment, and so do not change much. But these periods of equilibrium are punctuated by disequilibrium – periods of change when species will have to migrate, evolve, or go extinct.
  • This does not mean that speciation does not take place. And if you look at the fossil record we see a pattern of descendant species emerging from ancestor species over time – in a nice evolutionary pattern. Morris gives a complete misrepresentation of Eldridge’s point – once again we see intellectual dishonesty in his methods of an astounding degree.
  • Regarding the atheism = religion comment, it reminds me of a great analogy that I first heard on twitter from Evil Eye. (paraphrase) “those that say atheism is a religion, is like saying ‘not collecting stamps’ is a hobby too.”
  • Morris next tackles the genetic evidence, writing: More often is the argument used that similar DNA structures in two different organisms proves common evolutionary ancestry. Neither argument is valid. There is no reason whatever why the Creator could not or would not use the same type of genetic code based on DNA for all His created life forms. This is evidence for intelligent design and creation, not evolution.
  • Here is an excellent summary of the multiple lines of molecular evidence for evolution. Basically, if we look at the sequence of DNA, the variations in trinucleotide codes for amino acids, and amino acids for proteins, and transposons within DNA we see a pattern that can only be explained by evolution (or a mischievous god who chose, for some reason, to make life look exactly as if it had evolved – a non-falsifiable notion).
  • The genetic code is essentially comprised of four letters (ACGT for DNA), and every triplet of three letters equates to a specific amino acid. There are 64 (4^3) possible three letter combinations, and 20 amino acids. A few combinations are used for housekeeping, like a code to indicate where a gene stops, but the rest code for amino acids. There are more combinations than amino acids, so most amino acids are coded for by multiple combinations. This means that a mutation that results in a one-letter change might alter from one code for a particular amino acid to another code for the same amino acid. This is called a silent mutation because it does not result in any change in the resulting protein.
  • It also means that there are very many possible codes for any individual protein. The question is – which codes out of the gazillions of possible codes do we find for each type of protein in different species. If each “kind” were created separately there would not need to be any relationship. Each kind could have it’s own variation, or they could all be identical if they were essentially copied (plus any mutations accruing since creation, which would be minimal). But if life evolved then we would expect that the exact sequence of DNA code would be similar in related species, but progressively different (through silent mutations) over evolutionary time.
  • This is precisely what we find – in every protein we have examined. This pattern is necessary if evolution were true. It cannot be explained by random chance (the probability is absurdly tiny – essentially zero). And it makes no sense from a creationist perspective. This same pattern (a branching hierarchy) emerges when we look at amino acid substitutions in proteins and other aspects of the genetic code.
  • Morris goes for the second law of thermodynamics again – in the exact way that I already addressed. He responds to scientists correctly pointing out that the Earth is an open system, by writing: This naive response to the entropy law is typical of evolutionary dissimulation. While it is true that local order can increase in an open system if certain conditions are met, the fact is that evolution does not meet those conditions. Simply saying that the earth is open to the energy from the sun says nothing about how that raw solar heat is converted into increased complexity in any system, open or closed. The fact is that the best known and most fundamental equation of thermodynamics says that the influx of heat into an open system will increase the entropy of that system, not decrease it. All known cases of decreased entropy (or increased organization) in open systems involve a guiding program of some sort and one or more energy conversion mechanisms.
  • Energy has to be transformed into a usable form in order to do the work necessary to decrease entropy. That’s right. That work is done by life. Plants take solar energy (again – I’m not sure what “raw solar heat” means) and convert it into food. That food fuels the processes of life, which include development and reproduction. Evolution emerges from those processes- therefore the conditions that Morris speaks of are met.
  • But Morris next makes a very confused argument: Evolution has neither of these. Mutations are not “organizing” mechanisms, but disorganizing (in accord with the second law). They are commonly harmful, sometimes neutral, but never beneficial (at least as far as observed mutations are concerned). Natural selection cannot generate order, but can only “sieve out” the disorganizing mutations presented to it, thereby conserving the existing order, but never generating new order.
  • The notion that evolution (as if it’s a thing) needs to use energy is hopelessly confused. Evolution is a process that emerges from the system of life – and life certainly can use solar energy to decrease its entropy, and by extension the entropy of the biosphere. Morris slips into what is often presented as an information argument.  (Yet again – already dealt with. The pattern here is that we are seeing a shuffling around of the same tired creationists arguments.) It is first not true that most mutations are harmful. Many are silent, and many of those that are not silent are not harmful. They may be neutral, they may be a mixed blessing, and their relative benefit vs harm is likely to be situational. They may be fatal. And they also may be simply beneficial.
  • Morris finishes with a long rambling argument that evolution is religion. Evolution is promoted by its practitioners as more than mere science. Evolution is promulgated as an ideology, a secular religion — a full-fledged alternative to Christianity, with meaning and morality . . . . Evolution is a religion. This was true of evolution in the beginning, and it is true of evolution still today. Morris ties evolution to atheism, which, he argues, makes it a religion. This assumes, of course, that atheism is a religion. That depends on how you define atheism and how you define religion – but it is mostly wrong. Atheism is a lack of belief in one particular supernatural claim – that does not qualify it as a religion.
  • But mutations are not “disorganizing” – that does not even make sense. It seems to be based on a purely creationist notion that species are in some privileged perfect state, and any mutation can only take them farther from that perfection. For those who actually understand biology, life is a kluge of compromises and variation. Mutations are mostly lateral moves from one chaotic state to another. They are not directional. But they do provide raw material, variation, for natural selection. Natural selection cannot generate variation, but it can select among that variation to provide differential survival. This is an old game played by creationists – mutations are not selective, and natural selection is not creative (does not increase variation). These are true but irrelevant, because mutations increase variation and information, and selection is a creative force that results in the differential survival of better adapted variation.
  •  
    One of my earlier posts on SkepticBlog was Ten Major Flaws in Evolution: A Refutation, published two years ago. Occasionally a creationist shows up to snipe at the post, like this one:i read this and found it funny. It supposedly gives a scientific refutation, but it is full of more bias than fox news, and a lot of emotion as well.here's a scientific case by an actual scientists, you know, one with a ph. D, and he uses statements by some of your favorite evolutionary scientists to insist evolution doesn't exist.i challenge you to write a refutation on this one.http://www.icr.org/home/resources/resources_tracts_scientificcaseagainstevolution/Challenge accepted.
Weiye Loh

Read Aubrey McClendon's response to "misleading" New York Times article (1) - 0 views

