Skip to main content

Home/ Larvata/ Group items tagged simple

Rss Feed Group items tagged

張 旭

Custom Resources | Kubernetes - 0 views

  • Custom resources are extensions of the Kubernetes API
  • A resource is an endpoint in the Kubernetes API that stores a collection of API objects of a certain kind
  • Custom resources can appear and disappear in a running cluster through dynamic registration
  • ...30 more annotations...
  • Once a custom resource is installed, users can create and access its objects using kubectl
  • When you combine a custom resource with a custom controller, custom resources provide a true declarative API.
  • A declarative API allows you to declare or specify the desired state of your resource and tries to keep the current state of Kubernetes objects in sync with the desired state.
  • Custom controllers can work with any kind of resource, but they are especially effective when combined with custom resources.
  • The Operator pattern combines custom resources and custom controllers.
  • the API represents a desired state, not an exact state.
  • define configuration of applications or infrastructure.
  • The main operations on the objects are CRUD-y (creating, reading, updating and deleting).
  • The client says "do this", and then gets an operation ID back, and has to check a separate Operation object to determine completion of the request.
  • The natural operations on the objects are not CRUD-y.
  • High bandwidth access (10s of requests per second sustained) needed.
  • Use a ConfigMap if any of the following apply
  • You want to put the entire config file into one key of a configMap.
  • You want to perform rolling updates via Deployment, etc., when the file is updated.
  • Use a secret for sensitive data, which is similar to a configMap but more secure.
  • You want to build new automation that watches for updates on the new object, and then CRUD other objects, or vice versa.
  • You want the object to be an abstraction over a collection of controlled resources, or a summarization of other resources.
  • CRDs are simple and can be created without any programming.
  • Aggregated APIs are subordinate API servers that sit behind the primary API server
  • CRDs allow users to create new types of resources without adding another API server
  • Defining a CRD object creates a new custom resource with a name and schema that you specify.
  • The name of a CRD object must be a valid DNS subdomain name
  • each resource in the Kubernetes API requires code that handles REST requests and manages persistent storage of objects.
  • The main API server delegates requests to you for the custom resources that you handle, making them available to all of its clients.
  • The new endpoints support CRUD basic operations via HTTP and kubectl
  • Custom resources consume storage space in the same way that ConfigMaps do.
  • Aggregated API servers may use the same storage as the main API server
  • CRDs always use the same authentication, authorization, and audit logging as the built-in resources of your API server.
  • most RBAC roles will not grant access to the new resources (except the cluster-admin role or any role created with wildcard rules).
  • CRDs and Aggregated APIs often come bundled with new role definitions for the types they add.
張 旭

ALB vs ELB | Differences Between an ELB and an ALB on AWS | Sumo Logic - 0 views

  • If you use AWS, you have two load-balancing options: ELB and ALB.
  • An ELB is a software-based load balancer which can be set up and configured in front of a collection of AWS Elastic Compute (EC2) instances.
  • The load balancer serves as a single entry point for consumers of the EC2 instances and distributes incoming traffic across all machines available to receive requests.
  • ...14 more annotations...
  • the ELB also performs a vital role in improving the fault tolerance of the services which it fronts.
  • he Open Systems Interconnection Model, or OSI Model, is a conceptual model which is used to facilitate communications between different computing systems.
  • Layer 1 is the physical layer, and represents the physical medium across which the request is sent.
  • Layer 2 describes the data link layer
  • Layer 3 (the network layer)
  • Layer 7, which serves the application layer.
  • The Classic ELB operates at Layer 4. Layer 4 represents the transport layer, and is controlled by the protocol being used to transmit the request.
  • A network device, of which the Classic ELB is an example, reads the protocol and port of the incoming request, and then routes it to one or more backend servers.
  • the ALB operates at Layer 7. Layer 7 represents the application layer, and as such allows for the redirection of traffic based on the content of the request.
  • Whereas a request to a specific URL backed by a Classic ELB would only enable routing to a particular pool of homogeneous servers, the ALB can route based on the content of the URL, and direct to a specific subgroup of backing servers existing in a heterogeneous collection registered with the load balancer.
  • The Classic ELB is a simple load balancer, is easy to configure
  • As organizations move towards microservice architecture or adopt a container-based infrastructure, the ability to merely map a single address to a specific service becomes more complicated and harder to maintain.
  • the ALB manages routing based on user-defined rules.
  • oute traffic to different services based on either the host or the content of the path contained within that URL.
張 旭

