Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Recycling

Rss Feed Group items tagged

Weiye Loh

Skepticblog » Why are textbooks so expensive? - 0 views

  • As an author, I’ve seen how the sales histories of textbooks work. Typically they have a big spike of sales for the first 1-2 years after they are introduced, and that’s when most the new copies are sold and most of the publisher’s money is made. But by year 3  (and sometimes sooner), the sales plunge and within another year or two, the sales are miniscule. The publishers have only a few options in a situation like this. One option: they can price the book so that the first two years’ worth of sales will pay their costs back before the used copies wipe out their market, which is the major reason new copies cost so much. Another option (especially with high-volume introductory textbooks) is to revise it within 2-3 years after the previous edition, so the new edition will drive all the used copies off the shelves for another two years or so. This is also a common strategy. For my most popular books, the publisher expected me to be working on a new edition almost as soon as the previous edition came out, and 2-3 years later, the new edition (with a distinctive new cover, and sometimes with significant new content as well) starts the sales curve cycle all over again. One of my books is in its eighth edition, but there are introductory textbooks that are in the 15th or 20th edition.
  • For over 20 years now, I’ve heard all sorts of prophets saying that paper textbooks are dead, and predicting that all textbooks would be electronic within a few years. Year after year, I  hear this prediction—and paper textbooks continue to sell just fine, thank you.  Certainly, electronic editions of mass market best-sellers, novels and mysteries (usually cheaply produced with few illustrations) seem to do fine as Kindle editions or eBooks, and that market is well established. But electronic textbooks have never taken off, at least in science textbooks, despite numerous attempts to make them work. Watching students study, I have a few thoughts as to why this is: Students seem to feel that they haven’t “studied” unless they’ve covered their textbook with yellow highlighter markings. Although there are electronic equivalents of the highlighter marker pen, most of today’s students seem to prefer physically marking on a real paper book. Textbooks (especially science books) are heavy with color photographs and other images that don’t often look good on a tiny screen, don’t print out on ordinary paper well, but raise the price of the book. Even an eBook is going to be a lot more expensive with lots of images compared to a mass-market book with no art whatsoever. I’ve watched my students study, and they like the flexibility of being able to use their book just about anywhere—in bright light outdoors away from a power supply especially. Although eBooks are getting better, most still have screens that are hard to read in bright light, and eventually their battery will run out, whether you’re near a power supply or not. Finally, if  you drop your eBook or get it wet, you have a disaster. A textbook won’t even be dented by hard usage, and unless it’s totally soaked and cannot be dried, it does a lot better when wet than any electronic book.
  • A recent study found that digital textbooks were no panacea after all. Only one-third of the students said they were comfortable reading e-textbooks, and three-fourths preferred a paper textbook to an e-textbook if the costs were equal. And the costs have hidden jokers in the deck: e-textbooks may seem cheaper, but they tend to have built-in expiration dates and cannot be resold, so they may be priced below paper textbooks but end up costing about the same. E-textbooks are not that much cheaper for publishers, either, since the writing, editing, art manuscript, promotion, etc., all cost the publisher the same whether the final book is in paper or electronic. The only cost difference is printing and binding and shipping and storage vs. creating the electronic version.
  •  
    But in the 1980s and 1990s, the market changed drastically with the expansion of used book recyclers. They set up shop at the bookstore door near the end of the semester and bought students' new copies for pennies on the dollar. They would show up in my office uninvited and ask if I want to sell any of the free adopter's copies that I get from publishers trying to entice me. If you walk through any campus bookstore, nearly all the new copies have been replaced by used copies, usually very tattered and with broken spines. The students naturally gravitate to the cheaper used books (and some prefer them because they like it if a previous owner has highlighted the important stuff). In many bookstores, there are no new copies at all, or just a few that go unsold. What these bargain hunters don't realize is that every used copy purchased means a new copy unsold. Used copies pay nothing to the publisher (or the author, either), so to recoup their costs, publishers must price their new copies to offset the loss of sales by used copies. And so the vicious circle begins-publisher raises the price on the book again, more students buy used copies, so a new copy keeps climbing in price.
Weiye Loh

