Skip to main content

Home/ Larvata/ Group items tagged authentication

Rss Feed Group items tagged

張 旭

Internal/Membership Authentication - MongoDB Manual - 0 views

  • equire that members of replica sets and sharded clusters authenticate to each other.
  • Enabling internal authentication also enables client authorization.
張 旭

Serverless Architectures - 0 views

  • Serverless was first used to describe applications that significantly or fully depend on 3rd party applications / services (‘in the cloud’) to manage server-side logic and state.
  • ‘rich client’ applications (think single page web apps, or mobile apps) that use the vast ecosystem of cloud accessible databases (like Parse, Firebase), authentication services (Auth0, AWS Cognito), etc.
  • ‘(Mobile) Backend as a Service’
  • ...33 more annotations...
  • Serverless can also mean applications where some amount of server-side logic is still written by the application developer but unlike traditional architectures is run in stateless compute containers that are event-triggered, ephemeral (may only last for one invocation), and fully managed by a 3rd party.
  • ‘Functions as a service
  • AWS Lambda is one of the most popular implementations of FaaS at present,
  • A good example is Auth0 - they started initially with BaaS ‘Authentication as a Service’, but with Auth0 Webtask they are entering the FaaS space.
  • a typical ecommerce app
  • a backend data-processing service
  • with zero administration.
  • FaaS offerings do not require coding to a specific framework or library.
  • Horizontal scaling is completely automatic, elastic, and managed by the provider
  • Functions in FaaS are triggered by event types defined by the provider.
  • a FaaS-supported message broker
  • from a deployment-unit point of view FaaS functions are stateless.
  • allowed the client direct access to a subset of our database
  • deleted the authentication logic in the original application and have replaced it with a third party BaaS service
  • The client is in fact well on its way to becoming a Single Page Application.
  • implement a FaaS function that responds to http requests via an API Gateway
  • port the search code from the Pet Store server to the Pet Store Search function
  • replaced a long lived consumer application with a FaaS function that runs within the event driven context
  • server applications - is a key difference when comparing with other modern architectural trends like containers and PaaS
  • the only code that needs to change when moving to FaaS is the ‘main method / startup’ code, in that it is deleted, and likely the specific code that is the top-level message handler (the ‘message listener interface’ implementation), but this might only be a change in method signature
  • With FaaS you need to write the function ahead of time to assume parallelism
  • Most providers also allow functions to be triggered as a response to inbound http requests, typically in some kind of API gateway
  • you should assume that for any given invocation of a function none of the in-process or host state that you create will be available to any subsequent invocation.
  • FaaS functions are either naturally stateless
  • store state across requests or for further input to handle a request.
  • certain classes of long lived task are not suited to FaaS functions without re-architecture
  • if you were writing a low-latency trading application you probably wouldn’t want to use FaaS systems at this time
  • An API Gateway is an HTTP server where routes / endpoints are defined in configuration and each route is associated with a FaaS function.
  • API Gateway will allow mapping from http request parameters to inputs arguments for the FaaS function
  • API Gateways may also perform authentication, input validation, response code mapping, etc.
  • the Serverless Framework makes working with API Gateway + Lambda significantly easier than using the first principles provided by AWS.
  • Apex - a project to ‘Build, deploy, and manage AWS Lambda functions with ease.'
  • 'Serverless' to mean the union of a couple of other ideas - 'Backend as a Service' and 'Functions as a Service'.
crazylion lee

YubiKey 4 and YubiKey 4 Nano | U2F, OTP, PIV | Yubico - 0 views

  •  
    "The YubiKey 4 is the strong authentication bullseye the industry has been aiming at for years, enabling one single key to secure an unlimited number of applications. Yubico's 4th generation YubiKey is built on high-performance secure elements. It includes the same range of one-time password and public key authentication protocols as in the YubiKey NEO, excluding NFC, but with stronger public/private keys, faster crypto operations and the world's first touch-to-sign feature. With the YubiKey 4 platform, we have further improved our manufacturing and ordering process, enabling customers to order exactly what functions they want in 500+ unit volumes, with no secrets stored at Yubico or shared with a third-party organization. The best part? An organization can securely customize 1,000 YubiKeys in less than 10 minutes. For customers who require NFC, the YubiKey NEO is our full-featured key with both contact (USB) and contactless (NFC, MIFARE) communications."
張 旭

