Skip to main content

Home/ Larvata/ Group items tagged simple

Rss Feed Group items tagged

張 旭

mqtt - 0 views

  • MQTT is a lightweight publish/subscribe messaging protocol. It is useful for use with low power sensors
  • The MQTT protocol is based on the principle of publishing messages and subscribing to topics, or "pub/sub".
  • Multiple clients connect to a broker and subscribe to topics that they are interested in
  • ...22 more annotations...
  • Many clients may subscribe to the same topics
  • The broker and MQTT act as a simple, common interface for everything to connect to
  • Messages in MQTT are published on topics
  • no need to configure a topic, publishing on it is enough
  • Topics are treated as a hierarchy, using a slash (/) as a separator.
  • Clients can receive messages by creating subscriptions
  • A subscription may be to an explicit topic
  • Two wildcards are available, + or #.
  • # can be used as a wildcard for all remaining levels of hierarchy
  • + can be used as a wildcard for a single level of hierarchy
  • Zero length topic levels are valid, which can lead to some slightly non-obvious behaviour.
  • The QoS defines how hard the broker/client will try to ensure that a message is received.
  • Messages may be sent at any QoS level, and clients may attempt to subscribe to topics at any QoS level
  • the client chooses the maximum QoS it will receive
  • if a client is subscribed with QoS 2 and a message is published on QoS 0, the client will receive it on QoS 0.
  • 1: The broker/client will deliver the message at least once, with confirmation required.
  • All messages may be set to be retained.
  • the broker will keep the message even after sending it to all current subscribers
  • useful as a "last known good" mechanism
  • If clean session is set to false, then the connection is treated as durable
  • when the client disconnects, any subscriptions it has will remain and any subsequent QoS 1 or 2 messages will be stored until it connects again in the future
  • If clean session is true, then all subscriptions will be removed for the client when it disconnects
張 旭

How To Install and Use Docker: Getting Started | DigitalOcean - 0 views

  • docker as a project offers you the complete set of higher-level tools to carry everything that forms an application across systems and machines - virtual or physical - and brings along loads more of great benefits with it
  • docker daemon: used to manage docker (LXC) containers on the host it runs
  • docker CLI: used to command and communicate with the docker daemon
  • ...20 more annotations...
  • containers: directories containing everything-your-application
  • images: snapshots of containers or base OS (e.g. Ubuntu) images
  • Dockerfiles: scripts automating the building process of images
  • Docker containers are basically directories which can be packed (e.g. tar-archived) like any other, then shared and run across various different machines and platforms (hosts).
  • Linux Containers can be defined as a combination various kernel-level features (i.e. things that Linux-kernel can do) which allow management of applications (and resources they use) contained within their own environment
  • Each container is layered like an onion and each action taken within a container consists of putting another block (which actually translates to a simple change within the file system) on top of the previous one.
  • Each docker container starts from a docker image which forms the base for other applications and layers to come.
  • Docker images constitute the base of docker containers from which everything starts to form
  • a solid, consistent and dependable base with everything that is needed to run the applications
  • As more layers (tools, applications etc.) are added on top of the base, new images can be formed by committing these changes.
  • a Dockerfile for automated image building
  • Dockerfiles are scripts containing a successive series of instructions, directions, and commands which are to be executed to form a new docker image.
  • As you work with a container and continue to perform actions on it (e.g. download and install software, configure files etc.), to have it keep its state, you need to “commit”.
  • Please remember to “commit” all your changes.
  • When you "run" any process using an image, in return, you will have a container.
  • When the process is not actively running, this container will be a non-running container. Nonetheless, all of them will reside on your system until you remove them via rm command.
  • To create a new container, you need to use a base image and specify a command to run.
  • you can not change the command you run after having created a container (hence specifying one during "creation")
  • If you would like to save the progress and changes you made with a container, you can use “commit”
  • turns your container to an image
張 旭

Creating Reusable Playbooks - Ansible Documentation - 0 views

  • Ansible pre-processes all static imports during Playbook parsing time
  • Dynamic includes are processed during runtime at the point in which that task is encountered.
  • advantage of using include* statements is looping. When a loop is used with an include, the included tasks or role will be executed once for each item in the loop.
  • ...1 more annotation...
  • loops cannot be used with imports at all
張 旭