Science, Strong Inference -- Proper Scientific Method - 0 views

  • Scientists these days tend to keep up a polite fiction that all science is equal. Except for the work of the misguided opponent whose arguments we happen to be refuting at the time, we speak as though every scientist's field and methods of study are as good as every other scientist's and perhaps a little better. This keeps us all cordial when it comes to recommending each other for government grants.
  • Why should there be such rapid advances in some fields and not in others? I think the usual explanations that we tend to think of - such as the tractability of the subject, or the quality or education of the men drawn into it, or the size of research contracts - are important but inadequate. I have begun to believe that the primary factor in scientific advance is an intellectual one. These rapidly moving fields are fields where a particular method of doing scientific research is systematically used and taught, an accumulative method of inductive inference that is so effective that I think it should be given the name of "strong inference." I believe it is important to examine this method, its use and history and rationale, and to see whether other groups and individuals might learn to adopt it profitably in their own scientific and intellectual work. In its separate elements, strong inference is just the simple and old-fashioned method of inductive inference that goes back to Francis Bacon. The steps are familiar to every college student and are practiced, off and on, by every scientist. The difference comes in their systematic application. Strong inference consists of applying the following steps to every problem in science, formally and explicitly and regularly: Devising alternative hypotheses; Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly is possible, exclude one or more of the hypotheses; Carrying out the experiment so as to get a clean result; Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain, and so on.
  • On any new problem, of course, inductive inference is not as simple and certain as deduction, because it involves reaching out into the unknown. Steps 1 and 2 require intellectual inventions, which must be cleverly chosen so that hypothesis, experiment, outcome, and exclusion will be related in a rigorous syllogism; and the question of how to generate such inventions is one which has been extensively discussed elsewhere (2, 3). What the formal schema reminds us to do is to try to make these inventions, to take the next step, to proceed to the next fork, without dawdling or getting tied up in irrelevancies.
  • ...28 more annotations...
  • It is clear why this makes for rapid and powerful progress. For exploring the unknown, there is no faster method; this is the minimum sequence of steps. Any conclusion that is not an exclusion is insecure and must be rechecked. Any delay in recycling to the next set of hypotheses is only a delay. Strong inference, and the logical tree it generates, are to inductive reasoning what the syllogism is to deductive reasoning in that it offers a regular method for reaching firm inductive conclusions one after the other as rapidly as possible.
  • "But what is so novel about this?" someone will say. This is the method of science and always has been, why give it a special name? The reason is that many of us have almost forgotten it. Science is now an everyday business. Equipment, calculations, lectures become ends in themselves. How many of us write down our alternatives and crucial experiments every day, focusing on the exclusion of a hypothesis? We may write our scientific papers so that it looks as if we had steps 1, 2, and 3 in mind all along. But in between, we do busywork. We become "method- oriented" rather than "problem-oriented." We say we prefer to "feel our way" toward generalizations. We fail to teach our students how to sharpen up their inductive inferences. And we do not realize the added power that the regular and explicit use of alternative hypothesis and sharp exclusion could give us at every step of our research.
  • A distinguished cell biologist rose and said, "No two cells give the same properties. Biology is the science of heterogeneous systems." And he added privately. "You know there are scientists, and there are people in science who are just working with these over-simplified model systems - DNA chains and in vitro systems - who are not doing science at all. We need their auxiliary work: they build apparatus, they make minor studies, but they are not scientists." To which Cy Levinthal replied: "Well, there are two kinds of biologists, those who are looking to see if there is one thing that can be understood and those who keep saying it is very complicated and that nothing can be understood. . . . You must study the simplest system you think has the properties you are interested in."
  • At the 1958 Conference on Biophysics, at Boulder, there was a dramatic confrontation between the two points of view. Leo Szilard said: "The problems of how enzymes are induced, of how proteins are synthesized, of how antibodies are formed, are closer to solution than is generally believed. If you do stupid experiments, and finish one a year, it can take 50 years. But if you stop doing experiments for a little while and think how proteins can possibly be synthesized, there are only about 5 different ways, not 50! And it will take only a few experiments to distinguish these." One of the young men added: "It is essentially the old question: How small and elegant an experiment can you perform?" These comments upset a number of those present. An electron microscopist said. "Gentlemen, this is off the track. This is philosophy of science." Szilard retorted. "I was not quarreling with third-rate scientists: I was quarreling with first-rate scientists."
  • Any criticism or challenge to consider changing our methods strikes of course at all our ego-defenses. But in this case the analytical method offers the possibility of such great increases in effectiveness that it is unfortunate that it cannot be regarded more often as a challenge to learning rather than as challenge to combat. Many of the recent triumphs in molecular biology have in fact been achieved on just such "oversimplified model systems," very much along the analytical lines laid down in the 1958 discussion. They have not fallen to the kind of men who justify themselves by saying "No two cells are alike," regardless of how true that may ultimately be. The triumphs are in fact triumphs of a new way of thinking.
  • the emphasis on strong inference