  • Since the shale gas revolution and resulting confirmation of enormous domestic gas reserves, there has been a relatively small group of analysts and geologists who have doubted the future of shale gas.  Their doubts have become very convenient to the environmental activists I mentioned earlier. This particular NYT reporter has apparently sought out a few of the doubters to fashion together a negative view of the U.S. natural gas industry. We also believe certain media outlets, especially the once venerable NYT, are being manipulated by those whose environmental or economic interests are being threatened by abundant natural gas supplies. We have seen for example today an email from a leader of a group called the Environmental Working Group who claimed today’s articles as this NYT reporter’s "second great story" (the first one declaring that produced water disposal from shale gas wells was unsafe) and that “we've been working with him for over 8 months. Much more to come. . .”
  • this reporter’s claim of impending scarcity of natural gas supply contradicts the facts and the scientific extrapolation of those facts by the most sophisticated reservoir engineers and geoscientists in the world. Not just at Chesapeake, but by experts at many of the world’s leading energy companies that have made multi-billion-dollar, long-term investments in U.S. shale gas plays, with us and many other companies. Notable examples of these companies, besides the leading independents such as Chesapeake, Devon, Anadarko, EOG, EnCana, Talisman and others, include these leading global energy giants:  Exxon, Shell, BP, Chevron, Conoco, Statoil, BHP, Total, CNOOC, Marathon, BG, KNOC, Reliance, PetroChina, Mitsui, Mitsubishi and ENI, among others.  Is it really possible that all of these companies, with a combined market cap of almost $2 trillion, know less about shale gas than a NYT reporter, a few environmental activists and a handful of shale gas doubters?
  •  
    Administrator's Note: This email was sent to all Chesapeake employees from CEO Aubrey McClendon, in response to a Sunday New York Times piece by Ian Urbina entitled "Insiders Sound an Alarm Amid a Natural Gas Rush."   FW: CHK's response to 6.26.11 NYT article on shale gas   From: Aubrey McClendon Sent: Sunday, June 26, 2011 8:37 PM To: All Employees   Dear CHK Employees:  By now many of you may have read or heard about a story in today's New York Times (NYT) that questioned the productive capacity and economic quality of U.S. natural gas shale reserves, as well as energy reserve accounting practices used by E&P companies, including Chesapeake.  The story is misleading, at best, and is the latest in a series of articles produced by this publication that obviously have an anti-industry bias.  We know for a fact that today's NYT story is the handiwork of the same group of environmental activists who have been the driving force behind the NYT's ongoing series of negative articles about the use of fracking and its importance to the US natural gas supply growth revolution - which is changing the future of our nation for the better in multiple areas.  It is not clear to me exactly what these environmental activists are seeking to offer as their alternative energy plan, but most that I have talked to continue to naively presume that our great country need only rely on wind and solar energy to meet our current and future energy needs. They always seem to forget that wind and solar produce less than 2% of America electricity today and are completely non-economic without ongoing government and ratepayer subsidies.
Weiye Loh

If climate scientists are in it for the money, they're doing it wrong - 0 views

  • Since it doesn't have a lot of commercial appeal, most of the people working in the area, and the vast majority of those publishing the scientific literature, work in academic departments or at government agencies. Penn State, home of noted climatologists Richard Alley and Michael Mann, has a strong geosciences department and, conveniently, makes the department's salary information available. It's easy to check, and find that the average tenured professor earned about $120,000 last year, and a new hire a bit less than $70,000.
  • That's a pretty healthy salary by many standards, but it's hardly a racket. Penn State appears to be on the low end of similar institutions, and is outdone by two other institutions in its own state (based on this report). But, more significantly for the question at hand, we can see that Earth Sciences faculty aren't paid especially well. Sure, they do much better than the Arts faculty, but they're somewhere in the middle of the pack, and get stomped on by professors in the Business and IT departments.
  • This is all, of course, ignoring what someone who can do the sort of data analysis or modeling of complex systems that climatologists perform might make if they went to Wall Street.
  • ...10 more annotations...
  • It's also worth pointing out what they get that money for, as exemplified by a fairly typical program announcement for NSF grants. Note that it calls for studies of past climate change and its impact on the weather. This sort of research could support the current consensus view, but it just as easily might not. And here's the thing: it's impossible to tell before the work's done. Even a study looking at the flow of carbon into and out of the atmosphere, which would seem to be destined to focus on anthropogenic climate influences, might identify a previously unknown or underestimated sink or feedback. So, even if the granting process were biased (and there's been no indication that it is), there is no way for it to prevent people from obtaining contrary data. The granting system is also set up to induce people to publish it, since a grant that doesn't produce scientific papers can make it impossible for a professor to obtain future funding.
  • Maybe the money is in the perks that come with grants, which provide for travel and lab toys. Unfortunately, there's no indication that there's lots of money out there for the taking, either from the public or private sector. For the US government, spending on climate research across 13 different agencies (from the Department of State to NASA) is tracked by the US Climate Change Science Program. The group has tracked the research budget since 1989, but not everything was brought under its umbrella until 1991. That year, according to CCSP figures, about $1.45 billion was spent on climate research (all figures are in 2007 dollars). Funding peaked back in 1995 at $2.4 billion, then bottomed out in 2006 at only $1.7 billion.
  • Funding has gone up a bit over the last couple of years, and some stimulus money went into related programs. But, in general, the trend has been a downward one for 15 years; it's not an area you'd want to go into if you were looking for a rich source of grant money. If you were, you would target medical research, for which the NIH had a $31 billion budget plus another $10 billion in stimulus money.
  • Not all of this money went to researchers anyway; part of the budget goes to NASA, and includes some of that agency's (rather pricey) hardware. For example, the Orbiting Carbon Observatory cost roughly $200 million, but failed to go into orbit; its replacement is costing another $170 million.
  • Might the private sector make up for the lack of government money? Pretty unlikely. For starters, it's tough to identify many companies that have a vested interest in the scientific consensus. Renewable energy companies would seem to be the biggest winners, but they're still relatively tiny. Neither the largest wind or photovoltaic manufacturers (Vestas and First Solar) appear in the Financial Times' list of the world's 500 largest companies. In contrast, there are 16 oil companies in the of the top 100, and they occupy the top two spots. Exxon's profits in 2010 were nearly enough to buy both Vestas and First Solar, given their market valuations in late February.
  • climate researchers are scrambling for a piece of a smaller piece of the government-funded pie, and the resources of the private sector are far, far more likely to go to groups that oppose their conclusions.
  • If you were paying careful attention to that last section, you would have noticed something funny: the industry that seems most likely to benefit from taking climate change seriously produces renewable energy products. However, those companies don't employ any climatologists. They probably have plenty of space for engineers, materials scientists, and maybe a quantum physicist or two, but there's not much that a photovoltaic company would do with a climatologist. Even by convincing the public of their findings—namely, climate change is real, and could have serious impacts—the scientists are not doing themselves any favors in terms of job security or alternative careers.
  • But, surely, by convincing the public, or at least the politicians, that there's something serious here, they ensure their own funding? That's arguably not true either, and the stimulus package demonstrates that nicely. The US CCSP programs, in total, got a few hundred million dollars from the stimulus. In contrast, the Department of Energy got a few billion. Carbon capture and sequestration alone received $2.4 billion, more than the entire CCSP budget.
  • The problem is that climatologists are well equipped to identify potential problems, but very poorly equipped to solve them; it would be a bit like expecting an astronomer to know how to destroy a threatening asteroid.
  • The solutions to problems related to climate change are going to come in areas like renewable energy, carbon sequestration, and efficiency measures; that's where most of the current administration's efforts have focused. None of these are areas where someone studying the climate is likely to have a whole lot to add. So, when they advocate that the public take them seriously, they're essentially asking the public to send money to someone else.
Weiye Loh

Solar Towers Could Transform Plastic Back Into Oil | The Utopianist - Think Bigger - 0 views

  •  
    Japanese inventor Akinori Ito Blest Corporation sells machines that can process plastic back into its raw petroleum form - one to fifty kilograms of it, every hour. He has traveled the world showcasing the desktop version that can theoretically fit into any modest-sized kitchen; the recycled oil can be refined into gasoline, kerosene or diesel and subsequently burnt.
Weiye Loh

Climate sceptic Willie Soon received $1m from oil companies, papers show | Environment ... - 0 views

  • freedom of information documents suggest that Soon corresponded in 2003 with other prominent climate sceptics to try to weaken a major assessment of global warming being conducted by the UN's leading climate science body, the Nobel prize-winning Intergovernmental Panel on Climate Change.Soon, who had previously disclosed corporate funding he received in the 1990s, was today reportely unapologetic, telling Reuters that he agreed that he had received money from all of the groups and companies named in the report but denied that any group would have influenced his studies.
  • "I have never been motivated by financial reward in any of my scientific research," he said. "I would have accepted money from Greenpeace if they had offered it to do my research."
  • Charles G Koch Foundation, a leading provider of funds for climate sceptic groups, gave Soon two grants totalling $175,000 (then roughly £102,000) in 2005/6 and again in 2010. In addition the American Petroleum insitute (API), which represents the US petroleum and natural gas industries, gave him multiple grants between 2001 and 2007 totalling $274,000, oil company Exxon Mobil provided $335,000 between 2005 and 2010, and Soon received other grants from coal and oil industry sources including the Mobil Foundation, the Texaco Foundation and the Electric Power Research Institute.
Weiye Loh