Authentication, Permissions and Roles in Rails with Devise, CanCan and Role Model | Phase2 - 0 views

  • Devise is a modular user authentication system
  • just gradually investigating the components you need for your app and configuring them as you need
  • define permissions
張 旭

plataformatec/devise: Flexible authentication solution for Rails with Warden. - 0 views

  • we advise you to start a simple authentication system from scratch
  • If you are building your first Rails application, we recommend you do not use Devise. Devise requires a good understanding of the Rails Framework
  • The generator will install an initializer which describes ALL of Devise's configuration options
  • ...6 more annotations...
  • Replace MODEL with the class name used for the application’s users (it’s frequently User but could also be Admin)
  • If you add an option, be sure to inspect the migration file (created by the generator if your ORM supports them) and uncomment the appropriate section
  • set up the default URL options for the Devise mailer in each environment
  • should restart your application after changing Devise's configuration options
  • set up a controller with user authentication, just add this before_action
  • when using a :user resource, the user_root_path will be used if it exists; otherwise, the default root_path will be used
張 旭

Deploy Replica Set With Keyfile Authentication - MongoDB Manual - 0 views

  • Keyfiles are bare-minimum forms of security and are best suited for testing or development environments.
  • With keyfile authentication, each mongod instances in the replica set uses the contents of the keyfile as the shared password for authenticating other members in the deployment.
  • On UNIX systems, the keyfile must not have group or world permissions.
  • ...3 more annotations...
  • Copy the keyfile to each server hosting the replica set members.
  • the user running the mongod instances is the owner of the file and can access the keyfile.
  • For each member in the replica set, start the mongod with either the security.keyFile configuration file setting or the --keyFile command-line option.
張 旭

Production environment | Kubernetes - 0 views

  • to promote an existing cluster for production use
  • Separating the control plane from the worker nodes.
  • Having enough worker nodes available
  • ...22 more annotations...
  • You can use role-based access control (RBAC) and other security mechanisms to make sure that users and workloads can get access to the resources they need, while keeping workloads, and the cluster itself, secure. You can set limits on the resources that users and workloads can access by managing policies and container resources.
  • you need to plan how to scale to relieve increased pressure from more requests to the control plane and worker nodes or scale down to reduce unused resources.
  • Managed control plane: Let the provider manage the scale and availability of the cluster's control plane, as well as handle patches and upgrades.
  • The simplest Kubernetes cluster has the entire control plane and worker node services running on the same machine.
  • You can deploy a control plane using tools such as kubeadm, kops, and kubespray.
  • Secure communications between control plane services are implemented using certificates.
  • Certificates are automatically generated during deployment or you can generate them using your own certificate authority.
  • Separate and backup etcd service: The etcd services can either run on the same machines as other control plane services or run on separate machines
  • Create multiple control plane systems: For high availability, the control plane should not be limited to a single machine
  • Some deployment tools set up Raft consensus algorithm to do leader election of Kubernetes services. If the primary goes away, another service elects itself and take over.
  • Groups of zones are referred to as regions.
  • if you installed with kubeadm, there are instructions to help you with Certificate Management and Upgrading kubeadm clusters.
  • Production-quality workloads need to be resilient and anything they rely on needs to be resilient (such as CoreDNS).
  • Add nodes to the cluster: If you are managing your own cluster you can add nodes by setting up your own machines and either adding them manually or having them register themselves to the cluster’s apiserver.
  • Set up node health checks: For important workloads, you want to make sure that the nodes and pods running on those nodes are healthy.
  • Authentication: The apiserver can authenticate users using client certificates, bearer tokens, an authenticating proxy, or HTTP basic auth.
  • Authorization: When you set out to authorize your regular users, you will probably choose between RBAC and ABAC authorization.
  • Role-based access control (RBAC): Lets you assign access to your cluster by allowing specific sets of permissions to authenticated users. Permissions can be assigned for a specific namespace (Role) or across the entire cluster (ClusterRole).
  • Attribute-based access control (ABAC): Lets you create policies based on resource attributes in the cluster and will allow or deny access based on those attributes.
  • Set limits on workload resources
  • Set namespace limits: Set per-namespace quotas on things like memory and CPU
  • Prepare for DNS demand: If you expect workloads to massively scale up, your DNS service must be ready to scale up as well.
張 旭

