Skip to main content

Home/ Neuropsychology/ Group items tagged areas

Rss Feed Group items tagged

David McGavock

What is intelligence ? | BrainFacts.org Blog - 0 views

  • What do we mean when we say someone is intelligent and is there any scientific basis for defining intelligence? These questions have been at the center of a more than century-old debate in psychology.
  • Although it may be practical for people to think of intelligence as something that exists, whether science should consider intelligence and how it would define it remains very controversial.
  • A recent study published by Hampshire et al.1 from the University of Western Ontario has looked into the brain areas that are activated by tasks that are typically used to test for intelligence. In doing so they hoped to determine if brain areas related to cognitive demands are activated altogether as demands increase during intelligence tests of various kinds, or if some areas were activated during tests for a specific intelligence domain and not for others.
  • ...1 more annotation...
  • The study is interesting because it provides three candidate intelligence factors (instead of 1) that have been built not from intuition about what tasks do but based on the set of brain areas that might contribute to those tasks. However don’t get too excited, the methods used have severe limitations and we are still only at the hypothesis level. We do not know how these areas contribute to performance in intelligence tests and we do not know why they are activated and how they interact together to create the behavior.
  •  
    A recent study published by Hampshire et al.1 from the University of Western Ontario has looked into the brain areas that are activated by tasks that are typically used to test for intelligence. In doing so they hoped to determine if brain areas related to cognitive demands are activated altogether as demands increase during intelligence tests of various kinds, or if some areas were activated during tests for a specific intelligence domain and not for others.
Tero Toivanen

Wires Inserted Into Human Brain Reveal Speech Surprise | Wired Science | Wired.com - 1 views

  • in’s team benefited from a brain-reading technology called intra-cranial electrophysiology, or ICE, in which electrodes are positioned inside the brain itself. It’s a medical rather than a research tool, used to precisely measure electrical activity in the brains of epileptics who don’t respond to treatment.
  • This tested only one type of verbal cognition, cautioned Sahin, and the focus was unavoidably narrow, but it was enough to show that Broca’s area is involved not only in translating speech, but receiving it. That role was considered specific to part of the brain called Wernicke’s area. More broadly, the findings may represent a general rule for Broca’s area, and perhaps other brain regions: Each part plays multiple roles, rather than performing a single task.
  •  
    This tested only one type of verbal cognition, cautioned Sahin, and the focus was unavoidably narrow, but it was enough to show that Broca's area is involved not only in translating speech, but receiving it. That role was considered specific to part of the brain called Wernicke's area. More broadly, the findings may represent a general rule for Broca's area, and perhaps other brain regions: Each part plays multiple roles, rather than performing a single task.
Tero Toivanen

New Light On Nature Of Broca's Area: Rare Procedure Documents How Human Brain Computes ... - 0 views

  • The study – which provides a picture of language processing in the brain with unprecedented clarity – will be published in the October 16 issue of the journal Science.
  • "Two central mysteries of human brain function are addressed in this study: one, the way in which higher cognitive processes such as language are implemented in the brain and, two, the nature of what is perhaps the best-known region of the cerebral cortex, called Broca's area," said first author Ned T. Sahin, PhD, post-doctoral fellow in the UCSD Department of Radiology and Harvard University Department of Psychology.
  • The study demonstrates that a small piece of the brain can compute three different things at different times – within a quarter of a second – and shows that Broca's area doesn't just do one thing when processing language.
  • ...2 more annotations...
  • The procedure, called Intra-Cranial Electrophysiology (ICE), allowed the researchers to resolve brain activity related to language with spatial accuracy down to the millimeter and temporal accuracy down to the millisecond.
  • "We showed that distinct linguistic processes are computed within small regions of Broca's area, separated in time and partially overlapping in space," said Sahin. Specifically, the researchers found patterns of neuronal activity indicating lexical, grammatical and articulatory computations at roughly 200, 320 and 450 milliseconds after the target word was presented. These patterns were identical across nouns and verbs and consistent across patients.
  •  
    "Two central mysteries of human brain function are addressed in this study: one, the way in which higher cognitive processes such as language are implemented in the brain and, two, the nature of what is perhaps the best-known region of the cerebral cortex, called Broca's area," said first author Ned T. Sahin, PhD, post-doctoral fellow in the UCSD Department of Radiology and Harvard University Department of Psychology.
Tero Toivanen