How It Works - Let's Encrypt - Free SSL/TLS Certificates - 0 views

  • The objective of Let’s Encrypt and the ACME protocol is to make it possible to set up an HTTPS server and have it automatically obtain a browser-trusted certificate, without any human intervention.
  • First, the agent proves to the CA that the web server controls a domain.
  • Then, the agent can request, renew, and revoke certificates for that domain.
  • ...4 more annotations...
  • The first time the agent software interacts with Let’s Encrypt, it generates a new key pair and proves to the Let’s Encrypt CA that the server controls one or more domains.
  • The Let’s Encrypt CA will look at the domain name being requested and issue one or more sets of challenges
  • different ways that the agent can prove control of the domain
  • Once the agent has an authorized key pair, requesting, renewing, and revoking certificates is simple—just send certificate management messages and sign them with the authorized key pair.
張 旭

Boosting your kubectl productivity ♦︎ Learnk8s - 0 views

  • kubectl is your cockpit to control Kubernetes.
  • kubectl is a client for the Kubernetes API
  • Kubernetes API is an HTTP REST API.
  • ...75 more annotations...
  • This API is the real Kubernetes user interface.
  • Kubernetes is fully controlled through this API
  • every Kubernetes operation is exposed as an API endpoint and can be executed by an HTTP request to this endpoint.
  • the main job of kubectl is to carry out HTTP requests to the Kubernetes API
  • Kubernetes maintains an internal state of resources, and all Kubernetes operations are CRUD operations on these resources.
  • Kubernetes is a fully resource-centred system
  • Kubernetes API reference is organised as a list of resource types with their associated operations.
  • This is how kubectl works for all commands that interact with the Kubernetes cluster.
  • kubectl simply makes HTTP requests to the appropriate Kubernetes API endpoints.
  • it's totally possible to control Kubernetes with a tool like curl by manually issuing HTTP requests to the Kubernetes API.
  • Kubernetes consists of a set of independent components that run as separate processes on the nodes of a cluster.
  • components on the master nodes
  • Storage backend: stores resource definitions (usually etcd is used)
  • API server: provides Kubernetes API and manages storage backend
  • Controller manager: ensures resource statuses match specifications
  • Scheduler: schedules Pods to worker nodes
  • component on the worker nodes
  • Kubelet: manages execution of containers on a worker node
  • triggers the ReplicaSet controller, which is a sub-process of the controller manager.
  • the scheduler, who watches for Pod definitions that are not yet scheduled to a worker node.
  • creating and updating resources in the storage backend on the master node.
  • The kubelet of the worker node your ReplicaSet Pods have been scheduled to instructs the configured container runtime (which may be Docker) to download the required container images and run the containers.
  • Kubernetes components (except the API server and the storage backend) work by watching for resource changes in the storage backend and manipulating resources in the storage backend.
  • However, these components do not access the storage backend directly, but only through the Kubernetes API.
    • 張 旭
       