  • is also partly due to the nature of the fields themselves. Biology, with its vast informational detail and complexity, is a "high-information" field, where years and decades can easily be wasted on the usual type of "low-information" observations or experiments if one does not think carefully in advance about what the most important and conclusive experiments would be. And in high-energy physics, both the "information flux" of particles from the new accelerators and the million-dollar costs of operation have forced a similar analytical approach. It pays to have a top-notch group debate every experiment ahead of time; and the habit spreads throughout the field.
  • Historically, I think, there have been two main contributions to the development of a satisfactory strong-inference method. The first is that of Francis Bacon (13). He wanted a "surer method" of "finding out nature" than either the logic-chopping or all-inclusive theories of the time or the laudable but crude attempts to make inductions "by simple enumeration." He did not merely urge experiments as some suppose, he showed the fruitfulness of interconnecting theory and experiment so that the one checked the other. Of the many inductive procedures he suggested, the most important, I think, was the conditional inductive tree, which proceeded from alternative hypothesis (possible "causes," as he calls them), through crucial experiments ("Instances of the Fingerpost"), to exclusion of some alternatives and adoption of what is left ("establishing axioms"). His Instances of the Fingerpost are explicitly at the forks in the logical tree, the term being borrowed "from the fingerposts which are set up where roads part, to indicate the several directions."
  • ere was a method that could separate off the empty theories! Bacon, said the inductive method could be learned by anybody, just like learning to "draw a straighter line or more perfect circle . . . with the help of a ruler or a pair of compasses." "My way of discovering sciences goes far to level men's wit and leaves but little to individual excellence, because it performs everything by the surest rules and demonstrations." Even occasional mistakes would not be fatal. "Truth will sooner come out from error than from confusion."
  • Nevertheless there is a difficulty with this method. As Bacon emphasizes, it is necessary to make "exclusions." He says, "The induction which is to be available for the discovery and demonstration of sciences and arts, must analyze nature by proper rejections and exclusions, and then, after a sufficient number of negatives come to a conclusion on the affirmative instances." "[To man] it is granted only to proceed at first by negatives, and at last to end in affirmatives after exclusion has been exhausted." Or, as the philosopher Karl Popper says today there is no such thing as proof in science - because some later alternative explanation may be as good or better - so that science advances only by disproofs. There is no point in making hypotheses that are not falsifiable because such hypotheses do not say anything, "it must be possible for all empirical scientific system to be refuted by experience" (14).
  • The difficulty is that disproof is a hard doctrine. If you have a hypothesis and I have another hypothesis, evidently one of them must be eliminated. The scientist seems to have no choice but to be either soft-headed or disputatious. Perhaps this is why so many tend to resist the strong analytical approach and why some great scientists are so disputatious.
  • Fortunately, it seems to me, this difficulty can be removed by the use of a second great intellectual invention, the "method of multiple hypotheses," which is what was needed to round out the Baconian scheme. This is a method that was put forward by T.C. Chamberlin (15), a geologist at Chicago at the turn of the century, who is best known for his contribution to the Chamberlain-Moulton hypothesis of the origin of the solar system.
  • Chamberlin says our trouble is that when we make a single hypothesis, we become attached to it. "The moment one has offered an original explanation for a phenomenon which seems satisfactory, that moment affection for his intellectual child springs into existence, and as the explanation grows into a definite theory his parental affections cluster about his offspring and it grows more and more dear to him. . . . There springs up also unwittingly a pressing of the theory to make it fit the facts and a pressing of the facts to make them fit the theory..." "To avoid this grave danger, the method of multiple working hypotheses is urged. It differs from the simple working hypothesis in that it distributes the effort and divides the affections. . . . Each hypothesis suggests its own criteria, its own method of proof, its own method of developing the truth, and if a group of hypotheses encompass the subject on all sides, the total outcome of means and of methods is full and rich."
  • The conflict and exclusion of alternatives that is necessary to sharp inductive inference has been all too often a conflict between men, each with his single Ruling Theory. But whenever each man begins to have multiple working hypotheses, it becomes purely a conflict between ideas. It becomes much easier then for each of us to aim every day at conclusive disproofs - at strong inference - without either reluctance or combativeness. In fact, when there are multiple hypotheses, which are not anyone's "personal property," and when there are crucial experiments to test them, the daily life in the laboratory takes on an interest and excitement it never had, and the students can hardly wait to get to work to see how the detective story will come out. It seems to me that this is the reason for the development of those distinctive habits of mind and the "complex thought" that Chamberlin described, the reason for the sharpness, the excitement, the zeal, the teamwork - yes, even international teamwork - in molecular biology and high- energy physics today. What else could be so effective?
  • Unfortunately, I think, there are other other areas of science today that are sick by comparison, because they have forgotten the necessity for alternative hypotheses and disproof. Each man has only one branch - or none - on the logical tree, and it twists at random without ever coming to the need for a crucial decision at any point. We can see from the external symptoms that there is something scientifically wrong. The Frozen Method, The Eternal Surveyor, The Never Finished, The Great Man With a Single Hypothcsis, The Little Club of Dependents, The Vendetta, The All-Encompassing Theory Which Can Never Be Falsified.