What Is Skepticism? Week 3: Skepticism vs. Denial « Skepticism « Critical Thi... - 0 views

  • Everyone is a skeptic nowadays, or so it seems. From climate change to evolution to vaccination, large proportions of the population claim to be skeptical about many of the claims of mainstream science. So why are we, member of the skeptical community, not rejoicing?
  • A skeptic, in popular discourse, is simply someone who denies a particular claim. But true skepticism, as espoused by philosophers and scientists for millenia, is more an intellectual attitude than a position on a specific issue. A skeptic is someone who always demands sufficient evidence or reasons before accepting a claim. This skeptical attitude – its opposite is credulity – leads skeptics to reject as unfounded any claim that cannot withstand the rigours of the scientific method, which includes controlled experimental testing. The more extraordinary the claim, the more rigourously it must be tested before a skeptic will be willing to accept
  • skepticism does not always lead to denial. Extraordinary claims require extraordinary evidence, but sometimes that extraordinary evidence can be provided. Einstein’s theory of relativity, which holds that matter can change the very shape of space and time, is an extraordinary claim, yet it has stood up to the most demanding of scientific testing.
  • ...1 more annotation...
  • let us turn to the climate change “skeptics”. Are they just being more demanding than us in their skepticism? After all, nothing in science is ever certain; some room for doubt always exists. For that doubt to warrant disbelief in the face of all the positive evidence, however, skeptics would require significant contrary evidence, or a plausible alternative theory which fit the data. But climate change deniers have not provided any such evidence or theory (theories involving variations in solar activity simply don’t fit the data). Nor have they shown significant inclination to provide such evidence, generally being content to gesture frantically at any minor mistake, no matter how irrelevant, in the climate change literature. In fact, in denying climate change, these “skeptics” find themselves committed to claims no less extraordinary than the ones they deny, yet with far less evidence.
  •  
    Skepticism vs. Denial
Weiye Loh

Science Warriors' Ego Trips - The Chronicle Review - The Chronicle of Higher Education - 0 views

  • By Carlin Romano Standing up for science excites some intellectuals the way beautiful actresses arouse Warren Beatty, or career liberals boil the blood of Glenn Beck and Rush Limbaugh. It's visceral.
  • A brave champion of beleaguered science in the modern age of pseudoscience, this Ayn Rand protagonist sarcastically derides the benighted irrationalists and glows with a self-anointed superiority. Who wouldn't want to feel that sense of power and rightness?
  • You hear the voice regularly—along with far more sensible stuff—in the latest of a now common genre of science patriotism, Nonsense on Stilts: How to Tell Science From Bunk (University of Chicago Press), by Massimo Pigliucci, a philosophy professor at the City University of New York.
  • ...24 more annotations...
  • it mixes eminent common sense and frequent good reporting with a cocksure hubris utterly inappropriate to the practice it apotheosizes.
  • According to Pigliucci, both Freudian psychoanalysis and Marxist theory of history "are too broad, too flexible with regard to observations, to actually tell us anything interesting." (That's right—not one "interesting" thing.) The idea of intelligent design in biology "has made no progress since its last serious articulation by natural theologian William Paley in 1802," and the empirical evidence for evolution is like that for "an open-and-shut murder case."
  • Pigliucci offers more hero sandwiches spiced with derision and certainty. Media coverage of science is "characterized by allegedly serious journalists who behave like comedians." Commenting on the highly publicized Dover, Pa., court case in which U.S. District Judge John E. Jones III ruled that intelligent-design theory is not science, Pigliucci labels the need for that judgment a "bizarre" consequence of the local school board's "inane" resolution. Noting the complaint of intelligent-design advocate William Buckingham that an approved science textbook didn't give creationism a fair shake, Pigliucci writes, "This is like complaining that a textbook in astronomy is too focused on the Copernican theory of the structure of the solar system and unfairly neglects the possibility that the Flying Spaghetti Monster is really pulling each planet's strings, unseen by the deluded scientists."
  • Or is it possible that the alternate view unfairly neglected could be more like that of Harvard scientist Owen Gingerich, who contends in God's Universe (Harvard University Press, 2006) that it is partly statistical arguments—the extraordinary unlikelihood eons ago of the physical conditions necessary for self-conscious life—that support his belief in a universe "congenially designed for the existence of intelligent, self-reflective life"?
  • Even if we agree that capital "I" and "D" intelligent-design of the scriptural sort—what Gingerich himself calls "primitive scriptural literalism"—is not scientifically credible, does that make Gingerich's assertion, "I believe in intelligent design, lowercase i and lowercase d," equivalent to Flying-Spaghetti-Monsterism? Tone matters. And sarcasm is not science.
  • The problem with polemicists like Pigliucci is that a chasm has opened up between two groups that might loosely be distinguished as "philosophers of science" and "science warriors."
  • Philosophers of science, often operating under the aegis of Thomas Kuhn, recognize that science is a diverse, social enterprise that has changed over time, developed different methodologies in different subsciences, and often advanced by taking putative pseudoscience seriously, as in debunking cold fusion
  • The science warriors, by contrast, often write as if our science of the moment is isomorphic with knowledge of an objective world-in-itself—Kant be damned!—and any form of inquiry that doesn't fit the writer's criteria of proper science must be banished as "bunk." Pigliucci, typically, hasn't much sympathy for radical philosophies of science. He calls the work of Paul Feyerabend "lunacy," deems Bruno Latour "a fool," and observes that "the great pronouncements of feminist science have fallen as flat as the similarly empty utterances of supporters of intelligent design."
  • It doesn't have to be this way. The noble enterprise of submitting nonscientific knowledge claims to critical scrutiny—an activity continuous with both philosophy and science—took off in an admirable way in the late 20th century when Paul Kurtz, of the University at Buffalo, established the Committee for the Scientific Investigation of Claims of the Paranormal (Csicop) in May 1976. Csicop soon after launched the marvelous journal Skeptical Inquirer
  • Although Pigliucci himself publishes in Skeptical Inquirer, his contributions there exhibit his signature smugness. For an antidote to Pigliucci's overweening scientism 'tude, it's refreshing to consult Kurtz's curtain-raising essay, "Science and the Public," in Science Under Siege (Prometheus Books, 2009, edited by Frazier)
  • Kurtz's commandment might be stated, "Don't mock or ridicule—investigate and explain." He writes: "We attempted to make it clear that we were interested in fair and impartial inquiry, that we were not dogmatic or closed-minded, and that skepticism did not imply a priori rejection of any reasonable claim. Indeed, I insisted that our skepticism was not totalistic or nihilistic about paranormal claims."
  • Kurtz combines the ethos of both critical investigator and philosopher of science. Describing modern science as a practice in which "hypotheses and theories are based upon rigorous methods of empirical investigation, experimental confirmation, and replication," he notes: "One must be prepared to overthrow an entire theoretical framework—and this has happened often in the history of science ... skeptical doubt is an integral part of the method of science, and scientists should be prepared to question received scientific doctrines and reject them in the light of new evidence."
  • Pigliucci, alas, allows his animus against the nonscientific to pull him away from sensitive distinctions among various sciences to sloppy arguments one didn't see in such earlier works of science patriotism as Carl Sagan's The Demon-Haunted World: Science as a Candle in the Dark (Random House, 1995). Indeed, he probably sets a world record for misuse of the word "fallacy."
  • To his credit, Pigliucci at times acknowledges the nondogmatic spine of science. He concedes that "science is characterized by a fuzzy borderline with other types of inquiry that may or may not one day become sciences." Science, he admits, "actually refers to a rather heterogeneous family of activities, not to a single and universal method." He rightly warns that some pseudoscience—for example, denial of HIV-AIDS causation—is dangerous and terrible.
  • But at other points, Pigliucci ferociously attacks opponents like the most unreflective science fanatic
  • He dismisses Feyerabend's view that "science is a religion" as simply "preposterous," even though he elsewhere admits that "methodological naturalism"—the commitment of all scientists to reject "supernatural" explanations—is itself not an empirically verifiable principle or fact, but rather an almost Kantian precondition of scientific knowledge. An article of faith, some cold-eyed Feyerabend fans might say.
  • He writes, "ID is not a scientific theory at all because there is no empirical observation that can possibly contradict it. Anything we observe in nature could, in principle, be attributed to an unspecified intelligent designer who works in mysterious ways." But earlier in the book, he correctly argues against Karl Popper that susceptibility to falsification cannot be the sole criterion of science, because science also confirms. It is, in principle, possible that an empirical observation could confirm intelligent design—i.e., that magic moment when the ultimate UFO lands with representatives of the intergalactic society that planted early life here, and we accept their evidence that they did it.
  • "As long as we do not venture to make hypotheses about who the designer is and why and how she operates," he writes, "there are no empirical constraints on the 'theory' at all. Anything goes, and therefore nothing holds, because a theory that 'explains' everything really explains nothing."
  • Here, Pigliucci again mixes up what's likely or provable with what's logically possible or rational. The creation stories of traditional religions and scriptures do, in effect, offer hypotheses, or claims, about who the designer is—e.g., see the Bible.
  • Far from explaining nothing because it explains everything, such an explanation explains a lot by explaining everything. It just doesn't explain it convincingly to a scientist with other evidentiary standards.
  • A sensible person can side with scientists on what's true, but not with Pigliucci on what's rational and possible. Pigliucci occasionally recognizes that. Late in his book, he concedes that "nonscientific claims may be true and still not qualify as science." But if that's so, and we care about truth, why exalt science to the degree he does? If there's really a heaven, and science can't (yet?) detect it, so much the worse for science.
  • Pigliucci quotes a line from Aristotle: "It is the mark of an educated mind to be able to entertain a thought without accepting it." Science warriors such as Pigliucci, or Michael Ruse in his recent clash with other philosophers in these pages, should reflect on a related modern sense of "entertain." One does not entertain a guest by mocking, deriding, and abusing the guest. Similarly, one does not entertain a thought or approach to knowledge by ridiculing it.
  • Long live Skeptical Inquirer! But can we deep-six the egomania and unearned arrogance of the science patriots? As Descartes, that immortal hero of scientists and skeptics everywhere, pointed out, true skepticism, like true charity, begins at home.
  • Carlin Romano, critic at large for The Chronicle Review, teaches philosophy and media theory at the University of Pennsylvania.
  •  
    April 25, 2010 Science Warriors' Ego Trips
Weiye Loh