      很精彩,相互之間都是使用 API call 溝通,良好的微服務行為。
  • double usage of the Kubernetes API for internal components as well as for external users is a fundamental design concept of Kubernetes.
  • All other Kubernetes components and users read, watch, and manipulate the state (i.e. resources) of Kubernetes through the Kubernetes API
  • The storage backend stores the state (i.e. resources) of Kubernetes.
  • command completion is a shell feature that works by the means of a completion script.
  • A completion script is a shell script that defines the completion behaviour for a specific command. Sourcing a completion script enables completion for the corresponding command.
  • kubectl completion zsh
  • /etc/bash_completion.d directory (create it, if it doesn't exist)
  • source <(kubectl completion bash)
  • source <(kubectl completion zsh)
  • autoload -Uz compinit compinit
  • the API reference, which contains the full specifications of all resources.
  • kubectl api-resources
  • displays the resource names in their plural form (e.g. deployments instead of deployment). It also displays the shortname (e.g. deploy) for those resources that have one. Don't worry about these differences. All of these name variants are equivalent for kubectl.
  • .spec
  • custom columns output format comes in. It lets you freely define the columns and the data to display in them. You can choose any field of a resource to be displayed as a separate column in the output
  • kubectl get pods -o custom-columns='NAME:metadata.name,NODE:spec.nodeName'
  • kubectl explain pod.spec.
  • kubectl explain pod.metadata.
  • browse the resource specifications and try it out with any fields you like!
  • JSONPath is a language to extract data from JSON documents (it is similar to XPath for XML).
  • with kubectl explain, only a subset of the JSONPath capabilities is supported
  • Many fields of Kubernetes resources are lists, and this operator allows you to select items of these lists. It is often used with a wildcard as [*] to select all items of the list.
  • kubectl get pods -o custom-columns='NAME:metadata.name,IMAGES:spec.containers[*].image'
  • a Pod may contain more than one container.
  • The availability zones for each node are obtained through the special failure-domain.beta.kubernetes.io/zone label.
  • kubectl get nodes -o yaml kubectl get nodes -o json
  • The default kubeconfig file is ~/.kube/config
  • with multiple clusters, then you have connection parameters for multiple clusters configured in your kubeconfig file.
  • Within a cluster, you can set up multiple namespaces (a namespace is kind of "virtual" clusters within a physical cluster)
  • overwrite the default kubeconfig file with the --kubeconfig option for every kubectl command.
  • Namespace: the namespace to use when connecting to the cluster
  • a one-to-one mapping between clusters and contexts.
  • When kubectl reads a kubeconfig file, it always uses the information from the current context.
  • just change the current context in the kubeconfig file
  • to switch to another namespace in the same cluster, you can change the value of the namespace element of the current context
  • kubectl also provides the --cluster, --user, --namespace, and --context options that allow you to overwrite individual elements and the current context itself, regardless of what is set in the kubeconfig file.
  • for switching between clusters and namespaces is kubectx.
  • kubectl config get-contexts
  • just have to download the shell scripts named kubectl-ctx and kubectl-ns to any directory in your PATH and make them executable (for example, with chmod +x)
  • kubectl proxy
  • kubectl get roles
  • kubectl get pod
  • Kubectl plugins are distributed as simple executable files with a name of the form kubectl-x. The prefix kubectl- is mandatory,
  • To install a plugin, you just have to copy the kubectl-x file to any directory in your PATH and make it executable (for example, with chmod +x)
  • krew itself is a kubectl plugin
  • check out the kubectl-plugins GitHub topic
  • The executable can be of any type, a Bash script, a compiled Go program, a Python script, it really doesn't matter. The only requirement is that it can be directly executed by the operating system.
  • kubectl plugins can be written in any programming or scripting language.
  • you can write more sophisticated plugins with real programming languages, for example, using a Kubernetes client library. If you use Go, you can also use the cli-runtime library, which exists specifically for writing kubectl plugins.
  • a kubeconfig file consists of a set of contexts
  • changing the current context means changing the cluster, if you have only a single context per cluster.
張 旭

Search and filter Rails models without bloating your controller - Justin Weiss - 0 views

  • Rails includes scopes, which can provide you with a lot of what you need for simple searching, filtering, and sorting.
  • scope chaining
  • filtering and searching of your models with one line in the controller and one line in the model.
  • ...2 more annotations...
  • .public_send
  • ClassMethods
張 旭

What's the difference between Prometheus and Zabbix? - Stack Overflow - 0 views

  • Zabbix has core written in C and webUI based on PHP
  • Zabbix stores data in RDBMS (MySQL, PostgreSQL, Oracle, sqlite) of user's choice.
  • Prometheus uses its own database embedded into backend process
  • ...8 more annotations...
  • Zabbix by default uses "pull" model when a server connects to agents on each monitoring machine, agents periodically gather the info and send it to a server.
  • Prometheus prefers "pull" model when a server gather info from client machines.
  • Prometheus requires an application to be instrumented with Prometheus client library (available in different programming languages) for preparing metrics.
  • expose metrics for Prometheus (similar to "agents" for Zabbix)
  • Zabbix uses its own tcp-based communication protocol between agents and a server.
  • Prometheus uses HTTP with protocol buffers (+ text format for ease of use with curl).
  • Prometheus offers basic tool for exploring gathered data and visualizing it in simple graphs on its native server and also offers a minimal dashboard builder PromDash. But Prometheus is and is designed to be supported by modern visualizing tools like Grafana.
  • Prometheus offers solution for alerting that is separated from its core into Alertmanager application.
張 旭

elabs/pundit: Minimal authorization through OO design and pure Ruby classes - 0 views