Manage swarm security with public key infrastructure (PKI) | Docker Documentation - 0 views

  • The nodes in a swarm use mutual Transport Layer Security (TLS) to authenticate, authorize, and encrypt the communications with other nodes in the swarm.
  • By default, the manager node generates a new root Certificate Authority (CA) along with a key pair, which are used to secure communications with other nodes that join the swarm.
  • The manager node also generates two tokens to use when you join additional nodes to the swarm: one worker token and one manager token.
  • ...3 more annotations...
  • Each time a new node joins the swarm, the manager issues a certificate to the node
  • By default, each node in the swarm renews its certificate every three months.
  • a cluster CA key or a manager node is compromised, you can rotate the swarm root CA so that none of the nodes trust certificates signed by the old root CA anymore.
  •  
    "The nodes in a swarm use mutual Transport Layer Security (TLS) to authenticate, authorize, and encrypt the communications with other nodes in the swarm."
張 旭

JSON Web Token Introduction - jwt.io - 0 views

  • a stateless authentication mechanism as the user state is never saved in server memory
  • In authentication, when the user successfully logs in using their credentials, a JSON Web Token will be returned and must be saved locally (typically in local storage, but cookies can be also used), instead of the traditional approach of creating a session in the server and returning a cookie.
  • ser agent should send the JWT, typically in the Authorization header using the Bearer schema.
  • ...2 more annotations...
  • It doesn't matter which domains are serving your APIs, so Cross-Origin Resource Sharing (CORS) won't be an issue as it doesn't use cookies.
  • WT and SAML tokens can use a public/private key pair in the form of a X.509 certificate for signing.
張 旭