Growing evidence of the brain's plasticity could benefit stroke victims or those suffer... - 0 views

  • With the right training, scientists now know the brain can reshape itself to work around dead and damaged areas, often with dramatic benefits.
  • Therapies that exploit the brain's power to adapt have helped people overcome damage caused by strokes, depression, anxiety and learning disabilities, and may one day replace drugs for some of these conditions.
  • Children with language difficulties have been shown to make significant progress using computer training tools that are the equivalent of cerebral cross-training.
  • ...2 more annotations...
  • Neuroplasticity does not see the different regions of the brain as completely versatile and certainly not interchangeable. But it recognises that if part of the brain is damaged, it can be possible to train other areas to take on, at least to some extent, the job of the lost brain matter.
  • Doidge says he is not anti-medication, but wonders if therapies that tap into neuro-plasticity will soon replace drug treatments for certain conditions. "We can change our brains by sensing, imagining and acting in the world. It's economical and mostly low-tech, and I'm very, very hopeful"
  •  
    With the right training, scientists now know the brain can reshape itself to work around dead and damaged areas, often with dramatic benefits.
Tero Toivanen

Eide Neurolearning Blog: Why Boys Need Alternatives with Reading and Writing - 0 views

  • If you give girls and boys language tasks, most girls will process the information in the same way (in a specialized language area)
  • help them with word storage and retrieval
  • But for boys, sensitivity to the modality of how words are presented means that an extra steps need to be taken to match words that are picked up by listening and words that are read on the printed page. No wonder dyslexia is much more common in boys - the separate system means that the sight and sound of words are learned as distinct processes.
  • ...4 more annotations...
  • As a result, verbal competence may be strong in one domain (oral speech for instance), but be weak in another (reading).
  • because boys require two areas and a matching of visual-auditory inputs, impairment in one system may cause the whole language coordination process to fail.
  • The visual-auditory gap may also be why some boys may need to read word-for-word outloud or to themselves (i.e. not silently read) in order to fully comprehend or remember the story.
  • Some careful consideration needs to made of instructional implications for boys given some of these new discoveries. Learning by listening and learning by reading are not synonymous; route-congruent factors(listening - oral presentation, reading - written response) may need to be considered when a learning gap or frank underachievement is seen, and an insistence on the availability of auditory-visual supports (reading along with books-on-tape, detailed handouts for lecture courses) should be a requirement of every classroom.
  •  
    Boys require two areas and a matching of visual-auditory inputs, impairment in one system may cause the whole language coordination process to fail.
Tero Toivanen

» Brain Plasticity: How learning changes your brain   « Brain Fitness Revolut... - 0 views

  • A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location as a consequence of normal experience, brain damage or recovery.
  • The brain compensates for damage by reorganizing and forming new connections between intact neurons. In order to reconnect, the neurons need to be stimulated through activity.
  • Research has shown that in fact the brain never stops changing through learning. Plasticity IS the capacity of the brain to change with learning. Changes associated with learning occur mostly at the level of the connections between neurons. New connections can form and the internal structure of the existing synapses can change.
  • ...6 more annotations...
  • It looks like learning a second language is possible through functional changes in the brain: the left inferior parietal cortex is larger in bilingual brains than in monolingual brains.
  • Did you know that when you become an expert in a specific domain, the areas in your brain that deal with this type of skill will grow?
  • For instance, London taxi drivers have a larger hippocampus (in the posterior region) than London bus drivers (Maguire, Woollett, & Spiers, 2006)…. Why is that? It is because this region of the hippocampus is specialized in acquiring and using complex spatial information in order to navigate efficiently. Taxi drivers have to navigate around London whereas bus drivers follow a limited set of routes.
  • Plastic changes also occur in musicians brains compared to non-musicians.
  • They found that gray matter (cortex) volume was highest in professional musicians, intermediate in amateur musicians, and lowest in non-musicians in several brain areas involved in playing music: motor regions, anterior superior parietal areas and inferior temporal areas.
  • Medical students’ brains showed learning-induced changes in regions of the parietal cortex as well as in the posterior hippocampus. These regions of the brains are known to be involved in memory retrieval and learning.
  •  
    A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location as a consequence of normal experience, brain damage or recovery.
Tero Toivanen