  • The class implements some kind of query method
  • Pundit will call the current_user method to retrieve what to send into this argumen
  • put these classes in app/policies
  • ...49 more annotations...
  • in leveraging regular Ruby classes and object oriented design patterns to build a simple, robust and scaleable authorization system
  • map to the name of a particular controller action
  • In the generated ApplicationPolicy, the model object is called record.
  • record
  • authorize
  • authorize would have done something like this: raise "not authorized" unless PostPolicy.new(current_user, @post).update?
  • pass a second argument to authorize if the name of the permission you want to check doesn't match the action name.
  • you can chain it
  • authorize returns the object passed to it
  • the policy method in both the view and controller.
  • have some kind of view listing records which a particular user has access to
  • ActiveRecord::Relation
  • Instances of this class respond to the method resolve, which should return some kind of result which can be iterated over.
  • scope.where(published: true)
    • 張 旭
       
      我想大概的意思就是:如果是 admin 可以看到全部 post,如果不是只能看到 published = true 的 post
  • use this class from your controller via the policy_scope method:
  • PostPolicy::Scope.new(current_user, Post).resolve
  • policy_scope(@user.posts).each
  • This method will raise an exception if authorize has not yet been called.
  • verify_policy_scoped to your controller. This will raise an exception in the vein of verify_authorized. However, it tracks if policy_scope is used instead of authorize
  • need to conditionally bypass verification, you can use skip_authorization
  • skip_policy_scope
  • Having a mechanism that ensures authorization happens allows developers to thoroughly test authorization scenarios as units on the policy objects themselves.
  • Pundit doesn't do anything you couldn't have easily done yourself. It's a very small library, it just provides a few neat helpers.
  • all of the policy and scope classes are just plain Ruby classes
  • rails g pundit:policy post
  • define a filter that redirects unauthenticated users to the login page
  • fail more gracefully
  • raise Pundit::NotAuthorizedError, "must be logged in" unless user
  • having rails handle them as a 403 error and serving a 403 error page.
  • config.action_dispatch.rescue_responses["Pundit::NotAuthorizedError"] = :forbidden
  • with I18n to generate error messages
  • retrieve a policy for a record outside the controller or view
  • define a method in your controller called pundit_user
  • Pundit strongly encourages you to model your application in such a way that the only context you need for authorization is a user object and a domain model that you want to check authorization for.
  • Pundit does not allow you to pass additional arguments to policies
  • authorization is dependent on IP address in addition to the authenticated user
  • create a special class which wraps up both user and IP and passes it to the policy.
  • set up a permitted_attributes method in your policy
  • policy(@post).permitted_attributes
  • permitted_attributes(@post)
  • Pundit provides a convenient helper method
  • permit different attributes based on the current action,
  • If you have defined an action-specific method on your policy for the current action, the permitted_attributes helper will call it instead of calling permitted_attributes on your controller
  • If you don't have an instance for the first argument to authorize, then you can pass the class
  • restart the Rails server
  • Given there is a policy without a corresponding model / ruby class, you can retrieve it by passing a symbol
  • after_action :verify_authorized
  • It is not some kind of failsafe mechanism or authorization mechanism.
  • Pundit will work just fine without using verify_authorized and verify_policy_scoped
  •  
    "Minimal authorization through OO design and pure Ruby classes"
張 旭

Keycloak and FreeIPA Intro - scott poore's blog - 0 views

  • Keycloak is an “Open source identity and access management” solution.
  • setup a central Identity Provider (IdP) that applications acting as Service Providers (SP) use to authenticate or authorize user access.
  • FreeIPA does a LOT more than just provide user info though.  It can manage user groups, service lists, hosts, DNS, certificates, and much, much, more.
  • ...5 more annotations...
  • IPA – refers to the FreeIPA Master Server.
  • IdP – as mentioned earlier, IdP stands for Identity Provider.
  • SP – stands for Service Provider.   This can be a java application, jboss, etc.  It can also be a simple Apache web server
  • SAML – stands for Security Assertion Markup Language and refers to mod_auth_mellon here.  This provides the SSO functionality.
  • Openidc – stands for OpenID Connect.
張 旭