Helm | - 0 views

  • Helm will figure out where to install Tiller by reading your Kubernetes configuration file (usually $HOME/.kube/config). This is the same file that kubectl uses.
  • kubectl cluster-info
  • Role-Based Access Control (RBAC) enabled
  • ...133 more annotations...
  • initialize the local CLI
  • install Tiller into your Kubernetes cluster
  • helm install
  • helm init --upgrade
  • By default, when Tiller is installed, it does not have authentication enabled.
  • helm repo update
  • Without a max history set the history is kept indefinitely, leaving a large number of records for helm and tiller to maintain.
  • helm init --upgrade
  • Whenever you install a chart, a new release is created.
  • one chart can be installed multiple times into the same cluster. And each can be independently managed and upgraded.
  • helm list function will show you a list of all deployed releases.
  • helm delete
  • helm status
  • you can audit a cluster’s history, and even undelete a release (with helm rollback).
  • the Helm server (Tiller).
  • The Helm client (helm)
  • brew install kubernetes-helm
  • Tiller, the server portion of Helm, typically runs inside of your Kubernetes cluster.
  • it can also be run locally, and configured to talk to a remote Kubernetes cluster.
  • Role-Based Access Control - RBAC for short
  • create a service account for Tiller with the right roles and permissions to access resources.
  • run Tiller in an RBAC-enabled Kubernetes cluster.
  • run kubectl get pods --namespace kube-system and see Tiller running.
  • helm inspect
  • Helm will look for Tiller in the kube-system namespace unless --tiller-namespace or TILLER_NAMESPACE is set.
  • For development, it is sometimes easier to work on Tiller locally, and configure it to connect to a remote Kubernetes cluster.
  • even when running locally, Tiller will store release configuration in ConfigMaps inside of Kubernetes.
  • helm version should show you both the client and server version.
  • Tiller stores its data in Kubernetes ConfigMaps, you can safely delete and re-install Tiller without worrying about losing any data.
  • helm reset
  • The --node-selectors flag allows us to specify the node labels required for scheduling the Tiller pod.
  • --override allows you to specify properties of Tiller’s deployment manifest.
  • helm init --override manipulates the specified properties of the final manifest (there is no “values” file).
  • The --output flag allows us skip the installation of Tiller’s deployment manifest and simply output the deployment manifest to stdout in either JSON or YAML format.
  • By default, tiller stores release information in ConfigMaps in the namespace where it is running.
  • switch from the default backend to the secrets backend, you’ll have to do the migration for this on your own.
  • a beta SQL storage backend that stores release information in an SQL database (only postgres has been tested so far).
  • Once you have the Helm Client and Tiller successfully installed, you can move on to using Helm to manage charts.
  • Helm requires that kubelet have access to a copy of the socat program to proxy connections to the Tiller API.
  • A Release is an instance of a chart running in a Kubernetes cluster. One chart can often be installed many times into the same cluster.
  • helm init --client-only
  • helm init --dry-run --debug
  • A panic in Tiller is almost always the result of a failure to negotiate with the Kubernetes API server
  • Tiller and Helm have to negotiate a common version to make sure that they can safely communicate without breaking API assumptions
  • helm delete --purge
  • Helm stores some files in $HELM_HOME, which is located by default in ~/.helm
  • A Chart is a Helm package. It contains all of the resource definitions necessary to run an application, tool, or service inside of a Kubernetes cluster.
  • it like the Kubernetes equivalent of a Homebrew formula, an Apt dpkg, or a Yum RPM file.
  • A Repository is the place where charts can be collected and shared.
  • Set the $HELM_HOME environment variable
  • each time it is installed, a new release is created.
  • Helm installs charts into Kubernetes, creating a new release for each installation. And to find new charts, you can search Helm chart repositories.
  • chart repository is named stable by default
  • helm search shows you all of the available charts
  • helm inspect
  • To install a new package, use the helm install command. At its simplest, it takes only one argument: The name of the chart.
  • If you want to use your own release name, simply use the --name flag on helm install
  • additional configuration steps you can or should take.
  • Helm does not wait until all of the resources are running before it exits. Many charts require Docker images that are over 600M in size, and may take a long time to install into the cluster.
  • helm status
  • helm inspect values
  • helm inspect values stable/mariadb
  • override any of these settings in a YAML formatted file, and then pass that file during installation.
  • helm install -f config.yaml stable/mariadb
  • --values (or -f): Specify a YAML file with overrides.
  • --set (and its variants --set-string and --set-file): Specify overrides on the command line.
  • Values that have been --set can be cleared by running helm upgrade with --reset-values specified.