How to force HTTPS in a Laravel project? » Robin Dirksen - 0 views

  • nginx (preferred)
  • To force redirect a http url to https I use in some cases a middleware to handle the redirect. This is just a simple solution and don't require a change to the server or nginx configuration.
  • To force your HTTP website to be redirected to HTTPS, you can force it by changing your nginx configuration.
張 旭

Logstash Alternatives: Pros & Cons of 5 Log Shippers [2019] - Sematext - 0 views

  • In this case, Elasticsearch. And because Elasticsearch can be down or struggling, or the network can be down, the shipper would ideally be able to buffer and retry
  • Logstash is typically used for collecting, parsing, and storing logs for future use as part of log management.
  • Logstash’s biggest con or “Achille’s heel” has always been performance and resource consumption (the default heap size is 1GB).
  • ...37 more annotations...
  • This can be a problem for high traffic deployments, when Logstash servers would need to be comparable with the Elasticsearch ones.
  • Filebeat was made to be that lightweight log shipper that pushes to Logstash or Elasticsearch.
  • differences between Logstash and Filebeat are that Logstash has more functionality, while Filebeat takes less resources.
  • Filebeat is just a tiny binary with no dependencies.
  • For example, how aggressive it should be in searching for new files to tail and when to close file handles when a file didn’t get changes for a while.
  • For example, the apache module will point Filebeat to default access.log and error.log paths
  • Filebeat’s scope is very limited,
  • Initially it could only send logs to Logstash and Elasticsearch, but now it can send to Kafka and Redis, and in 5.x it also gains filtering capabilities.
  • Filebeat can parse JSON
  • you can push directly from Filebeat to Elasticsearch, and have Elasticsearch do both parsing and storing.
  • You shouldn’t need a buffer when tailing files because, just as Logstash, Filebeat remembers where it left off
  • For larger deployments, you’d typically use Kafka as a queue instead, because Filebeat can talk to Kafka as well
  • The default syslog daemon on most Linux distros, rsyslog can do so much more than just picking logs from the syslog socket and writing to /var/log/messages.
  • It can tail files, parse them, buffer (on disk and in memory) and ship to a number of destinations, including Elasticsearch.
  • rsyslog is the fastest shipper
  • Its grammar-based parsing module (mmnormalize) works at constant speed no matter the number of rules (we tested this claim).
  • use it as a simple router/shipper, any decent machine will be limited by network bandwidth
  • It’s also one of the lightest parsers you can find, depending on the configured memory buffers.
  • rsyslog requires more work to get the configuration right
  • the main difference between Logstash and rsyslog is that Logstash is easier to use while rsyslog lighter.
  • rsyslog fits well in scenarios where you either need something very light yet capable (an appliance, a small VM, collecting syslog from within a Docker container).
  • rsyslog also works well when you need that ultimate performance.
  • syslog-ng as an alternative to rsyslog (though historically it was actually the other way around).
  • a modular syslog daemon, that can do much more than just syslog
  • Unlike rsyslog, it features a clear, consistent configuration format and has nice documentation.
  • Similarly to rsyslog, you’d probably want to deploy syslog-ng on boxes where resources are tight, yet you do want to perform potentially complex processing.
  • syslog-ng has an easier, more polished feel than rsyslog, but likely not that ultimate performance
  • Fluentd was built on the idea of logging in JSON wherever possible (which is a practice we totally agree with) so that log shippers down the line don’t have to guess which substring is which field of which type.
  • Fluentd plugins are in Ruby and very easy to write.
  • structured data through Fluentd, it’s not made to have the flexibility of other shippers on this list (Filebeat excluded).
  • Fluent Bit, which is to Fluentd similar to how Filebeat is for Logstash.
  • Fluentd is a good fit when you have diverse or exotic sources and destinations for your logs, because of the number of plugins.
  • Splunk isn’t a log shipper, it’s a commercial logging solution
  • Graylog is another complete logging solution, an open-source alternative to Splunk.
  • everything goes through graylog-server, from authentication to queries.
  • Graylog is nice because you have a complete logging solution, but it’s going to be harder to customize than an ELK stack.
  • it depends
張 旭