Secrets - Kubernetes - 0 views

  • Putting this information in a secret is safer and more flexible than putting it verbatim in a PodThe smallest and simplest Kubernetes object. A Pod represents a set of running containers on your cluster. definition or in a container imageStored instance of a container that holds a set of software needed to run an application. .
  • A Secret is an object that contains a small amount of sensitive data such as a password, a token, or a key.
  • Users can create secrets, and the system also creates some secrets.
  • ...63 more annotations...
  • To use a secret, a pod needs to reference the secret.
  • A secret can be used with a pod in two ways: as files in a volumeA directory containing data, accessible to the containers in a pod. mounted on one or more of its containers, or used by kubelet when pulling images for the pod.
  • --from-file
  • You can also create a Secret in a file first, in json or yaml format, and then create that object.
  • The Secret contains two maps: data and stringData.
  • The data field is used to store arbitrary data, encoded using base64.
  • Kubernetes automatically creates secrets which contain credentials for accessing the API and it automatically modifies your pods to use this type of secret.
  • kubectl get and kubectl describe avoid showing the contents of a secret by default.
  • stringData field is provided for convenience, and allows you to provide secret data as unencoded strings.
  • where you are deploying an application that uses a Secret to store a configuration file, and you want to populate parts of that configuration file during your deployment process.
  • a field is specified in both data and stringData, the value from stringData is used.
  • The keys of data and stringData must consist of alphanumeric characters, ‘-’, ‘_’ or ‘.’.
  • Newlines are not valid within these strings and must be omitted.
  • When using the base64 utility on Darwin/macOS users should avoid using the -b option to split long lines.
  • create a Secret from generators and then apply it to create the object on the Apiserver.
  • The generated Secrets name has a suffix appended by hashing the contents.
  • base64 --decode
  • Secrets can be mounted as data volumes or be exposed as environment variablesContainer environment variables are name=value pairs that provide useful information into containers running in a Pod. to be used by a container in a pod.
  • Multiple pods can reference the same secret.
  • Each key in the secret data map becomes the filename under mountPath
  • each container needs its own volumeMounts block, but only one .spec.volumes is needed per secret
  • use .spec.volumes[].secret.items field to change target path of each key:
  • If .spec.volumes[].secret.items is used, only keys specified in items are projected. To consume all keys from the secret, all of them must be listed in the items field.
  • You can also specify the permission mode bits files part of a secret will have. If you don’t specify any, 0644 is used by default.
  • JSON spec doesn’t support octal notation, so use the value 256 for 0400 permissions.
  • Inside the container that mounts a secret volume, the secret keys appear as files and the secret values are base-64 decoded and stored inside these files.
  • Mounted Secrets are updated automatically
  • Kubelet is checking whether the mounted secret is fresh on every periodic sync.
  • cache propagation delay depends on the chosen cache type
  • A container using a Secret as a subPath volume mount will not receive Secret updates.
  • Multiple pods can reference the same secret.
  • env: - name: SECRET_USERNAME valueFrom: secretKeyRef: name: mysecret key: username
  • Inside a container that consumes a secret in an environment variables, the secret keys appear as normal environment variables containing the base-64 decoded values of the secret data.
  • An imagePullSecret is a way to pass a secret that contains a Docker (or other) image registry password to the Kubelet so it can pull a private image on behalf of your Pod.
  • a secret needs to be created before any pods that depend on it.
  • Secret API objects reside in a namespaceAn abstraction used by Kubernetes to support multiple virtual clusters on the same physical cluster. . They can only be referenced by pods in that same namespace.
  • Individual secrets are limited to 1MiB in size.
  • Kubelet only supports use of secrets for Pods it gets from the API server.
  • Secrets must be created before they are consumed in pods as environment variables unless they are marked as optional.
  • References to Secrets that do not exist will prevent the pod from starting.
  • References via secretKeyRef to keys that do not exist in a named Secret will prevent the pod from starting.
  • Once a pod is scheduled, the kubelet will try to fetch the secret value.
  • Think carefully before sending your own ssh keys: other users of the cluster may have access to the secret.
  • volumes: - name: secret-volume secret: secretName: ssh-key-secret
  • Special characters such as $, \*, and ! require escaping. If the password you are using has special characters, you need to escape them using the \\ character.
  • You do not need to escape special characters in passwords from files
  • make that key begin with a dot
  • Dotfiles in secret volume
  • .secret-file
  • a frontend container which handles user interaction and business logic, but which cannot see the private key;
  • a signer container that can see the private key, and responds to simple signing requests from the frontend
  • When deploying applications that interact with the secrets API, access should be limited using authorization policies such as RBAC
  • watch and list requests for secrets within a namespace are extremely powerful capabilities and should be avoided
  • watch and list all secrets in a cluster should be reserved for only the most privileged, system-level components.
  • additional precautions with secret objects, such as avoiding writing them to disk where possible.
  • A secret is only sent to a node if a pod on that node requires it
  • only the secrets that a pod requests are potentially visible within its containers
  • each container in a pod has to request the secret volume in its volumeMounts for it to be visible within the container.
  • In the API server secret data is stored in etcdConsistent and highly-available key value store used as Kubernetes’ backing store for all cluster data.
  • limit access to etcd to admin users
  • Base64 encoding is not an encryption method and is considered the same as plain text.
  • A user who can create a pod that uses a secret can also see the value of that secret.
  • anyone with root on any node can read any secret from the apiserver, by impersonating the kubelet.
張 旭