The five ages of the brain: Adolescence - life - 04 April 2009 - New Scientist - 0 views

  • Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
  • This cerebral pruning trims unused neural connections that were overproduced in the childhood growth spurt, starting with the more basic sensory and motor areas.
  • Among the last to mature is the dorsolateral prefrontal cortex at the very front of the frontal lobe. This area is involved in control of impulses, judgement and decision-making, which might explain some of the less-than-stellar decisions made by your average teen. This area also acts to control and process emotional information sent from the amygdala - the fight or flight centre of gut reactions - which may account for the mercurial tempers of adolescents.
  • ...5 more annotations...
  • These changes have both benefits and pitfalls. At this stage of life the brain is still childishly flexible, so we are still sponges for learning. On the other hand, the lack of impulse control may lead to risky behaviours such as drug and alcohol abuse, smoking and unprotected sex.
  • As grey matter is lost, though, the brain gains white matter
  • Substance abuse is particularly concerning, as brain imaging studies suggest that the motivation and reward circuitry in teen brains makes them almost hard-wired for addiction.
  • since drug abuse and stressful events - even a broken heart - have been linked to mood disorders later in life, this is the time when both are best avoided.
  • Making the most of this time is a matter of throwing all that teen energy into learning and new experiences - whether that means hitting the books, learning to express themselves through music or art, or exploring life by travelling the world.
  •  
    Jay Giedd at the National Institute of Mental Health in Bethesda, Maryland, and his colleagues have followed the progress of nearly 400 children, scanning many of them every two years as they grew up. They found that adolescence brings waves of grey-matter pruning, with teens losing about 1 per cent of their grey matter every year until their early 20s (Nature Neuroscience, vol 2, p 861).
Tero Toivanen

Sign language study shows multiple brain regions wired for language - 1 views

  • A new study from the University of Rochester finds that there is no single advanced area of the human brain that gives it language capabilities above and beyond those of any other animal species.
  • Instead, humans rely on several regions of the brain, each designed to accomplish different primitive tasks, in order to make sense of a sentence.
  • "We're using and adapting the machinery we already have in our brains," said study coauthor Aaron Newman. "Obviously we're doing something different [from other animals], because we're able to learn language unlike any other species. But it's not because some little black box evolved specially in our brain that does only language, and nothing else."
  • ...4 more annotations...
  • The team of brain and cognitive scientists
  • published their findings in the latest edition of the journal Proceedings of the National Academies of Sciences.
  • The study found that there are, in fact, distinct regions of the brain that are used to process the two types of sentences: those in which word order determined the relationships between the sentence elements, and those in which inflection was providing the information.
  • In fact, Newman said, in trying to understand different types of grammar, humans draw on regions of the brain that are designed to accomplish primitive tasks that relate to the type of sentence they are trying to interpret. For instance, a word order sentence draws on parts of the frontal cortex that give humans the ability to put information into sequences, while an inflectional sentence draws on parts of the temporal lobe that specialize in dividing information into its constituent parts, the study demonstrated.
  •  
    A new study from the University of Rochester finds that there is no single advanced area of the human brain that gives it language capabilities above and beyond those of any other animal species.
David McGavock

Wired for Success - 0 views

  •  
    "The New Directions Institute's Wired for Success® program is a four-hour workshop for parents, caregivers and interested community members. This workshop is fun-filled, with hands-on experiences that show caregivers how critical their role can be in stimulating a child's development. Participants will explore brain development based on S.T.E.P.S.®, the NDI curriculum concentrating on Security, Touch, Eyes (vision), Play and Sound modules. Participants learn how to encourage a child's learning through parent-child interactions in these areas. "
David McGavock