  • Chart designers are encouraged to consider the --set usage when designing the format of a values.yaml file.
  • --set-file key=filepath is another variant of --set. It reads the file and use its content as a value.
  • inject a multi-line text into values without dealing with indentation in YAML.
  • An unpacked chart directory
  • When a new version of a chart is released, or when you want to change the configuration of your release, you can use the helm upgrade command.
  • Kubernetes charts can be large and complex, Helm tries to perform the least invasive upgrade.
  • It will only update things that have changed since the last release
  • $ helm upgrade -f panda.yaml happy-panda stable/mariadb
  • deployment
  • If both are used, --set values are merged into --values with higher precedence.
  • The helm get command is a useful tool for looking at a release in the cluster.
  • helm rollback
  • A release version is an incremental revision. Every time an install, upgrade, or rollback happens, the revision number is incremented by 1.
  • helm history
  • a release name cannot be re-used.
  • you can rollback a deleted resource, and have it re-activate.
  • helm repo list
  • helm repo add
  • helm repo update
  • The Chart Development Guide explains how to develop your own charts.
  • helm create
  • helm lint
  • helm package
  • Charts that are archived can be loaded into chart repositories.
  • chart repository server
  • Tiller can be installed into any namespace.
  • Limiting Tiller to only be able to install into specific namespaces and/or resource types is controlled by Kubernetes RBAC roles and rolebindings
  • Release names are unique PER TILLER INSTANCE
  • Charts should only contain resources that exist in a single namespace.
  • not recommended to have multiple Tillers configured to manage resources in the same namespace.
  • a client-side Helm plugin. A plugin is a tool that can be accessed through the helm CLI, but which is not part of the built-in Helm codebase.
  • Helm plugins are add-on tools that integrate seamlessly with Helm. They provide a way to extend the core feature set of Helm, but without requiring every new feature to be written in Go and added to the core tool.
  • Helm plugins live in $(helm home)/plugins
  • The Helm plugin model is partially modeled on Git’s plugin model
  • helm referred to as the porcelain layer, with plugins being the plumbing.
  • helm plugin install https://github.com/technosophos/helm-template
  • command is the command that this plugin will execute when it is called.
  • Environment variables are interpolated before the plugin is executed.
  • The command itself is not executed in a shell. So you can’t oneline a shell script.
  • Helm is able to fetch Charts using HTTP/S
  • Variables like KUBECONFIG are set for the plugin if they are set in the outer environment.
  • In Kubernetes, granting a role to an application-specific service account is a best practice to ensure that your application is operating in the scope that you have specified.
  • restrict Tiller’s capabilities to install resources to certain namespaces, or to grant a Helm client running access to a Tiller instance.
  • Service account with cluster-admin role
  • The cluster-admin role is created by default in a Kubernetes cluster
  • Deploy Tiller in a namespace, restricted to deploying resources only in that namespace
  • Deploy Tiller in a namespace, restricted to deploying resources in another namespace
  • When running a Helm client in a pod, in order for the Helm client to talk to a Tiller instance, it will need certain privileges to be granted.
  • SSL Between Helm and Tiller
  • The Tiller authentication model uses client-side SSL certificates.
  • creating an internal CA, and using both the cryptographic and identity functions of SSL.
  • Helm is a powerful and flexible package-management and operations tool for Kubernetes.
  • default installation applies no security configurations
  • with a cluster that is well-secured in a private network with no data-sharing or no other users or teams.
  • With great power comes great responsibility.
  • Choose the Best Practices you should apply to your helm installation
  • Role-based access control, or RBAC
  • Tiller’s gRPC endpoint and its usage by Helm
  • Kubernetes employ a role-based access control (or RBAC) system (as do modern operating systems) to help mitigate the damage that can be done if credentials are misused or bugs exist.
  • In the default installation the gRPC endpoint that Tiller offers is available inside the cluster (not external to the cluster) without authentication configuration applied.
  • Tiller stores its release information in ConfigMaps. We suggest changing the default to Secrets.
  • release information
  • charts
  • charts are a kind of package that not only installs containers you may or may not have validated yourself, but it may also install into more than one namespace.
  • As with all shared software, in a controlled or shared environment you must validate all software you install yourself before you install it.
  • Helm’s provenance tools to ensure the provenance and integrity of charts
  •  
    "Helm will figure out where to install Tiller by reading your Kubernetes configuration file (usually $HOME/.kube/config). This is the same file that kubectl uses."
張 旭