Understanding Nginx HTTP Proxying, Load Balancing, Buffering, and Caching | DigitalOcean - 0 views

  • allow Nginx to pass requests off to backend http servers for further processing
  • Nginx is often set up as a reverse proxy solution to help scale out infrastructure or to pass requests to other servers that are not designed to handle large client loads
  • explore buffering and caching to improve the performance of proxying operations for clients
  • ...48 more annotations...
  • Nginx is built to handle many concurrent connections at the same time.
  • provides you with flexibility in easily adding backend servers or taking them down as needed for maintenance
  • Proxying in Nginx is accomplished by manipulating a request aimed at the Nginx server and passing it to other servers for the actual processing
  • The servers that Nginx proxies requests to are known as upstream servers.
  • Nginx can proxy requests to servers that communicate using the http(s), FastCGI, SCGI, and uwsgi, or memcached protocols through separate sets of directives for each type of proxy
  • When a request matches a location with a proxy_pass directive inside, the request is forwarded to the URL given by the directive
  • For example, when a request for /match/here/please is handled by this block, the request URI will be sent to the example.com server as http://example.com/match/here/please
  • The request coming from Nginx on behalf of a client will look different than a request coming directly from a client
  • Nginx gets rid of any empty headers
  • Nginx, by default, will consider any header that contains underscores as invalid. It will remove these from the proxied request
    • 張 旭
       
      這裡要注意一下,header 欄位名稱有設定底線的,要設定 Nginx 讓它可以通過。
  • The "Host" header is re-written to the value defined by the $proxy_host variable.
  • The upstream should not expect this connection to be persistent
  • Headers with empty values are completely removed from the passed request.
  • if your backend application will be processing non-standard headers, you must make sure that they do not have underscores
  • by default, this will be set to the value of $proxy_host, a variable that will contain the domain name or IP address and port taken directly from the proxy_pass definition
  • This is selected by default as it is the only address Nginx can be sure the upstream server responds to
  • (as it is pulled directly from the connection info)
  • $http_host: Sets the "Host" header to the "Host" header from the client request.
  • The headers sent by the client are always available in Nginx as variables. The variables will start with an $http_ prefix, followed by the header name in lowercase, with any dashes replaced by underscores.
  • preference to: the host name from the request line itself
  • set the "Host" header to the $host variable. It is the most flexible and will usually provide the proxied servers with a "Host" header filled in as accurately as possible
  • sets the "Host" header to the $host variable, which should contain information about the original host being requested
  • This variable takes the value of the original X-Forwarded-For header retrieved from the client and adds the Nginx server's IP address to the end.
  • The upstream directive must be set in the http context of your Nginx configuration.
  • http context
  • Once defined, this name will be available for use within proxy passes as if it were a regular domain name
  • By default, this is just a simple round-robin selection process (each request will be routed to a different host in turn)
  • Specifies that new connections should always be given to the backend that has the least number of active connections.
  • distributes requests to different servers based on the client's IP address.
  • mainly used with memcached proxying
  • As for the hash method, you must provide the key to hash against
  • Server Weight
  • Nginx's buffering and caching capabilities
  • Without buffers, data is sent from the proxied server and immediately begins to be transmitted to the client.
  • With buffers, the Nginx proxy will temporarily store the backend's response and then feed this data to the client
  • Nginx defaults to a buffering design
  • can be set in the http, server, or location contexts.
  • the sizing directives are configured per request, so increasing them beyond your need can affect your performance
  • When buffering is "off" only the buffer defined by the proxy_buffer_size directive will be used
  • A high availability (HA) setup is an infrastructure without a single point of failure, and your load balancers are a part of this configuration.
  • multiple load balancers (one active and one or more passive) behind a static IP address that can be remapped from one server to another.
  • Nginx also provides a way to cache content from backend servers
  • The proxy_cache_path directive must be set in the http context.
  • proxy_cache backcache;
    • 張 旭
       