  • a "theory" of this sort is not a theory at all, because it does not exclude anything. It predicts everything, and therefore does not predict anything. It becomes simply a verbal formula which the graduate student repeats and believes because the professor has said it so often. This is not science, but faith; not theory, but theology. Whether it is hand-waving or number-waving, or equation-waving, a theory is not a theory unless it can be disproved. That is, unless it can be falsified by some possible experimental outcome.
  • the work methods of a number of scientists have been testimony to the power of strong inference. Is success not due in many cases to systematic use of Bacon's "surest rules and demonstrations" as much as to rare and unattainable intellectual power? Faraday's famous diary (16), or Fermi's notebooks (3, 17), show how these men believed in the effectiveness of daily steps in applying formal inductive methods to one problem after another.
  • Surveys, taxonomy, design of equipment, systematic measurements and tables, theoretical computations - all have their proper and honored place, provided they are parts of a chain of precise induction of how nature works. Unfortunately, all too often they become ends in themselves, mere time-serving from the point of view of real scientific advance, a hypertrophied methodology that justifies itself as a lore of respectability.
  • We speak piously of taking measurements and making small studies that will "add another brick to the temple of science." Most such bricks just lie around the brickyard (20). Tables of constraints have their place and value, but the study of one spectrum after another, if not frequently re-evaluated, may become a substitute for thinking, a sad waste of intelligence in a research laboratory, and a mistraining whose crippling effects may last a lifetime.
  • Beware of the man of one method or one instrument, either experimental or theoretical. He tends to become method-oriented rather than problem-oriented. The method-oriented man is shackled; the problem-oriented man is at least reaching freely toward that is most important. Strong inference redirects a man to problem-orientation, but it requires him to be willing repeatedly to put aside his last methods and teach himself new ones.
  • anyone who asks the question about scientific effectiveness will also conclude that much of the mathematizing in physics and chemistry today is irrelevant if not misleading. The great value of mathematical formulation is that when an experiment agrees with a calculation to five decimal places, a great many alternative hypotheses are pretty well excluded (though the Bohr theory and the Schrödinger theory both predict exactly the same Rydberg constant!). But when the fit is only to two decimal places, or one, it may be a trap for the unwary; it may be no better than any rule-of-thumb extrapolation, and some other kind of qualitative exclusion might be more rigorous for testing the assumptions and more important to scientific understanding than the quantitative fit.
  • Today we preach that science is not science unless it is quantitative. We substitute correlations for causal studies, and physical equations for organic reasoning. Measurements and equations are supposed to sharpen thinking, but, in my observation, they more often tend to make the thinking noncausal and fuzzy. They tend to become the object of scientific manipulation instead of auxiliary tests of crucial inferences.
  • Many - perhaps most - of the great issues of science are qualitative, not quantitative, even in physics and chemistry. Equations and measurements are useful when and only when they are related to proof; but proof or disproof comes first and is in fact strongest when it is absolutely convincing without any quantitative measurement.
  • you can catch phenomena in a logical box or in a mathematical box. The logical box is coarse but strong. The mathematical box is fine-grained but flimsy. The mathematical box is a beautiful way of wrapping up a problem, but it will not hold the phenomena unless they have been caught in a logical box to begin with.
  • Of course it is easy - and all too common - for one scientist to call the others unscientific. My point is not that my particular conclusions here are necessarily correct, but that we have long needed some absolute standard of possible scientific effectiveness by which to measure how well we are succeeding in various areas - a standard that many could agree on and one that would be undistorted by the scientific pressures and fashions of the times and the vested interests and busywork that they develop. It is not public evaluation I am interested in so much as a private measure by which to compare one's own scientific performance with what it might be. I believe that strong inference provides this kind of standard of what the maximum possible scientific effectiveness could be - as well as a recipe for reaching it.
  • The strong-inference point of view is so resolutely critical of methods of work and values in science that any attempt to compare specific cases is likely to sound but smug and destructive. Mainly one should try to teach it by example and by exhorting to self-analysis and self-improvement only in general terms
  • one severe but useful private test - a touchstone of strong inference - that removes the necessity for third-person criticism, because it is a test that anyone can learn to carry with him for use as needed. It is our old friend the Baconian "exclusion," but I call it "The Question." Obviously it should be applied as much to one's own thinking as to others'. It consists of asking in your own mind, on hearing any scientific explanation or theory put forward, "But sir, what experiment could disprove your hypothesis?"; or, on hearing a scientific experiment described, "But sir, what hypothesis does your experiment disprove?"
  • It is not true that all science is equal; or that we cannot justly compare the effectiveness of scientists by any method other than a mutual-recommendation system. The man to watch, the man to put your money on, is not the man who wants to make "a survey" or a "more detailed study" but the man with the notebook, the man with the alternative hypotheses and the crucial experiments, the man who knows how to answer your Question of disproof and is already working on it.
  •  
    There is so much bad science and bad statistics information in media reports, publications, and shared between conversants that I think it is important to understand about facts and proofs and the associated pitfalls.
Weiye Loh