Roger Pielke Jr.'s Blog: Clean Tech Innovation and the "Iron Law" - 0 views

  • Cleantech companies just can’t seem to get it right. At least, that’s the notion Peter Thiel — a co-founder of PayPal and president of Clarium Capital — subscribes to when he looks at cleantech companies as potential investing opportunities. He made the comments at a Commonwealth Club event in San Francisco Wednesday.
  • That’s not because he doesn’t believe in the technology — he just doesn’t like the way the companies are run, he said. “Most of the people who run cleantech companies are sales people, not engineers,” Thiel said. “Something seems to have gone quite wrong with cleantech.”
  • most cleantech companies that try to develop alternative energy forms are building power sources that are more expensive. Solar panels, for example, are still not a cost-efficient way to generate power because companies have made the assumption that people will pay more for more environmentally friendly ways of producing energy, Thiel said. “We need something cheaper, not more expensive,” he said. “It doesn’t matter if the energy is cleaner, it doesn’t work if it’s more expensive.”
Weiye Loh

Monckton takes scientist to brink of madness at climate change talk | John Abraham | En... - 0 views

  • Christopher Monckton, Viscount Monckton of Brenchley, had given a rousing speech to a crowd at Bethel University in Minnesota, near where I live.His speech was on global warming and his style was convincing and irreverent. Anyone listening to him was given the impression that global warming was not happening, or that if it did happen it wouldn't be so bad, and scientists who warned about it were part of a vast conspiracy.
  • Monckton cited scientist after scientist whose work "disproved" global warming.He contended that polar bears are not really at risk (in fact they do better as weather warms); projections of sea level rise are a mere 6cm; Arctic ice has not declined in a decade; Greenland is not melting; sea levels are not rising; ocean temperatures are not increasing; medieval times were warmer than today; ocean acidification is not occurring; and global temperatures are not increasing.
  • I actually tracked down the articles and authors that Monckton cited. What I discovered was incredible, even to a scientist who follows the politics of climate change. I found that he had misrepresented the science.
  • ...4 more annotations...
  • For instance, Monckton's claims that "Arctic sea ice is fine, steady for a decade" made reference to Alaskan research group (IARC).I wrote to members of IARC and asked whether this was true. Both their chief scientist and director confirmed that Monckton was mistaken.They also pointed me to the National Snow and Ice Data Centre (NSIDC) for a second opinion.A scientist there confirmed Monckton's error, as did Dr Ola Johannessen, whose work has shown ice loss in Greenland (Monckton reported that Johannessen's work showed that Greenland "was just fine".)
  • Next, I investigated Monckton's claim that the medieval period was warmer than today. Monckton showed a slide featuring nine researchers' works which, he claimed, proved that today's warming is not unusual – it was hotter in the past.I wrote to these authors and I read their papers. It turned out that none of the authors or papers made the claims that Monckton attributed to them. This pattern of misinterpretation was becoming chronic.
  • Next, I checked on Monckton's claim that the ocean has not been heating for 50 years. To quote him directly, there has been "no ocean heat buildup for 50 years".On this slide, he referenced a well-known researcher named Dr Catia Domingues. It turns out Domingues said no such thing. What would she know? She only works for the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia.
  • Monckton referred to a 2004 statement by the International Astronomical Union (IAU) which stated that solar activity has caused today's warming and that global warming will end soon.The president of the IAU division on the sun and heliosphere told me that there is no such position of the IAU and that I should pass this information on to whomever "might have used the IAU name to claim otherwise".
Weiye Loh

Roger Pielke Jr.'s Blog: How to Get to 80% "Clean Energy" by 2035 - 0 views

  • I have put together a quick spreadsheet to allow me to do a bit of sensitivity analysis of what it would take for the US to get to 80% "clean energy" in its electricity supply by 2035, as proposed by President Obama in his State of the Union Speech
  • 1. I started with the projections from the EIA to 2035 available here in XLS. 2. I then calculated the share of clean energy in 2011, assuming that natural gas gets a 50% credit for being clean.  That share is just under 44% (Nukes 21%, Renewable 13%, Gas 10%). 3. I then calculated how that share could be increased to 80% by 2035.
  • Here is what I found: 1. Coal pretty much has to go away.  Specifically, about 90% or more of coal energy would have to be replaced. 2. I first looked at replacing all the coal with gas, all else equal.  That gets the share of clean energy up to about 68%, a ways off of the target. 3. I then fiddled with the numbers to arrive at 80%.  One way to get there would be to increase the share of nukes to 43%, gas to 31% and renewables to 22% (Note that the EIA reference scenario -- BAU -- to 2035 has these shares at 17%, 21% and 17% respectively, for a share of 45% just about like today.)
  • ...2 more annotations...
  • Increasing nuclear power in the EIA reference scenario from a 17% to 43% share of electricity implies, in round numbers, about 300 new nuclear power plants by 2035.***  If you do not like nuclear you can substitute wind turbines or solar thermal plants (or even reductions in electricity consumption) according to the data provided in The Climate Fix, Table 4.4.  The magnitude of the task is the same size, just expressed differently.
  • One nuclear plant worth of carbon-free energy every 30 days between now and 2035.  This does not even consider electrification of some fraction of the vehicle fleet -- another of President Obama's goals -- which presumably would add a not-insignificant amount to electricity demand. Thus, I'd suggest that the President's clean energy goal is much more of the aspirational variety than a actual policy target expected to be hit precisely.
Weiye Loh