OmniAuth: Overview · plataformatec/devise Wiki - 0 views

  • omniauth-provider
  • add the columns "provider" and "uid" to your User model
  • declare the provider in your config/initializers/devise.rb and require it
  • ...17 more annotations...
  • set it explicitly with the :strategy_class option
  • explicitly tell OmniAuth where to locate your ca_certificates file
  • make your model (e.g. app/models/user.rb) omniauthable
  • devise_for :users was already added to your config/routes.rb
  • user_omniauth_authorize_path(provider) user_omniauth_callback_path(provider)
  • devise does not create *_url methods
  • The symbol passed to the user_omniauth_authorize_path method matches the symbol of the provider passed to Devise's config block
  • After inserting their credentials, they will be redirected back to your application's callback method
  • tell Devise in which controller we will implement Omniauth callbacks
  • find_for_facebook_oauth
  • implement the method below in your model
  • All information retrieved from Facebook by OmniAuth is available as a hash at request.env["omniauth.auth"]
  • Devise removes all the data starting with "devise." from the session whenever a user signs in, so we get automatic session clean up
  • We pass the :event => :authentication to the sign_in_and_redirect method to force all authentication callbacks to be called
  • tries to find an existing user by provider and uid or create one with a random password otherwise.
  • Devise's RegistrationsController by default calls "User.new_with_session" before building a resource
  • if we need to copy data from session whenever a user is initialized before sign up, we just need to implement new_with_session in our model
張 旭

Deploy a registry server | Docker Documentation - 0 views

  • By default, secrets are mounted into a service at /run/secrets/<secret-name>
  • docker secret create
  • If you use a distributed storage driver, such as Amazon S3, you can use a fully replicated service. Each worker can write to the storage back-end without causing write conflicts.
  • ...10 more annotations...
  • You can access the service on port 443 of any swarm node. Docker sends the requests to the node which is running the service.
  • --publish published=443,target=443
  • The most important aspect is that a load balanced cluster of registries must share the same resources
  • S3 or Azure, they should be accessing the same resource and share an identical configuration.
  • you must make sure you are properly sending the X-Forwarded-Proto, X-Forwarded-For, and Host headers to their “client-side” values. Failure to do so usually makes the registry issue redirects to internal hostnames or downgrading from https to http.
  • A properly secured registry should return 401 when the “/v2/” endpoint is hit without credentials
  • registries should always implement access restrictions.
  • REGISTRY_AUTH=htpasswd
  • REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd
  • The registry also supports delegated authentication which redirects users to a specific trusted token server. This approach is more complicated to set up, and only makes sense if you need to fully configure ACLs and need more control over the registry’s integration into your global authorization and authentication systems.
  •  
    "You can access the service on port 443 of any swarm node. Docker sends the requests to the node which is running the service. "
張 旭

phusion/baseimage-docker - 1 views

    • 張 旭
       
      原始的 docker 在執行命令時,預設就是將傳入的 COMMAND 當成 PID 1 的程序,執行完畢就結束這個  docker,其他的 daemons 並不會執行,而 baseimage 解決了這個問題。
    • crazylion lee
       