      這裡的 backcache 是前文設定的 backcache 變數,看起來每個 location 都可以有自己的 cache 目錄。
  • The proxy_cache_bypass directive is set to the $http_cache_control variable. This will contain an indicator as to whether the client is explicitly requesting a fresh, non-cached version of the resource
  • any user-related data should not be cached
  • For private content, you should set the Cache-Control header to "no-cache", "no-store", or "private" depending on the nature of the data
張 旭

MySQL :: MySQL 5.7 Reference Manual :: 19.1 Group Replication Background - 0 views

  • the component can be removed and the system should continue to operate as expected
  • network partitioning
  • split brain scenarios
  • ...8 more annotations...
  • the ultimate challenge is to fuse the logic of the database and data replication with the logic of having several servers coordinated in a consistent and simple way
  • MySQL Group Replication provides distributed state machine replication with strong coordination between servers.
  • Servers coordinate themselves automatically when they are part of the same group
  • The group can operate in a single-primary mode with automatic primary election, where only one server accepts updates at a time.
  • For a transaction to commit, the majority of the group have to agree on the order of a given transaction in the global sequence of transactions
  • Deciding to commit or abort a transaction is done by each server individually, but all servers make the same decision
  • group communication protocols
  • the Paxos algorithm. It acts as the group communication systems engine.
張 旭

ruby-grape/grape: An opinionated framework for creating REST-like APIs in Ruby. - 0 views

shared by 張 旭 on 17 Dec 16 - No Cached
  • Grape is a REST-like API framework for Ruby.
  • designed to run on Rack or complement existing web application frameworks such as Rails and Sinatra by providing a simple DSL to easily develop RESTful APIs
  • Grape APIs are Rack applications that are created by subclassing Grape::API
  • ...54 more annotations...
  • Rails expects a subdirectory that matches the name of the Ruby module and a file name that matches the name of the class
  • mount multiple API implementations inside another one
  • mount on a path, which is similar to using prefix inside the mounted API itself.
  • four strategies in which clients can reach your API's endpoints: :path, :header, :accept_version_header and :param
  • clients should pass the desired version as a request parameter, either in the URL query string or in the request body.
  • clients should pass the desired version in the HTTP Accept head
  • clients should pass the desired version in the UR
  • clients should pass the desired version in the HTTP Accept-Version header.
  • add a description to API methods and namespaces
  • Request parameters are available through the params hash object
  • Parameters are automatically populated from the request body on POST and PUT
  • route string parameters will have precedence.
  • Grape allows you to access only the parameters that have been declared by your params block
  • By default declared(params) includes parameters that have nil values
  • all valid types
  • type: File
  • JSON objects and arrays of objects are accepted equally
  • any class can be used as a type so long as an explicit coercion method is supplied
  • As a special case, variant-member-type collections may also be declared, by passing a Set or Array with more than one member to type
  • Parameters can be nested using group or by calling requires or optional with a block
  • relevant if another parameter is given
  • Parameters options can be grouped
  • allow_blank can be combined with both requires and optional
  • Parameters can be restricted to a specific set of values
  • Parameters can be restricted to match a specific regular expression
  • Never define mutually exclusive sets with any required params
  • Namespaces allow parameter definitions and apply to every method within the namespace
  • define a route parameter as a namespace using route_param
  • create custom validation that use request to validate the attribute
  • rescue a Grape::Exceptions::ValidationErrors and respond with a custom response or turn the response into well-formatted JSON for a JSON API that separates individual parameters and the corresponding error messages
  • custom validation messages
  • Request headers are available through the headers helper or from env in their original form
  • define requirements for your named route parameters using regular expressions on namespace or endpoint
  • route will match only if all requirements are met
  • mix in a module
  • define reusable params
  • using cookies method
  • a 201 for POST-Requests
  • 204 for DELETE-Requests
  • 200 status code for all other Requests
  • use status to query and set the actual HTTP Status Code
  • raising errors with error!
  • It is very crucial to define this endpoint at the very end of your API, as it literally accepts every request.
  • rescue_from will rescue the exceptions listed and all their subclasses.
  • Grape::API provides a logger method which by default will return an instance of the Logger class from Ruby's standard library.
  • Grape supports a range of ways to present your data
  • Grape has built-in Basic and Digest authentication (the given block is executed in the context of the current Endpoint).
  • Authentication applies to the current namespace and any children, but not parents.
  • Blocks can be executed before or after every API call, using before, after, before_validation and after_validation
  • Before and after callbacks execute in the following order
  • Grape by default anchors all request paths, which means that the request URL should match from start to end to match
  • The namespace method has a number of aliases, including: group, resource, resources, and segment. Use whichever reads the best for your API.
  • test a Grape API with RSpec by making HTTP requests and examining the response
  • POST JSON data and specify the correct content-type.
張 旭