Approaching the cliffs of time - Plane Talking - 0 views

  • have you noticed how the capacity of the media to explain in lay terms such matters as quantum physics, or cosmology, is contracting faster than the universe is expanding? The more mind warping the discoveries the less opportunity there is to fit them into 30 seconds in a news cast, or 300 words in print.
  • There has been a long running conspiracy of convenience between science reporters and the science being reported to leave out inconvenient time and space consuming explanations, and go for the punch line that best suits the use of the media to lobby for more project funding.
  • Almost every space story I have written over 50 years has been about projects claiming to ‘discover the origins of the solar system/life on earth/life on Mars/discover the origins of the universe, or recover parts of things like comets because they are as old as the sun, except that we have discovered they aren’t ancient at all.’ None of them were ever designed to achieved those goals. They were brilliant projects, brilliantly misrepresented by the scientists and the reporters because an accurate story would have been incomprehensible to 99.9% of readers or viewers.
  • ...3 more annotations...
  • this push to abbreviate and banalify the more esoteric but truly intriguing mysteries of the universe has lurched close to parody yet failed to be as thoughtfully funny as Douglas Adams was with the Hitchhiker’s Guide to the Galaxy
  • Our most powerful telescopes are approaching what Columbia physicist and mathematician Brian Greene recently called the cliffs of time,  beyond which an infinitely large yet progressively emptier universe lies forever invisible to us and vice versa, since to that universe, we also lie beyond the cliffs of time. This capturing of images from the start of time is being done by finding incredibly faint and old light using computing power and forensic techniques not even devised when Hubble was assembled on earth. In this instance Hubble has found the faint image of an object that emitted light a mere 480 million years after the ‘big bang’ 13.7 billion years ago. It is, thus, nearly as old as time itself.
  • The conspiracy of over simplification has until now kept the really gnarly principles involved in big bang theory out of the general media because nothing short of a first class degree in theoretical and practical physics is going to suffice for a reasonable overview. Plus a 100,000 word article with a few thousand diagrams.
Weiye Loh

The Weather Isn't Getting Weirder - WSJ.com - 0 views

  • you need to understand whether recent weather trends are extreme by historical standards. The Twentieth Century Reanalysis Project is the latest attempt to find out, using super-computers to generate a dataset of global atmospheric circulation from 1871 to the present. As it happens, the project's initial findings, published last month, show no evidence of an intensifying weather trend. "In the climate models, the extremes get more extreme as we move into a doubled CO2 world in 100 years," atmospheric scientist Gilbert Compo, one of the researchers on the project, tells me from his office at the University of Colorado, Boulder. "So we were surprised that none of the three major indices of climate variability that we used show a trend of increased circulation going back to 1871."
  • researchers have yet to find evidence of more-extreme weather patterns over the period, contrary to what the models predict. "There's no data-driven answer yet to the question of how human activity has affected extreme weather," adds Roger Pielke Jr., another University of Colorado climate researcher.
  • We do know that carbon dioxide and other gases trap and re-radiate heat. We also know that humans have emitted ever-more of these gases since the Industrial Revolution. What we don't know is exactly how sensitive the climate is to increases in these gases versus other possible factors—solar variability, oceanic currents, Pacific heating and cooling cycles, planets' gravitational and magnetic oscillations, and so on. Given the unknowns, it's possible that even if we spend trillions of dollars, and forgo trillions more in future economic growth, to cut carbon emissions to pre-industrial levels, the climate will continue to change—as it always has.
  • ...1 more annotation...
  • That's not to say we're helpless. There is at least one climate lesson that we can draw from the recent weather: Whatever happens, prosperity and preparedness help. North Texas's ice storm wreaked havoc and left hundreds of football fans stranded, cold, and angry. But thanks to modern infrastructure, 21st century health care, and stockpiles of magnesium chloride and snow plows, the storm caused no reported deaths and Dallas managed to host the big game on Sunday.
Weiye Loh

Roger Pielke Jr.'s Blog: Every Relatively Affluent White Guy for Himself - 0 views

  • one of the big arguments that environmentalists have used about the need to stop climate change is that those who will suffer most are the little brown poor people in far-off lands who will, for instance, experience increased incidence of malaria and exposure to floods and other disasters. (Of course the fact that they are already burdened by such things in huge disproportion to the privileged minority doesn’t seem to enter into the argument).
  • But I raise this point because when it comes to climate survivalism, the little brown folks are nowhere to be seen, and apparently it’s every relatively affluent white guy (and his nuclear family, of course) for himself.
  • Dan Sarewitz takes the Washington Post to task for publishing a bizarre commentary on the coming climate apocalypse: Check out the article by a climate survivalist from the February 27, 2011 Washington Post. (I’m going to go out on a limb and treat the article as if it’s not a satire or hoax, but maybe the joke’s on me.) The author describes how he’s buying solar panels and generators and laying in food and supplies and putting extra locks on his doors and windows in anticipation of the coming climate apocalypse, much in the way that in the 1960s certain nuts were digging shelters in their backyard to provide protection against hydrogen bombs, and in the ‘80s (and probably to this day) right-wing crazies were building up small arsenals to protect themselves against the time when the government tried to take away their right to be bigots.
  • ...1 more annotation...
  • fear of the coming apocalypse seems to be an honorable tradition among some factions of the human race, and besides in this case it’s probably good for the beleaguered economy that this guy is spending what must be lots of money on hardware, both high-tech and low. But there are some elements of climate survivalism that are truly troubling. The fact that the Washington Post chose to put this article on the front page of its Sunday opinion section is an editorial judgment that the author, who is executive director of the Chesapeake Climate Action Committee, is someone whose perspective deserves to be taken seriously.
Weiye Loh