Using NGINX Logging for Application Performance Monitoring - 0 views

  • taking advantage of the flexibility of NGINX access logging is application performance monitoring (APM).
  • it’s simple to get detailed visibility into the performance of your applications by adding timing values to your code and passing them as response headers for inclusion in the NGINX access log.
  • $request_time – Full request time, starting when NGINX reads the first byte from the client and ending when NGINX sends the last byte of the response body
  • ...3 more annotations...
  • $upstream_response_time – Time between establishing a connection to an upstream server and receiving the last byte of the response body
  • capture timings in the application itself and include them as response headers, which NGINX then captures in its access log.
  • $upstream_header_time – Time between establishing a connection to an upstream server and receiving the first byte of the response header
張 旭

Introducing the MinIO Operator and Operator Console - 0 views

  • Object-storage-as-a-service is a game changer for IT.
  • provision multi-tenant object storage as a service.
  • have the skill set to create, deploy, tune, scale and manage modern, application oriented object storage using Kubernetes
  • ...12 more annotations...
  • MinIO is purpose-built to take full advantage of the Kubernetes architecture.
  • MinIO and Kubernetes work together to simplify infrastructure management, providing a way to manage object storage infrastructure within the Kubernetes toolset.  
  • The operator pattern extends Kubernetes's familiar declarative API model with custom resource definitions (CRDs) to perform common operations like resource orchestration, non-disruptive upgrades, cluster expansion and to maintain high-availability
  • The Operator uses the command set kubectl that the Kubernetes community was already familiar with and adds the kubectl minio plugin . The MinIO Operator and the MinIO kubectl plugin facilitate the deployment and management of MinIO Object Storage on Kubernetes - which is how multi-tenant object storage as a service is delivered.
  • choosing a leader for a distributed application without an internal member election process
  • The Operator Console makes Kubernetes object storage easier still. In this graphical user interface, MinIO created something so simple that anyone in the organization can create, deploy and manage object storage as a service.
  • The primary unit of managing MinIO on Kubernetes is the tenant.
  • The MinIO Operator can allocate multiple tenants within the same Kubernetes cluster.
  • Each tenant, in turn, can have different capacity (i.e: a small 500GB tenant vs a 100TB tenant), resources (1000m CPU and 4Gi RAM vs 4000m CPU and 16Gi RAM) and servers (4 pods vs 16 pods), as well a separate configurations regarding Identity Providers, Encryption and versions.
  • each tenant is a cluster of server pools (independent sets of nodes with their own compute, network, and storage resources), that, while sharing the same physical infrastructure, are fully isolated from each other in their own namespaces.
  • Each tenant runs their own MinIO cluster, fully isolated from other tenants
  • Each tenant scales independently by federating clusters across geographies.
張 旭