Guide to Service Discovery with Docker - 0 views

  • The Service Discovery feature watches for Docker events like when a container is created, destroyed, started or stopped. When one of these happens, the Agent identifies which service is impacted, loads the configuration template for this image, and automatically sets up its checks.
  • Configuration templates can be defined by simple template files or as single key-value stores using etcd or Consul.
張 旭

plataformatec/devise: Flexible authentication solution for Rails with Warden. - 0 views

  • we advise you to start a simple authentication system from scratch
  • If you are building your first Rails application, we recommend you do not use Devise. Devise requires a good understanding of the Rails Framework
  • The generator will install an initializer which describes ALL of Devise's configuration options
  • ...6 more annotations...
  • Replace MODEL with the class name used for the application’s users (it’s frequently User but could also be Admin)
  • If you add an option, be sure to inspect the migration file (created by the generator if your ORM supports them) and uncomment the appropriate section
  • set up the default URL options for the Devise mailer in each environment
  • should restart your application after changing Devise's configuration options
  • set up a controller with user authentication, just add this before_action
  • when using a :user resource, the user_root_path will be used if it exists; otherwise, the default root_path will be used
張 旭

A Good Vimrc - 1 views

  • Don't put any lines in your vimrc that you don't understand.
  • the absolute worst way to make your environment better is to just copy it wholesale from others
  • adding features one by one to your vimrc aids in overall Vim comprehension
  • ...3 more annotations...
  • custom keybindings
  • Vim doesn't model undo as a simple stack. In Vim it's a tree.
  • Don't put anything in your .vimrc you don't understand!
張 旭

Rails Application Templates - Ruby on Rails Guides - 1 views

  • Application templates are simple Ruby files containing DSL for adding gems/initializers etc. to your freshly created Rails project or an existing Rails project.
  • copy_file will accept relative paths to your template's location
張 旭

What exactly was the point of [ "x$var" = "xval" ]? - Vidar's Blog - 0 views

  • x-hack
  • test "x$arg" = "x-f"
  • the utility used a simple recursive descent parser without backtracking, which gave unary operators precedence over binary operators and ignored trailing arguments.
  • ...3 more annotations...
  • The x-hack is effective because no unary operators can start with x.
  • the x-hack could be used to work around certain bugs all the way up until 2015, seven years after StackOverflow wrote it off as an archaic relic of the past!
  • The Dash issue of [ "(" = ")" ] was originally reported in a form that affected both Bash 3.2.48 and Dash 0.5.4 in 2008. You can still see this on macOS bash today
  •  
    "x$var"
« First ‹ Previous 41 - 60 of 71 Next ›
Showing 20 items per page