Science, Strong Inference -- Proper Scientific Method - 0 views

  • Scientists these days tend to keep up a polite fiction that all science is equal. Except for the work of the misguided opponent whose arguments we happen to be refuting at the time, we speak as though every scientist's field and methods of study are as good as every other scientist's and perhaps a little better. This keeps us all cordial when it comes to recommending each other for government grants.
  • Why should there be such rapid advances in some fields and not in others? I think the usual explanations that we tend to think of - such as the tractability of the subject, or the quality or education of the men drawn into it, or the size of research contracts - are important but inadequate. I have begun to believe that the primary factor in scientific advance is an intellectual one. These rapidly moving fields are fields where a particular method of doing scientific research is systematically used and taught, an accumulative method of inductive inference that is so effective that I think it should be given the name of "strong inference." I believe it is important to examine this method, its use and history and rationale, and to see whether other groups and individuals might learn to adopt it profitably in their own scientific and intellectual work. In its separate elements, strong inference is just the simple and old-fashioned method of inductive inference that goes back to Francis Bacon. The steps are familiar to every college student and are practiced, off and on, by every scientist. The difference comes in their systematic application. Strong inference consists of applying the following steps to every problem in science, formally and explicitly and regularly: Devising alternative hypotheses; Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly is possible, exclude one or more of the hypotheses; Carrying out the experiment so as to get a clean result; Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain, and so on.
  • On any new problem, of course, inductive inference is not as simple and certain as deduction, because it involves reaching out into the unknown. Steps 1 and 2 require intellectual inventions, which must be cleverly chosen so that hypothesis, experiment, outcome, and exclusion will be related in a rigorous syllogism; and the question of how to generate such inventions is one which has been extensively discussed elsewhere (2, 3). What the formal schema reminds us to do is to try to make these inventions, to take the next step, to proceed to the next fork, without dawdling or getting tied up in irrelevancies.
  • ...28 more annotations...
  • It is clear why this makes for rapid and powerful progress. For exploring the unknown, there is no faster method; this is the minimum sequence of steps. Any conclusion that is not an exclusion is insecure and must be rechecked. Any delay in recycling to the next set of hypotheses is only a delay. Strong inference, and the logical tree it generates, are to inductive reasoning what the syllogism is to deductive reasoning in that it offers a regular method for reaching firm inductive conclusions one after the other as rapidly as possible.
  • "But what is so novel about this?" someone will say. This is the method of science and always has been, why give it a special name? The reason is that many of us have almost forgotten it. Science is now an everyday business. Equipment, calculations, lectures become ends in themselves. How many of us write down our alternatives and crucial experiments every day, focusing on the exclusion of a hypothesis? We may write our scientific papers so that it looks as if we had steps 1, 2, and 3 in mind all along. But in between, we do busywork. We become "method- oriented" rather than "problem-oriented." We say we prefer to "feel our way" toward generalizations. We fail to teach our students how to sharpen up their inductive inferences. And we do not realize the added power that the regular and explicit use of alternative hypothesis and sharp exclusion could give us at every step of our research.
  • A distinguished cell biologist rose and said, "No two cells give the same properties. Biology is the science of heterogeneous systems." And he added privately. "You know there are scientists, and there are people in science who are just working with these over-simplified model systems - DNA chains and in vitro systems - who are not doing science at all. We need their auxiliary work: they build apparatus, they make minor studies, but they are not scientists." To which Cy Levinthal replied: "Well, there are two kinds of biologists, those who are looking to see if there is one thing that can be understood and those who keep saying it is very complicated and that nothing can be understood. . . . You must study the simplest system you think has the properties you are interested in."
  • At the 1958 Conference on Biophysics, at Boulder, there was a dramatic confrontation between the two points of view. Leo Szilard said: "The problems of how enzymes are induced, of how proteins are synthesized, of how antibodies are formed, are closer to solution than is generally believed. If you do stupid experiments, and finish one a year, it can take 50 years. But if you stop doing experiments for a little while and think how proteins can possibly be synthesized, there are only about 5 different ways, not 50! And it will take only a few experiments to distinguish these." One of the young men added: "It is essentially the old question: How small and elegant an experiment can you perform?" These comments upset a number of those present. An electron microscopist said. "Gentlemen, this is off the track. This is philosophy of science." Szilard retorted. "I was not quarreling with third-rate scientists: I was quarreling with first-rate scientists."
  • Any criticism or challenge to consider changing our methods strikes of course at all our ego-defenses. But in this case the analytical method offers the possibility of such great increases in effectiveness that it is unfortunate that it cannot be regarded more often as a challenge to learning rather than as challenge to combat. Many of the recent triumphs in molecular biology have in fact been achieved on just such "oversimplified model systems," very much along the analytical lines laid down in the 1958 discussion. They have not fallen to the kind of men who justify themselves by saying "No two cells are alike," regardless of how true that may ultimately be. The triumphs are in fact triumphs of a new way of thinking.
  • the emphasis on strong inference
  • is also partly due to the nature of the fields themselves. Biology, with its vast informational detail and complexity, is a "high-information" field, where years and decades can easily be wasted on the usual type of "low-information" observations or experiments if one does not think carefully in advance about what the most important and conclusive experiments would be. And in high-energy physics, both the "information flux" of particles from the new accelerators and the million-dollar costs of operation have forced a similar analytical approach. It pays to have a top-notch group debate every experiment ahead of time; and the habit spreads throughout the field.
  • Historically, I think, there have been two main contributions to the development of a satisfactory strong-inference method. The first is that of Francis Bacon (13). He wanted a "surer method" of "finding out nature" than either the logic-chopping or all-inclusive theories of the time or the laudable but crude attempts to make inductions "by simple enumeration." He did not merely urge experiments as some suppose, he showed the fruitfulness of interconnecting theory and experiment so that the one checked the other. Of the many inductive procedures he suggested, the most important, I think, was the conditional inductive tree, which proceeded from alternative hypothesis (possible "causes," as he calls them), through crucial experiments ("Instances of the Fingerpost"), to exclusion of some alternatives and adoption of what is left ("establishing axioms"). His Instances of the Fingerpost are explicitly at the forks in the logical tree, the term being borrowed "from the fingerposts which are set up where roads part, to indicate the several directions."
  • ere was a method that could separate off the empty theories! Bacon, said the inductive method could be learned by anybody, just like learning to "draw a straighter line or more perfect circle . . . with the help of a ruler or a pair of compasses." "My way of discovering sciences goes far to level men's wit and leaves but little to individual excellence, because it performs everything by the surest rules and demonstrations." Even occasional mistakes would not be fatal. "Truth will sooner come out from error than from confusion."
  • Nevertheless there is a difficulty with this method. As Bacon emphasizes, it is necessary to make "exclusions." He says, "The induction which is to be available for the discovery and demonstration of sciences and arts, must analyze nature by proper rejections and exclusions, and then, after a sufficient number of negatives come to a conclusion on the affirmative instances." "[To man] it is granted only to proceed at first by negatives, and at last to end in affirmatives after exclusion has been exhausted." Or, as the philosopher Karl Popper says today there is no such thing as proof in science - because some later alternative explanation may be as good or better - so that science advances only by disproofs. There is no point in making hypotheses that are not falsifiable because such hypotheses do not say anything, "it must be possible for all empirical scientific system to be refuted by experience" (14).