How Did Consciousness Evolve? - The Atlantic - 0 views

  • consciousness, is rarely studied in the context of evolution.
  • What is the adaptive value of consciousness? When did it evolve and what animals have it?
  • Attention Schema Theory (AST),
  • ...20 more annotations...
  • suggests that consciousness arises as a solution to one of the most fundamental problems facing any nervous system: Too much information constantly flows in to be fully processed. The brain evolved increasingly sophisticated mechanisms for deeply processing a few select signals at the expense of others,
  • The next evolutionary advance was a centralized controller for attention that could coordinate among all senses. In many animals, that central controller is a brain area called the tectum
  • It coordinates something called overt attention
  • The tectum is a beautiful piece of engineering. To control the head and the eyes efficiently, it constructs something called an internal model, a feature well known to engineers. An internal model is a simulation that keeps track of whatever is being controlled and allows for predictions and planning.
  • With the evolution of reptiles around 350 to 300 million years ago, a new brain structure began to emerge – the wulst
  • our version is usually called the cerebral cortex and has expanded enormously
  • The cortex is like an upgraded tectum
  • The most important difference between the cortex and the tectum may be the kind of attention they control
  • tectum is the master of overt attention—pointing the sensory apparatus toward anything important
  • cortex ups the ante with something called covert attention
  • Your cortex can shift covert attention from the text in front of you to a nearby person, to the sounds in your backyard, to a thought or a memory. Covert attention is the virtual movement of deep processing from one item to another.
  • the cortex must model something much more abstract.
  • it does so by constructing an attention schema
  • a constantly updated set of information that describes what covert attention is doing moment-by-moment and what its consequences are
  • The attention schema is therefore strategically vague. It depicts covert attention in a physically incoherent way, as a non-physical essence. And this, according to the theory, is the origin of consciousness. We say we have consciousness because deep in the brain, something quite primitive is computing that semi-magical self-description.
  • In the AST, the attention schema first evolved as a model of one’s own covert attention. But once the basic mechanism was in place, according to the theory, it was further adapted to model the attentional states of others, to allow for social prediction
  • theory of mind, the ability to understand the possible contents of someone else’s mind.
  • Language is perhaps the most recent big leap in the evolution of consciousness. Nobody knows when human language first evolved. Certainly we had it by 70 thousand years ago when people began to disperse around the world, since all dispersed groups have a sophisticated language.
  • Maybe partly because of language and culture, humans have a hair-trigger tendency to attribute consciousness to everything around us.
  • Justin Barrett called it the Hyperactive Agency Detection Device, or HADD
  •  
    The Attention Schema Theory (AST), developed over the past five years, may be able to answer those questions. The theory suggests that consciousness arises as a solution to one of the most fundamental problems facing any nervous system: Too much information constantly flows in to be fully processed. The brain evolved increasingly sophisticated mechanisms for deeply processing a few select signals at the expense of others, and in the AST, consciousness is the ultimate result of that evolutionary sequence. If the theory is right-and that has yet to be determined-then consciousness evolved gradually over the past half billion years and is present in a range of vertebrate species.
Tero Toivanen

Creativity and the Aging Brain | Psychology Today Blogs - 0 views

  • So instead of promoting retirement at age 65, perhaps we as a society should be promoting transition at age 65: transition into a creative field where our growing resource of individuals with aging brains can preserve their wisdom in culturally-valued works of art, music, or writing.
  • Numerous studies suggest that highly creative individuals also employ a broadened rather than focused state of attention. This state of widened attention allows the individual to have disparate bits of information in mind at the same time. Combining remote bits of information is the hallmark of the creative idea.
  • Other studies show that certain areas of the prefrontal cortex involved in self-conscious awareness and emotions are thinner in the aging brain. This may correlate with the diminished need to please and impress others, which is a notable characteristic of both aging individuals and creative luminaries.
  • ...1 more annotation...
  • Finally, intelligence studies indicate that older individuals have access to an increasing store of knowledge gained over a lifetime of learning and experience. Combining bits of knowledge into novel and original ideas is what the creative brain is all about.
  •  
    The aging brain resembles the creative brain in several ways. For instance, the aging brain is more distractible and somewhat more disinhibited than the younger brain (so is the creative brain). Aging brains score better on tests of crystallized IQ (and creative brains use crystallized knowledge to make novel and original associations).
Tero Toivanen