Helm | Named Templates - 0 views

  • a special-purpose include function that works similarly to the template action.
  • when naming templates: template names are global.
  • templates in subcharts are compiled together with top-level templates, you should be careful to name your templates with chart-specific names.
  • ...14 more annotations...
  • One popular naming convention is to prefix each defined template with the name of the chart: {{ define "mychart.labels" }}
  • using the specific chart name as a prefix we can avoid any conflicts
  • But files whose name begins with an underscore (_) are assumed to not have a manifest inside.
  • The define action allows us to create a named template inside of a template file.
  • include it with the template action
  • a define does not produce output unless it is called with a template
  • define functions should have a simple documentation block ({{/* ... */}}) describing what they do.
  • template names are global.
  • A popular naming convention is to prefix each defined template with the name of the chart
  • When a named template (created with define) is rendered, it will receive the scope passed in by the template call.
  • No scope was passed in, so within the template we cannot access anything in .
  • Note that we pass . at the end of the template call. We could just as easily pass .Values or .Values.favorite or whatever scope we want
  • the template that is substituted in has the text aligned to the left. Because template is an action, and not a function, there is no way to pass the output of a template call to other functions; the data is simply inserted inline.
  • use indent to indent
  •  
    "a special-purpose include function that works similarly to the template action."
張 旭

NGINX Ingress Controller - Documentation - 0 views

  • NodePort, as the name says, means that a port on a node is configured to route incoming requests to a certain service.
  • LoadBalancer is a service, which is typically implemented by the cloud provider as an external service (with additional cost).
  • Load balancer provides a single IP address to access your services, which can run on multiple nodes.
  • ...5 more annotations...
  • ngress controller helps to consolidate routing rules of multiple applications into one entity.
  • Ingress controller is exposed to an external network with the help of NodePort or LoadBalancer.
  • cloud load balancers are not necessary. Load balancer can also be implemented with MetalLB, which can be deployed in the same Kubernetes cluster.
  • to expose the Ingress controller to an external network is to use NodePort.
  • Installing NGINX using NodePort is the most simple example for Ingress Controller as we can avoid the load balancer dependency. NodePort is used for exposing the NGINX Ingress to the external network.
張 旭

Installing Addons | Kubernetes - 0 views

  • Calico is a networking and network policy provider. Calico supports a flexible set of networking options so you can choose the most efficient option for your situation, including non-overlay and overlay networks, with or without BGP. Calico uses the same engine to enforce network policy for hosts, pods, and (if using Istio & Envoy) applications at the service mesh layer.
  • Cilium is a networking, observability, and security solution with an eBPF-based data plane. Cilium provides a simple flat Layer 3 network with the ability to span multiple clusters in either a native routing or overlay/encapsulation mode, and can enforce network policies on L3-L7 using an identity-based security model that is decoupled from network addressing. Cilium can act as a replacement for kube-proxy; it also offers additional, opt-in observability and security features.
  • CoreDNS is a flexible, extensible DNS server which can be installed as the in-cluster DNS for pods.
  • ...1 more annotation...
  • The node problem detector runs on Linux nodes and reports system issues as either Events or Node conditions.
張 旭

Java microservices architecture by example - 0 views

  • A microservices architecture is a particular case of a service-oriented architecture (SOA)
  • What sets microservices apart is the extent to which these modules are interconnected.
  • Every server comprises just one certain business process and never consists of several smaller servers.
  • ...12 more annotations...
  • Microservices also bring a set of additional benefits, such as easier scaling, the possibility to use multiple programming languages and technologies, and others.
  • Java is a frequent choice for building a microservices architecture as it is a mature language tested over decades and has a multitude of microservices-favorable frameworks, such as legendary Spring, Jersey, Play, and others.
  • A monolithic architecture keeps it all simple. An app has just one server and one database.
  • All the connections between units are inside-code calls.
  • split our application into microservices and got a set of units completely independent for deployment and maintenance.
  • Each of microservices responsible for a certain business function communicates either via sync HTTP/REST or async AMQP protocols.
  • ensure seamless communication between newly created distributed components.
  • The gateway became an entry point for all clients’ requests.
  • We also set the Zuul 2 framework for our gateway service so that the application could leverage the benefits of non-blocking HTTP calls.
  • we've implemented the Eureka server as our server discovery that keeps a list of utilized user profile and order servers to help them discover each other.
  • We also have a message broker (RabbitMQ) as an intermediary between the notification server and the rest of the servers to allow async messaging in-between.
  • microservices can definitely help when it comes to creating complex applications that deal with huge loads and need continuous improvement and scaling.
« First ‹ Previous 61 - 71 of 71
Showing 20 items per page