  • The difficulty is that disproof is a hard doctrine. If you have a hypothesis and I have another hypothesis, evidently one of them must be eliminated. The scientist seems to have no choice but to be either soft-headed or disputatious. Perhaps this is why so many tend to resist the strong analytical approach and why some great scientists are so disputatious.
  • Fortunately, it seems to me, this difficulty can be removed by the use of a second great intellectual invention, the "method of multiple hypotheses," which is what was needed to round out the Baconian scheme. This is a method that was put forward by T.C. Chamberlin (15), a geologist at Chicago at the turn of the century, who is best known for his contribution to the Chamberlain-Moulton hypothesis of the origin of the solar system.
  • Chamberlin says our trouble is that when we make a single hypothesis, we become attached to it. "The moment one has offered an original explanation for a phenomenon which seems satisfactory, that moment affection for his intellectual child springs into existence, and as the explanation grows into a definite theory his parental affections cluster about his offspring and it grows more and more dear to him. . . . There springs up also unwittingly a pressing of the theory to make it fit the facts and a pressing of the facts to make them fit the theory..." "To avoid this grave danger, the method of multiple working hypotheses is urged. It differs from the simple working hypothesis in that it distributes the effort and divides the affections. . . . Each hypothesis suggests its own criteria, its own method of proof, its own method of developing the truth, and if a group of hypotheses encompass the subject on all sides, the total outcome of means and of methods is full and rich."
  • The conflict and exclusion of alternatives that is necessary to sharp inductive inference has been all too often a conflict between men, each with his single Ruling Theory. But whenever each man begins to have multiple working hypotheses, it becomes purely a conflict between ideas. It becomes much easier then for each of us to aim every day at conclusive disproofs - at strong inference - without either reluctance or combativeness. In fact, when there are multiple hypotheses, which are not anyone's "personal property," and when there are crucial experiments to test them, the daily life in the laboratory takes on an interest and excitement it never had, and the students can hardly wait to get to work to see how the detective story will come out. It seems to me that this is the reason for the development of those distinctive habits of mind and the "complex thought" that Chamberlin described, the reason for the sharpness, the excitement, the zeal, the teamwork - yes, even international teamwork - in molecular biology and high- energy physics today. What else could be so effective?
  • Unfortunately, I think, there are other other areas of science today that are sick by comparison, because they have forgotten the necessity for alternative hypotheses and disproof. Each man has only one branch - or none - on the logical tree, and it twists at random without ever coming to the need for a crucial decision at any point. We can see from the external symptoms that there is something scientifically wrong. The Frozen Method, The Eternal Surveyor, The Never Finished, The Great Man With a Single Hypothcsis, The Little Club of Dependents, The Vendetta, The All-Encompassing Theory Which Can Never Be Falsified.
  • a "theory" of this sort is not a theory at all, because it does not exclude anything. It predicts everything, and therefore does not predict anything. It becomes simply a verbal formula which the graduate student repeats and believes because the professor has said it so often. This is not science, but faith; not theory, but theology. Whether it is hand-waving or number-waving, or equation-waving, a theory is not a theory unless it can be disproved. That is, unless it can be falsified by some possible experimental outcome.
  • the work methods of a number of scientists have been testimony to the power of strong inference. Is success not due in many cases to systematic use of Bacon's "surest rules and demonstrations" as much as to rare and unattainable intellectual power? Faraday's famous diary (16), or Fermi's notebooks (3, 17), show how these men believed in the effectiveness of daily steps in applying formal inductive methods to one problem after another.
  • Surveys, taxonomy, design of equipment, systematic measurements and tables, theoretical computations - all have their proper and honored place, provided they are parts of a chain of precise induction of how nature works. Unfortunately, all too often they become ends in themselves, mere time-serving from the point of view of real scientific advance, a hypertrophied methodology that justifies itself as a lore of respectability.
  • We speak piously of taking measurements and making small studies that will "add another brick to the temple of science." Most such bricks just lie around the brickyard (20). Tables of constraints have their place and value, but the study of one spectrum after another, if not frequently re-evaluated, may become a substitute for thinking, a sad waste of intelligence in a research laboratory, and a mistraining whose crippling effects may last a lifetime.
  • Beware of the man of one method or one instrument, either experimental or theoretical. He tends to become method-oriented rather than problem-oriented. The method-oriented man is shackled; the problem-oriented man is at least reaching freely toward that is most important. Strong inference redirects a man to problem-orientation, but it requires him to be willing repeatedly to put aside his last methods and teach himself new ones.
  • anyone who asks the question about scientific effectiveness will also conclude that much of the mathematizing in physics and chemistry today is irrelevant if not misleading. The great value of mathematical formulation is that when an experiment agrees with a calculation to five decimal places, a great many alternative hypotheses are pretty well excluded (though the Bohr theory and the Schrödinger theory both predict exactly the same Rydberg constant!). But when the fit is only to two decimal places, or one, it may be a trap for the unwary; it may be no better than any rule-of-thumb extrapolation, and some other kind of qualitative exclusion might be more rigorous for testing the assumptions and more important to scientific understanding than the quantitative fit.
  • Today we preach that science is not science unless it is quantitative. We substitute correlations for causal studies, and physical equations for organic reasoning. Measurements and equations are supposed to sharpen thinking, but, in my observation, they more often tend to make the thinking noncausal and fuzzy. They tend to become the object of scientific manipulation instead of auxiliary tests of crucial inferences.
  • Many - perhaps most - of the great issues of science are qualitative, not quantitative, even in physics and chemistry. Equations and measurements are useful when and only when they are related to proof; but proof or disproof comes first and is in fact strongest when it is absolutely convincing without any quantitative measurement.
  • you can catch phenomena in a logical box or in a mathematical box. The logical box is coarse but strong. The mathematical box is fine-grained but flimsy. The mathematical box is a beautiful way of wrapping up a problem, but it will not hold the phenomena unless they have been caught in a logical box to begin with.
  • Of course it is easy - and all too common - for one scientist to call the others unscientific. My point is not that my particular conclusions here are necessarily correct, but that we have long needed some absolute standard of possible scientific effectiveness by which to measure how well we are succeeding in various areas - a standard that many could agree on and one that would be undistorted by the scientific pressures and fashions of the times and the vested interests and busywork that they develop. It is not public evaluation I am interested in so much as a private measure by which to compare one's own scientific performance with what it might be. I believe that strong inference provides this kind of standard of what the maximum possible scientific effectiveness could be - as well as a recipe for reaching it.
  • The strong-inference point of view is so resolutely critical of methods of work and values in science that any attempt to compare specific cases is likely to sound but smug and destructive. Mainly one should try to teach it by example and by exhorting to self-analysis and self-improvement only in general terms
  • one severe but useful private test - a touchstone of strong inference - that removes the necessity for third-person criticism, because it is a test that anyone can learn to carry with him for use as needed. It is our old friend the Baconian "exclusion," but I call it "The Question." Obviously it should be applied as much to one's own thinking as to others'. It consists of asking in your own mind, on hearing any scientific explanation or theory put forward, "But sir, what experiment could disprove your hypothesis?"; or, on hearing a scientific experiment described, "But sir, what hypothesis does your experiment disprove?"
  • It is not true that all science is equal; or that we cannot justly compare the effectiveness of scientists by any method other than a mutual-recommendation system. The man to watch, the man to put your money on, is not the man who wants to make "a survey" or a "more detailed study" but the man with the notebook, the man with the alternative hypotheses and the crucial experiments, the man who knows how to answer your Question of disproof and is already working on it.
  •  
    There is so much bad science and bad statistics information in media reports, publications, and shared between conversants that I think it is important to understand about facts and proofs and the associated pitfalls.
Weiye Loh