Neurophilosophy : Experience induces global reorganization of brain circuitry - 0 views

  • Now referred to as long-term potentiation (LTP), this mechanism has since become the most intensively studied in modern neuroscience,and is widely believed to be the cellular basis of learning and memory, although this is yet to be proven unequivocally.
  • In the new study, Santiago Canals of the Max Planck Institute for Biological Cybernetics in Tübingen and his colleagues used the same protocol to induce LTP. But while the vast majority of researchers have investigated LTP in slices of hippocampal tissue, this study involved observing LTP in live animals.
  • This new research provides the first evidence that the local modifications in synaptic connections induced by LTP lead to long-lasting changes in the activity of a diffuse network of brain regions, and even to facilitated communication between the two hemispheres. The fMRI data showed that hippocampal LTP recruits higher order association areas, as well as regions involved in emotions and others subserving different sensory modalities, all of which are known to be involved in memory formation.
  •  
    Experience induces global reorganization of brain circuitry. This new research provides the first evidence that the local modifications in synaptic connections induced by LTP lead to long-lasting changes in the activity of a diffuse network of brain regions, and even to facilitated communication between the two hemispheres.
Tero Toivanen

Wired 14.02: Buddha on the Brain - 0 views

  • Davidson's research created a stir among brain scientists when his results suggested that, in the course of meditating for tens of thousands of hours, the monks had actually altered the structure and function of their brains.
  • Lutz asked Ricard to meditate on "unconditional loving-kindness and compassion." He immediately noticed powerful gamma activity - brain waves oscillating at roughly 40 cycles per second -�indicating intensely focused thought. Gamma waves are usually weak and difficult to see. Those emanating from Ricard were easily visible, even in the raw EEG output. Moreover, oscillations from various parts of the cortex were synchronized - a phenomenon that sometimes occurs in patients under anesthesia.
  • In the traditional view, the brain becomes frozen with the onset of adulthood, after which few new connections form. In the past 20 years, though, scientists have discovered that intensive training can make a difference. For instance, the portion of the brain that corresponds to a string musician's fingering hand grows larger than the part that governs the bow hand - even in musicians who start playing as adults. Davidson's work suggested this potential might extend to emotional centers
  • ...3 more annotations...
  • The researchers had never seen anything like it. Worried that something might be wrong with their equipment or methods, they brought in more monks, as well as a control group of college students inexperienced in meditation. The monks produced gamma waves that were 30 times as strong as the students'. In addition, larger areas of the meditators' brains were active, particularly in the left prefrontal cortex, the part of the brain responsible for positive emotions.
  • But Davidson saw something more. The monks had responded to the request to meditate on compassion by generating remarkable brain waves. Perhaps these signals indicated that the meditators had attained an intensely compassionate state of mind. If so, then maybe compassion could be exercised like a muscle; with the right training, people could bulk up their empathy. And if meditation could enhance the brain's ability to produce "attention and affective processes" - emotions, in the technical language of Davidson's study - it might also be used to modify maladaptive emotional responses like depression.
  • Davidson and his team published their findings in the Proceedings of the National Academy of Sciences in November 2004. The research made The Wall Street Journal, and Davidson instantly became a celebrity scientist.
  •  
    Davidson's research created a stir among brain scientists when his results suggested that, in the course of meditating for tens of thousands of hours, the monks had actually altered the structure and function of their brains
1 - 14 of 14
Showing 20 items per page