Solar Towers Could Transform Plastic Back Into Oil | The Utopianist - Think Bigger - 0 views

  •  
    Japanese inventor Akinori Ito Blest Corporation sells machines that can process plastic back into its raw petroleum form - one to fifty kilograms of it, every hour. He has traveled the world showcasing the desktop version that can theoretically fit into any modest-sized kitchen; the recycled oil can be refined into gasoline, kerosene or diesel and subsequently burnt.
Weiye Loh

The internet: is it changing the way we think? | Technology | The Observer - 0 views

  • American magazine the Atlantic lobs an intellectual grenade into our culture. In the summer of 1945, for example, it published an essay by the Massachusetts Institute of Technology (MIT) engineer Vannevar Bush entitled "As We May Think". It turned out to be the blueprint for what eventually emerged as the world wide web. Two summers ago, the Atlantic published an essay by Nicholas Carr, one of the blogosphere's most prominent (and thoughtful) contrarians, under the headline "Is Google Making Us Stupid?".
  • Carr wrote, "I've had an uncomfortable sense that someone, or something, has been tinkering with my brain, remapping the neural circuitry, reprogramming the memory. My mind isn't going – so far as I can tell – but it's changing. I'm not thinking the way I used to think. I can feel it most strongly when I'm reading. Immersing myself in a book or a lengthy article used to be easy. My mind would get caught up in the narrative or the turns of the argument and I'd spend hours strolling through long stretches of prose. That's rarely the case anymore. Now my concentration often starts to drift after two or three pages. I get fidgety, lose the thread, begin looking for something else to do. I feel as if I'm always dragging my wayward brain back to the text. The deep reading that used to come naturally has become a struggle."
  • Carr's target was not really the world's leading search engine, but the impact that ubiquitous, always-on networking is having on our cognitive processes. His argument was that our deepening dependence on networking technology is indeed changing not only the way we think, but also the structure of our brains.
  • ...9 more annotations...
  • Carr's article touched a nerve and has provoked a lively, ongoing debate on the net and in print (he has now expanded it into a book, The Shallows: What the Internet Is Doing to Our Brains). This is partly because he's an engaging writer who has vividly articulated the unease that many adults feel about the way their modi operandi have changed in response to ubiquitous networking.
  • Who bothers to write down or memorise detailed information any more, for example, when they know that Google will always retrieve it if it's needed again? The web has become, in a way, a global prosthesis for our collective memory.
  • easy to dismiss Carr's concern as just the latest episode of the moral panic that always accompanies the arrival of a new communications technology. People fretted about printing, photography, the telephone and television in analogous ways. It even bothered Plato, who argued that the technology of writing would destroy the art of remembering.
  • many commentators who accept the thrust of his argument seem not only untroubled by its far-reaching implications but are positively enthusiastic about them. When the Pew Research Centre's Internet & American Life project asked its panel of more than 370 internet experts for their reaction, 81% of them agreed with the proposition that "people's use of the internet has enhanced human intelligence".
  • As a writer, thinker, researcher and teacher, what I can attest to is that the internet is changing our habits of thinking, which isn't the same thing as changing our brains. The brain is like any other muscle – if you don't stretch it, it gets both stiff and flabby. But if you exercise it regularly, and cross-train, your brain will be flexible, quick, strong and versatile.
  • he internet is analogous to a weight-training machine for the brain, as compared with the free weights provided by libraries and books. Each method has its advantage, but used properly one works you harder. Weight machines are directive and enabling: they encourage you to think you've worked hard without necessarily challenging yourself. The internet can be the same: it often tells us what we think we know, spreading misinformation and nonsense while it's at it. It can substitute surface for depth, imitation for originality, and its passion for recycling would surpass the most committed environmentalist.
  • I've seen students' thinking habits change dramatically: if information is not immediately available via a Google search, students are often stymied. But of course what a Google search provides is not the best, wisest or most accurate answer, but the most popular one.
  • But knowledge is not the same thing as information, and there is no question to my mind that the access to raw information provided by the internet is unparalleled and democratising. Admittance to elite private university libraries and archives is no longer required, as they increasingly digitise their archives. We've all read the jeremiads that the internet sounds the death knell of reading, but people read online constantly – we just call it surfing now. What they are reading is changing, often for the worse; but it is also true that the internet increasingly provides a treasure trove of rare books, documents and images, and as long as we have free access to it, then the internet can certainly be a force for education and wisdom, and not just for lies, damned lies, and false statistics.
  • In the end, the medium is not the message, and the internet is just a medium, a repository and an archive. Its greatest virtue is also its greatest weakness: it is unselective. This means that it is undiscriminating, in both senses of the word. It is indiscriminate in its principles of inclusion: anything at all can get into it. But it also – at least so far – doesn't discriminate against anyone with access to it. This is changing rapidly, of course, as corporations and governments seek to exert control over it. Knowledge may not be the same thing as power, but it is unquestionably a means to power. The question is, will we use the internet's power for good, or for evil? The jury is very much out. The internet itself is disinterested: but what we use it for is not.
  •  
    The internet: is it changing the way we think? American writer Nicholas Carr's claim that the internet is not only shaping our lives but physically altering our brains has sparked a lively and ongoing debate, says John Naughton. Below, a selection of writers and experts offer their opinion
Weiye Loh

BBC News - Cleaners 'worth more to society' than bankers - study - 0 views

  • The research, carried out by think tank the New Economics Foundation, says hospital cleaners create £10 of value for every £1 they are paid. It claims bankers are a drain on the country because of the damage they caused to the global economy. They reportedly destroy £7 of value for every £1 they earn. Meanwhile, senior advertising executives are said to "create stress". The study says they are responsible for campaigns which create dissatisfaction and misery, and encourage over-consumption.
  • And tax accountants damage the country by devising schemes to cut the amount of money available to the government, the research suggests. By contrast, child minders and waste recyclers are also doing jobs that create net wealth to the country.
  • a new form of job evaluation to calculate the total contribution various jobs make to society, including for the first time the impact on communities and environment.
  • ...3 more annotations...
  • "Pay levels often don't reflect the true value that is being created. As a society, we need a pay structure which rewards those jobs that create most societal benefit rather than those that generate profits at the expense of society and the environment".
  • "The point we are making is more fundamental - that there should be a relationship between what we are paid and the value our work generates for society. We've found a way to calculate that,"
  • The research also makes a variety of policy recommendations to align pay more closely with the value of work. These include establishing a high pay commission, building social and environmental value into prices, and introducing more progressive taxation.
  •  
    Cleaners 'worth more to society' than bankers - study
Weiye Loh