The Black Swan of Cairo | Foreign Affairs - 0 views

  • It is both misguided and dangerous to push unobserved risks further into the statistical tails of the probability distribution of outcomes and allow these high-impact, low-probability "tail risks" to disappear from policymakers' fields of observation.
  • Such environments eventually experience massive blowups, catching everyone off-guard and undoing years of stability or, in some cases, ending up far worse than they were in their initial volatile state. Indeed, the longer it takes for the blowup to occur, the worse the resulting harm in both economic and political systems.
  • Seeking to restrict variability seems to be good policy (who does not prefer stability to chaos?), so it is with very good intentions that policymakers unwittingly increase the risk of major blowups. And it is the same misperception of the properties of natural systems that led to both the economic crisis of 2007-8 and the current turmoil in the Arab world. The policy implications are identical: to make systems robust, all risks must be visible and out in the open -- fluctuat nec mergitur (it fluctuates but does not sink) goes the Latin saying.
  • ...21 more annotations...
  • Just as a robust economic system is one that encourages early failures (the concepts of "fail small" and "fail fast"), the U.S. government should stop supporting dictatorial regimes for the sake of pseudostability and instead allow political noise to rise to the surface. Making an economy robust in the face of business swings requires allowing risk to be visible; the same is true in politics.
  • Both the recent financial crisis and the current political crisis in the Middle East are grounded in the rise of complexity, interdependence, and unpredictability. Policymakers in the United Kingdom and the United States have long promoted policies aimed at eliminating fluctuation -- no more booms and busts in the economy, no more "Iranian surprises" in foreign policy. These policies have almost always produced undesirable outcomes. For example, the U.S. banking system became very fragile following a succession of progressively larger bailouts and government interventions, particularly after the 1983 rescue of major banks (ironically, by the same Reagan administration that trumpeted free markets). In the United States, promoting these bad policies has been a bipartisan effort throughout. Republicans have been good at fragilizing large corporations through bailouts, and Democrats have been good at fragilizing the government. At the same time, the financial system as a whole exhibited little volatility; it kept getting weaker while providing policymakers with the illusion of stability, illustrated most notably when Ben Bernanke, who was then a member of the Board of Governors of the U.S. Federal Reserve, declared the era of "the great moderation" in 2004.
  • Washington stabilized the market with bailouts and by allowing certain companies to grow "too big to fail." Because policymakers believed it was better to do something than to do nothing, they felt obligated to heal the economy rather than wait and see if it healed on its own.
  • The foreign policy equivalent is to support the incumbent no matter what. And just as banks took wild risks thanks to Greenspan's implicit insurance policy, client governments such as Hosni Mubarak's in Egypt for years engaged in overt plunder thanks to similarly reliable U.S. support.
  • Those who seek to prevent volatility on the grounds that any and all bumps in the road must be avoided paradoxically increase the probability that a tail risk will cause a major explosion.
  • In the realm of economics, price controls are designed to constrain volatility on the grounds that stable prices are a good thing. But although these controls might work in some rare situations, the long-term effect of any such system is an eventual and extremely costly blowup whose cleanup costs can far exceed the benefits accrued. The risks of a dictatorship, no matter how seemingly stable, are no different, in the long run, from those of an artificially controlled price.
  • Such attempts to institutionally engineer the world come in two types: those that conform to the world as it is and those that attempt to reform the world. The nature of humans, quite reasonably, is to intervene in an effort to alter their world and the outcomes it produces. But government interventions are laden with unintended -- and unforeseen -- consequences, particularly in complex systems, so humans must work with nature by tolerating systems that absorb human imperfections rather than seek to change them.
  • What is needed is a system that can prevent the harm done to citizens by the dishonesty of business elites; the limited competence of forecasters, economists, and statisticians; and the imperfections of regulation, not one that aims to eliminate these flaws. Humans must try to resist the illusion of control: just as foreign policy should be intelligence-proof (it should minimize its reliance on the competence of information-gathering organizations and the predictions of "experts" in what are inherently unpredictable domains), the economy should be regulator-proof, given that some regulations simply make the system itself more fragile. Due to the complexity of markets, intricate regulations simply serve to generate fees for lawyers and profits for sophisticated derivatives traders who can build complicated financial products that skirt those regulations.
  • The life of a turkey before Thanksgiving is illustrative: the turkey is fed for 1,000 days and every day seems to confirm that the farmer cares for it -- until the last day, when confidence is maximal. The "turkey problem" occurs when a naive analysis of stability is derived from the absence of past variations. Likewise, confidence in stability was maximal at the onset of the financial crisis in 2007.
  • The turkey problem for humans is the result of mistaking one environment for another. Humans simultaneously inhabit two systems: the linear and the complex. The linear domain is characterized by its predictability and the low degree of interaction among its components, which allows the use of mathematical methods that make forecasts reliable. In complex systems, there is an absence of visible causal links between the elements, masking a high degree of interdependence and extremely low predictability. Nonlinear elements are also present, such as those commonly known, and generally misunderstood, as "tipping points." Imagine someone who keeps adding sand to a sand pile without any visible consequence, until suddenly the entire pile crumbles. It would be foolish to blame the collapse on the last grain of sand rather than the structure of the pile, but that is what people do consistently, and that is the policy error.
  • Engineering, architecture, astronomy, most of physics, and much of common science are linear domains. The complex domain is the realm of the social world, epidemics, and economics. Crucially, the linear domain delivers mild variations without large shocks, whereas the complex domain delivers massive jumps and gaps. Complex systems are misunderstood, mostly because humans' sophistication, obtained over the history of human knowledge in the linear domain, does not transfer properly to the complex domain. Humans can predict a solar eclipse and the trajectory of a space vessel, but not the stock market or Egyptian political events. All man-made complex systems have commonalities and even universalities. Sadly, deceptive calm (followed by Black Swan surprises) seems to be one of those properties.
  • The system is responsible, not the components. But after the financial crisis of 2007-8, many people thought that predicting the subprime meltdown would have helped. It would not have, since it was a symptom of the crisis, not its underlying cause. Likewise, Obama's blaming "bad intelligence" for his administration's failure to predict the crisis in Egypt is symptomatic of both the misunderstanding of complex systems and the bad policies involved.
  • Obama's mistake illustrates the illusion of local causal chains -- that is, confusing catalysts for causes and assuming that one can know which catalyst will produce which effect. The final episode of the upheaval in Egypt was unpredictable for all observers, especially those involved. As such, blaming the CIA is as foolish as funding it to forecast such events. Governments are wasting billions of dollars on attempting to predict events that are produced by interdependent systems and are therefore not statistically understandable at the individual level.
  • Political and economic "tail events" are unpredictable, and their probabilities are not scientifically measurable. No matter how many dollars are spent on research, predicting revolutions is not the same as counting cards; humans will never be able to turn politics into the tractable randomness of blackjack.
  • Most explanations being offered for the current turmoil in the Middle East follow the "catalysts as causes" confusion. The riots in Tunisia and Egypt were initially attributed to rising commodity prices, not to stifling and unpopular dictatorships. But Bahrain and Libya are countries with high gdps that can afford to import grain and other commodities. Again, the focus is wrong even if the logic is comforting. It is the system and its fragility, not events, that must be studied -- what physicists call "percolation theory," in which the properties of the terrain are studied rather than those of a single element of the terrain.
  • When dealing with a system that is inherently unpredictable, what should be done? Differentiating between two types of countries is useful. In the first, changes in government do not lead to meaningful differences in political outcomes (since political tensions are out in the open). In the second type, changes in government lead to both drastic and deeply unpredictable changes.
  • Humans fear randomness -- a healthy ancestral trait inherited from a different environment. Whereas in the past, which was a more linear world, this trait enhanced fitness and increased chances of survival, it can have the reverse effect in today's complex world, making volatility take the shape of nasty Black Swans hiding behind deceptive periods of "great moderation." This is not to say that any and all volatility should be embraced. Insurance should not be banned, for example.
  • But alongside the "catalysts as causes" confusion sit two mental biases: the illusion of control and the action bias (the illusion that doing something is always better than doing nothing). This leads to the desire to impose man-made solutions
  • Variation is information. When there is no variation, there is no information. This explains the CIA's failure to predict the Egyptian revolution and, a generation before, the Iranian Revolution -- in both cases, the revolutionaries themselves did not have a clear idea of their relative strength with respect to the regime they were hoping to topple. So rather than subsidize and praise as a "force for stability" every tin-pot potentate on the planet, the U.S. government should encourage countries to let information flow upward through the transparency that comes with political agitation. It should not fear fluctuations per se, since allowing them to be in the open, as Italy and Lebanon both show in different ways, creates the stability of small jumps.
  • As Seneca wrote in De clementia, "Repeated punishment, while it crushes the hatred of a few, stirs the hatred of all . . . just as trees that have been trimmed throw out again countless branches." The imposition of peace through repeated punishment lies at the heart of many seemingly intractable conflicts, including the Israeli-Palestinian stalemate. Furthermore, dealing with seemingly reliable high-level officials rather than the people themselves prevents any peace treaty signed from being robust. The Romans were wise enough to know that only a free man under Roman law could be trusted to engage in a contract; by extension, only a free people can be trusted to abide by a treaty. Treaties that are negotiated with the consent of a broad swath of the populations on both sides of a conflict tend to survive. Just as no central bank is powerful enough to dictate stability, no superpower can be powerful enough to guarantee solid peace alone.
  • As Jean-Jacques Rousseau put it, "A little bit of agitation gives motivation to the soul, and what really makes the species prosper is not peace so much as freedom." With freedom comes some unpredictable fluctuation. This is one of life's packages: there is no freedom without noise -- and no stability without volatility.∂
1 - 17 of 17
Showing 20 items per page