      好棒棒
  • docker exec
  • Through SSH
  • ...57 more annotations...
  • docker exec -t -i YOUR-CONTAINER-ID bash -l
  • Login to the container
  • Baseimage-docker only advocates running multiple OS processes inside a single container.
  • Password and challenge-response authentication are disabled by default. Only key authentication is allowed.
  • A tool for running a command as another user
  • The Docker developers advocate the philosophy of running a single logical service per container. A logical service can consist of multiple OS processes.
  • All syslog messages are forwarded to "docker logs".
  • Baseimage-docker advocates running multiple OS processes inside a single container, and a single logical service can consist of multiple OS processes.
  • Baseimage-docker provides tools to encourage running processes as different users
  • sometimes it makes sense to run multiple services in a single container, and sometimes it doesn't.
  • Splitting your logical service into multiple OS processes also makes sense from a security standpoint.
  • using environment variables to pass parameters to containers is very much the "Docker way"
  • Baseimage-docker provides a facility to run a single one-shot command, while solving all of the aforementioned problems
  • the shell script must run the daemon without letting it daemonize/fork it.
  • All executable scripts in /etc/my_init.d, if this directory exists. The scripts are run in lexicographic order.
  • variables will also be passed to all child processes
  • Environment variables on Unix are inherited on a per-process basis
  • there is no good central place for defining environment variables for all applications and services
  • centrally defining environment variables
  • One of the ideas behind Docker is that containers should be stateless, easily restartable, and behave like a black box.
  • a one-shot command in a new container
  • immediately exit after the command exits,
  • However the downside of this approach is that the init system is not started. That is, while invoking COMMAND, important daemons such as cron and syslog are not running. Also, orphaned child processes are not properly reaped, because COMMAND is PID 1.
  • add additional daemons (e.g. your own app) to the image by creating runit entries.
  • Nginx is one such example: it removes all environment variables unless you explicitly instruct it to retain them through the env configuration option.
  • Mechanisms for easily running multiple processes, without violating the Docker philosophy
  • Ubuntu is not designed to be run inside Docker
  • According to the Unix process model, the init process -- PID 1 -- inherits all orphaned child processes and must reap them
  • Syslog-ng seems to be much more stable
  • cron daemon
  • Rotates and compresses logs
  • /sbin/setuser
  • A tool for installing apt packages that automatically cleans up after itself.
  • a single logical service inside a single container
  • A daemon is a program which runs in the background of its system, such as a web server.
  • The shell script must be called run, must be executable, and is to be placed in the directory /etc/service/<NAME>. runsv will switch to the directory and invoke ./run after your container starts.
  • If any script exits with a non-zero exit code, the booting will fail.
  • If your process is started with a shell script, make sure you exec the actual process, otherwise the shell will receive the signal and not your process.
  • any environment variables set with docker run --env or with the ENV command in the Dockerfile, will be picked up by my_init
  • not possible for a child process to change the environment variables of other processes
  • they will not see the environment variables that were originally passed by Docker.
  • We ignore HOME, SHELL, USER and a bunch of other environment variables on purpose, because not ignoring them will break multi-user containers.
  • my_init imports environment variables from the directory /etc/container_environment
  • /etc/container_environment.sh - a dump of the environment variables in Bash format.
  • modify the environment variables in my_init (and therefore the environment variables in all child processes that are spawned after that point in time), by altering the files in /etc/container_environment
  • my_init only activates changes in /etc/container_environment when running startup scripts
  • environment variables don't contain sensitive data, then you can also relax the permissions
  • Syslog messages are forwarded to the console
  • syslog-ng is started separately before the runit supervisor process, and shutdown after runit exits.
  • RUN apt-get update && apt-get upgrade -y -o Dpkg::Options::="--force-confold"
  • /sbin/my_init --skip-startup-files --quiet --
  • By default, no keys are installed, so nobody can login
  • provide a pregenerated, insecure key (PuTTY format)
  • RUN /usr/sbin/enable_insecure_key
  • docker run YOUR_IMAGE /sbin/my_init --enable-insecure-key
  • RUN cat /tmp/your_key.pub >> /root/.ssh/authorized_keys && rm -f /tmp/your_key.pub
  • The default baseimage-docker installs syslog-ng, cron and sshd services during the build process
張 旭

Ask HN: What are the best practises for using SSH keys? | Hacker News - 0 views

  • Make sure you use full disk encryption and never stand up from your machine without locking it, and make sure you keep your local machine patched.
  • I'm more focused on just stealing your keys from you regardless of length
  • attacks that aren't after your keys specifically, e.g. your home directory gets stolen.
  • ...19 more annotations...
  • ED25519 is more vulnerable to quantum computation than is RSA
  • best practice to be using a hardware token
  • to use a yubikey via gpg: with this method you use your gpg subkey as an ssh key
  • sit down and spend an hour thinking about your backup and recovery strategy first
  • never share a private keys between physical devices
  • allows you to revoke a single credential if you lose (control over) that device
  • If a private key ever turns up on the wrong machine, you *know* the key and both source and destination machines have been compromised.
  • centralized management of authentication/authorization
  • I have setup a VPS, disabled passwords, and setup a key with a passphrase to gain access. At this point my greatest worry is losing this private key, as that means I can't access the server.What is a reasonable way to backup my private key?
  • a mountable disk image that's encrypted
  • a system that can update/rotate your keys across all of your servers on the fly in case one is compromised or assumed to be compromised.
  • different keys for different purposes per client device
  • fall back to password plus OTP
  • relying completely on the security of your disk, against either physical or cyber.
  • It is better to use a different passphrase for each key but it is also less convenient unless you're using a password manager (personally, I'm using KeePass)
  • - RSA is pretty standard, and generally speaking is fairly secure for key lengths >=2048. RSA-2048 is the default for ssh-keygen, and is compatible with just about everything.
  • public-key authentication has somewhat unexpected side effect of preventing MITM per this security consulting firm
  • Disable passwords and only allow keys even for root with PermitRootLogin without-password
  • You should definitely use a different passphrase for keys stored on separate computers,
  •  
    "Make sure you use full disk encryption and never stand up from your machine without locking it, and make sure you keep your local machine patched"
張 旭