Skepticblog » A Creationist Challenge - 0 views

  • The commenter starts with some ad hominems, asserting that my post is biased and emotional. They provide no evidence or argument to support this assertion. And of course they don’t even attempt to counter any of the arguments I laid out. They then follow up with an argument from authority – he can link to a PhD creationist – so there.
  • The article that the commenter links to is by Henry M. Morris, founder for the Institute for Creation Research (ICR) – a young-earth creationist organization. Morris was (he died in 2006 following a stroke) a PhD – in civil engineering. This point is irrelevant to his actual arguments. I bring it up only to put the commenter’s argument from authority into perspective. No disrespect to engineers – but they are not biologists. They have no expertise relevant to the question of evolution – no more than my MD. So let’s stick to the arguments themselves.
  • The article by Morris is an overview of so-called Creation Science, of which Morris was a major architect. The arguments he presents are all old creationist canards, long deconstructed by scientists. In fact I address many of them in my original refutation. Creationists generally are not very original – they recycle old arguments endlessly, regardless of how many times they have been destroyed.
  • ...26 more annotations...
  • Morris also makes heavy use of the “taking a quote out of context” strategy favored by creationists. His quotes are often from secondary sources and are incomplete.
  • A more scholarly (i.e. intellectually honest) approach would be to cite actual evidence to support a point. If you are going to cite an authority, then make sure the quote is relevant, in context, and complete.
  • And even better, cite a number of sources to show that the opinion is representative. Rather we get single, partial, and often outdated quotes without context.
  • (nature is not, it turns out, cleanly divided into “kinds”, which have no operational definition). He also repeats this canard: Such variation is often called microevolution, and these minor horizontal (or downward) changes occur fairly often, but such changes are not true “vertical” evolution. This is the microevolution/macroevolution false dichotomy. It is only “often called” this by creationists – not by actual evolutionary scientists. There is no theoretical or empirical division between macro and micro evolution. There is just evolution, which can result in the full spectrum of change from minor tweaks to major changes.
  • Morris wonders why there are no “dats” – dog-cat transitional species. He misses the hierarchical nature of evolution. As evolution proceeds, and creatures develop a greater and greater evolutionary history behind them, they increasingly are committed to their body plan. This results in a nestled hierarchy of groups – which is reflected in taxonomy (the naming scheme of living things).
  • once our distant ancestors developed the basic body plan of chordates, they were committed to that body plan. Subsequent evolution resulted in variations on that plan, each of which then developed further variations, etc. But evolution cannot go backward, undo evolutionary changes and then proceed down a different path. Once an evolutionary line has developed into a dog, evolution can produce variations on the dog, but it cannot go backwards and produce a cat.
  • Stephen J. Gould described this distinction as the difference between disparity and diversity. Disparity (the degree of morphological difference) actually decreases over evolutionary time, as lineages go extinct and the surviving lineages are committed to fewer and fewer basic body plans. Meanwhile, diversity (the number of variations on a body plan) within groups tends to increase over time.
  • the kind of evolutionary changes that were happening in the past, when species were relatively undifferentiated (compared to contemporary species) is indeed not happening today. Modern multi-cellular life has 600 million years of evolutionary history constraining their future evolution – which was not true of species at the base of the evolutionary tree. But modern species are indeed still evolving.
  • Here is a list of research documenting observed instances of speciation. The list is from 1995, and there are more recent examples to add to the list. Here are some more. And here is a good list with references of more recent cases.
  • Next Morris tries to convince the reader that there is no evidence for evolution in the past, focusing on the fossil record. He repeats the false claim (again, which I already dealt with) that there are no transitional fossils: Even those who believe in rapid evolution recognize that a considerable number of generations would be required for one distinct “kind” to evolve into another more complex kind. There ought, therefore, to be a considerable number of true transitional structures preserved in the fossils — after all, there are billions of non-transitional structures there! But (with the exception of a few very doubtful creatures such as the controversial feathered dinosaurs and the alleged walking whales), they are not there.
  • I deal with this question at length here, pointing out that there are numerous transitional fossils for the evolution of terrestrial vertebrates, mammals, whales, birds, turtles, and yes – humans from ape ancestors. There are many more examples, these are just some of my favorites.
  • Much of what follows (as you can see it takes far more space to correct the lies and distortions of Morris than it did to create them) is classic denialism – misinterpreting the state of the science, and confusing lack of information about the details of evolution with lack of confidence in the fact of evolution. Here are some examples – he quotes Niles Eldridge: “It is a simple ineluctable truth that virtually all members of a biota remain basically stable, with minor fluctuations, throughout their durations. . . .“ So how do evolutionists arrive at their evolutionary trees from fossils of organisms which didn’t change during their durations? Beware the “….” – that means that meaningful parts of the quote are being omitted. I happen to have the book (The Pattern of Evolution) from which Morris mined that particular quote. Here’s the rest of it: (Remember, by “biota” we mean the commonly preserved plants and animals of a particular geological interval, which occupy regions often as large as Roger Tory Peterson’s “eastern” region of North American birds.) And when these systems change – when the older species disappear, and new ones take their place – the change happens relatively abruptly and in lockstep fashion.”
  • Eldridge was one of the authors (with Gould) of punctuated equilibrium theory. This states that, if you look at the fossil record, what we see are species emerging, persisting with little change for a while, and then disappearing from the fossil record. They theorize that most species most of the time are at equilibrium with their environment, and so do not change much. But these periods of equilibrium are punctuated by disequilibrium – periods of change when species will have to migrate, evolve, or go extinct.
  • This does not mean that speciation does not take place. And if you look at the fossil record we see a pattern of descendant species emerging from ancestor species over time – in a nice evolutionary pattern. Morris gives a complete misrepresentation of Eldridge’s point – once again we see intellectual dishonesty in his methods of an astounding degree.
  • Regarding the atheism = religion comment, it reminds me of a great analogy that I first heard on twitter from Evil Eye. (paraphrase) “those that say atheism is a religion, is like saying ‘not collecting stamps’ is a hobby too.”
  • Morris next tackles the genetic evidence, writing: More often is the argument used that similar DNA structures in two different organisms proves common evolutionary ancestry. Neither argument is valid. There is no reason whatever why the Creator could not or would not use the same type of genetic code based on DNA for all His created life forms. This is evidence for intelligent design and creation, not evolution.
  • Here is an excellent summary of the multiple lines of molecular evidence for evolution. Basically, if we look at the sequence of DNA, the variations in trinucleotide codes for amino acids, and amino acids for proteins, and transposons within DNA we see a pattern that can only be explained by evolution (or a mischievous god who chose, for some reason, to make life look exactly as if it had evolved – a non-falsifiable notion).
  • The genetic code is essentially comprised of four letters (ACGT for DNA), and every triplet of three letters equates to a specific amino acid. There are 64 (4^3) possible three letter combinations, and 20 amino acids. A few combinations are used for housekeeping, like a code to indicate where a gene stops, but the rest code for amino acids. There are more combinations than amino acids, so most amino acids are coded for by multiple combinations. This means that a mutation that results in a one-letter change might alter from one code for a particular amino acid to another code for the same amino acid. This is called a silent mutation because it does not result in any change in the resulting protein.
  • It also means that there are very many possible codes for any individual protein. The question is – which codes out of the gazillions of possible codes do we find for each type of protein in different species. If each “kind” were created separately there would not need to be any relationship. Each kind could have it’s own variation, or they could all be identical if they were essentially copied (plus any mutations accruing since creation, which would be minimal). But if life evolved then we would expect that the exact sequence of DNA code would be similar in related species, but progressively different (through silent mutations) over evolutionary time.
  • This is precisely what we find – in every protein we have examined. This pattern is necessary if evolution were true. It cannot be explained by random chance (the probability is absurdly tiny – essentially zero). And it makes no sense from a creationist perspective. This same pattern (a branching hierarchy) emerges when we look at amino acid substitutions in proteins and other aspects of the genetic code.
  • Morris goes for the second law of thermodynamics again – in the exact way that I already addressed. He responds to scientists correctly pointing out that the Earth is an open system, by writing: This naive response to the entropy law is typical of evolutionary dissimulation. While it is true that local order can increase in an open system if certain conditions are met, the fact is that evolution does not meet those conditions. Simply saying that the earth is open to the energy from the sun says nothing about how that raw solar heat is converted into increased complexity in any system, open or closed. The fact is that the best known and most fundamental equation of thermodynamics says that the influx of heat into an open system will increase the entropy of that system, not decrease it. All known cases of decreased entropy (or increased organization) in open systems involve a guiding program of some sort and one or more energy conversion mechanisms.
  • Energy has to be transformed into a usable form in order to do the work necessary to decrease entropy. That’s right. That work is done by life. Plants take solar energy (again – I’m not sure what “raw solar heat” means) and convert it into food. That food fuels the processes of life, which include development and reproduction. Evolution emerges from those processes- therefore the conditions that Morris speaks of are met.
  • But Morris next makes a very confused argument: Evolution has neither of these. Mutations are not “organizing” mechanisms, but disorganizing (in accord with the second law). They are commonly harmful, sometimes neutral, but never beneficial (at least as far as observed mutations are concerned). Natural selection cannot generate order, but can only “sieve out” the disorganizing mutations presented to it, thereby conserving the existing order, but never generating new order.
  • The notion that evolution (as if it’s a thing) needs to use energy is hopelessly confused. Evolution is a process that emerges from the system of life – and life certainly can use solar energy to decrease its entropy, and by extension the entropy of the biosphere. Morris slips into what is often presented as an information argument.  (Yet again – already dealt with. The pattern here is that we are seeing a shuffling around of the same tired creationists arguments.) It is first not true that most mutations are harmful. Many are silent, and many of those that are not silent are not harmful. They may be neutral, they may be a mixed blessing, and their relative benefit vs harm is likely to be situational. They may be fatal. And they also may be simply beneficial.
  • Morris finishes with a long rambling argument that evolution is religion. Evolution is promoted by its practitioners as more than mere science. Evolution is promulgated as an ideology, a secular religion — a full-fledged alternative to Christianity, with meaning and morality . . . . Evolution is a religion. This was true of evolution in the beginning, and it is true of evolution still today. Morris ties evolution to atheism, which, he argues, makes it a religion. This assumes, of course, that atheism is a religion. That depends on how you define atheism and how you define religion – but it is mostly wrong. Atheism is a lack of belief in one particular supernatural claim – that does not qualify it as a religion.
  • But mutations are not “disorganizing” – that does not even make sense. It seems to be based on a purely creationist notion that species are in some privileged perfect state, and any mutation can only take them farther from that perfection. For those who actually understand biology, life is a kluge of compromises and variation. Mutations are mostly lateral moves from one chaotic state to another. They are not directional. But they do provide raw material, variation, for natural selection. Natural selection cannot generate variation, but it can select among that variation to provide differential survival. This is an old game played by creationists – mutations are not selective, and natural selection is not creative (does not increase variation). These are true but irrelevant, because mutations increase variation and information, and selection is a creative force that results in the differential survival of better adapted variation.
  •  
    One of my earlier posts on SkepticBlog was Ten Major Flaws in Evolution: A Refutation, published two years ago. Occasionally a creationist shows up to snipe at the post, like this one:i read this and found it funny. It supposedly gives a scientific refutation, but it is full of more bias than fox news, and a lot of emotion as well.here's a scientific case by an actual scientists, you know, one with a ph. D, and he uses statements by some of your favorite evolutionary scientists to insist evolution doesn't exist.i challenge you to write a refutation on this one.http://www.icr.org/home/resources/resources_tracts_scientificcaseagainstevolution/Challenge accepted.
Weiye Loh

FleetStreetBlues: Independent columnist Johann Hari admits copying and pasting intervie... - 0 views

  • this isn't just a case of referencing something the interviewee has written previously - 'As XXX has written before...', or such like. No, Hari adds dramatic context to quotes which were never said - the following paragraph, for instance, is one of the quotes from the Levy interview which seems to have appeared elsewhere before. After saying this, he falls silent, and we stare at each other for a while. Then he says, in a quieter voice: “The facts are clear. Israel has no real intention of quitting the territories or allowing the Palestinian people to exercise their rights. No change will come to pass in the complacent, belligerent, and condescending Israel of today. This is the time to come up with a rehabilitation programme for Israel.”
  • So how does Hari justify it? Well, his post on 'Interview etiquette', as he calls it, is so stunningly brazen about playing fast-and-loose with quotes
  • When I’ve interviewed a writer, it’s quite common that they will express an idea or sentiment to me that they have expressed before in their writing – and, almost always, they’ve said it more clearly in writing than in speech. (I know I write much more clearly than I speak – whenever I read a transcript of what I’ve said, or it always seems less clear and more clotted. I think we’ve all had that sensation in one form or another). So occasionally, at the point in the interview where the subject has expressed an idea, I’ve quoted the idea as they expressed it in writing, rather than how they expressed it in speech. It’s a way of making sure the reader understands the point that (say) Gideon Levy wants to make as clearly as possible, while retaining the directness of the interview. Since my interviews are intellectual portraits that I hope explain how a person thinks, it seemed the most thorough way of doing it...
  • ...3 more annotations...
  • ...I’m a bit bemused to find one blogger considers this “plagiarism”. Who’s being plagiarized? Plagiarism is passing off somebody else’s intellectual work as your own – whereas I’m always making it clear that (say) Gideon Levy’s thought is Gideon Levy’s thought. I’m also a bit bemused to find that some people consider this “churnalism”. Churnalism is a journalist taking a press release and mindlessly recycling it – not a journalist carefully reading over all a writer’s books and selecting parts of it to accurately quote at certain key moments to best reflect how they think.
  • I called round a few other interviewers for British newspapers and they said what I did was normal practice and they had done it themselves from time to time. My test for journalism is always – would the readers mind you did this, or prefer it? Would they rather I quoted an unclear sentence expressing a thought, or a clear sentence expressing the same thought by the same person very recently? Both give an accurate sense of what a person is like, but one makes their ideas as accessible as possible for the reader while also being an accurate portrait of the person.
  • The Independent's top columnist and interviewer has just admitted that he routinely adds things his interviewees have written at some point in the past to their quotes, and then deliberately passes these statements off as though they were said to him in the course of an interview. The main art of being an interviewer is to be skilled at eliciting the right quotes from your subject. If Johann Hari wants to write 'intellectual portraits', he should go and write fiction. Do his editors really know that the copy they're printing ('we stare at each other for a while. Then he says in a quieter voice...') is essentially made up? What would Jayson Blair make of it all? Astonishing.
  •  
    In the last few days, a couple of blogs have been scrutinising the work of Johann Hari, the multiple award-winning Independent columnist and interviewer. A week ago on Friday the political DSG blog pointed out an eerie series of similarities between the quotes in Hari's interview with Toni Negri in 2004, and quotes in the book Negri on Negri, published in 2003. Brian Whelan, an editor with Yahoo! Ireland and a regular FleetStreetBlues contributor, spotted this and got in touch to suggest perhaps this wasn't the only time quotes in Hari's interviews had appeared elsewhere before. We ummed and ahhed slightly about running the piece based on one analysis from a self-proclaimed leftist blog - so Brian went away and did some analysis of his own. And found that a number of quotes in Hari's interview with Gideon Levy in the Independent last year had also been copied from elsewhere. So far, so scurrilous. But what's really astonishing is that Johann Hari has now responded to the blog accusations. And cheerfully admitted that he regularly includes in interviews quotes which the interviewee never actually said to him.
Weiye Loh

Interview etiquette : Johann Hari - 0 views

  • occasionally, at the point in the interview where the subject has expressed an idea, I’ve quoted the idea as they expressed it in writing, rather than how they expressed it in speech. It’s a way of making sure the reader understands the point that (say) Gideon Levy wants to make as clearly as possible, while retaining the directness of the interview.
  • if somebody interviewed me and asked my views of Martin Amis, instead of quoting me as saying “Um, I think, you know, he got the figures for, uh, how many Muslims there are in Europe upside down”, they could quote instead what I’d written more cogently about him a month before, as a more accurate representation of my thoughts. I stress: I have only ever done this where the interviewee was making the same or very similar point to me in the interview that they had already made more clearly in print.
  • after doing what must be over fifty interviews, none of my interviewees have ever said they had been misquoted, even when they feel I’ve been very harsh on them in other ways.
  • ...3 more annotations...
  • Gideon Levy said, after my interview with him was published, that it was “the most accurate take on me anyone has written” and “profoundly moved him” – which hardly fits with the idea it was an inaccurate or misleading picture.
  • one blogger considers this “plagiarism”. Who’s being plagiarized? Plagiarism is passing off somebody else’s intellectual work as your own – whereas I’m always making it clear that (say) Gideon Levy’s thought is Gideon Levy’s thought. I’m also a bit bemused to find that some people consider this “churnalism”. Churnalism is a journalist taking a press release and mindlessly recycling it – not a journalist carefully reading over all a writer’s books and selecting parts of it to accurately quote at certain key moments to best reflect how they think.
  • I called round a few other interviewers for British newspapers and they said what I did was normal practice and they had done it themselves from time to time. My test for journalism is always – would the readers mind you did this, or prefer it? Would they rather I quoted an unclear sentence expressing a thought, or a clear sentence expressing the same thought by the same person very recently? Both give an accurate sense of what a person is like, but one makes their ideas as accessible as possible for the reader while also being an accurate portrait of the person.
1 - 8 of 8
Showing 20 items per page