Keycloak and FreeIPA Intro - scott poore's blog - 0 views

  • Keycloak is an “Open source identity and access management” solution.
  • setup a central Identity Provider (IdP) that applications acting as Service Providers (SP) use to authenticate or authorize user access.
  • FreeIPA does a LOT more than just provide user info though.  It can manage user groups, service lists, hosts, DNS, certificates, and much, much, more.
  • ...5 more annotations...
  • IPA – refers to the FreeIPA Master Server.
  • IdP – as mentioned earlier, IdP stands for Identity Provider.
  • SP – stands for Service Provider.   This can be a java application, jboss, etc.  It can also be a simple Apache web server
  • SAML – stands for Security Assertion Markup Language and refers to mod_auth_mellon here.  This provides the SSO functionality.
  • Openidc – stands for OpenID Connect.
張 旭

Auto DevOps | GitLab - 0 views

  • Auto DevOps provides pre-defined CI/CD configuration which allows you to automatically detect, build, test, deploy, and monitor your applications
  • Just push your code and GitLab takes care of everything else.
  • Auto DevOps will be automatically disabled on the first pipeline failure.
  • ...78 more annotations...
  • Your project will continue to use an alternative CI/CD configuration file if one is found
  • Auto DevOps works with any Kubernetes cluster;
  • using the Docker or Kubernetes executor, with privileged mode enabled.
  • Base domain (needed for Auto Review Apps and Auto Deploy)
  • Kubernetes (needed for Auto Review Apps, Auto Deploy, and Auto Monitoring)
  • Prometheus (needed for Auto Monitoring)
  • scrape your Kubernetes cluster.
  • project level as a variable: KUBE_INGRESS_BASE_DOMAIN
  • A wildcard DNS A record matching the base domain(s) is required
  • Once set up, all requests will hit the load balancer, which in turn will route them to the Kubernetes pods that run your application(s).
  • review/ (every environment starting with review/)
  • staging
  • production
  • need to define a separate KUBE_INGRESS_BASE_DOMAIN variable for all the above based on the environment.
  • Continuous deployment to production: Enables Auto Deploy with master branch directly deployed to production.
  • Continuous deployment to production using timed incremental rollout
  • Automatic deployment to staging, manual deployment to production
  • Auto Build creates a build of the application using an existing Dockerfile or Heroku buildpacks.
  • If a project’s repository contains a Dockerfile, Auto Build will use docker build to create a Docker image.
  • Each buildpack requires certain files to be in your project’s repository for Auto Build to successfully build your application.
  • Auto Test automatically runs the appropriate tests for your application using Herokuish and Heroku buildpacks by analyzing your project to detect the language and framework.
  • Auto Code Quality uses the Code Quality image to run static analysis and other code checks on the current code.
  • Static Application Security Testing (SAST) uses the SAST Docker image to run static analysis on the current code and checks for potential security issues.
  • Dependency Scanning uses the Dependency Scanning Docker image to run analysis on the project dependencies and checks for potential security issues.
  • License Management uses the License Management Docker image to search the project dependencies for their license.
  • Vulnerability Static Analysis for containers uses Clair to run static analysis on a Docker image and checks for potential security issues.
  • Review Apps are temporary application environments based on the branch’s code so developers, designers, QA, product managers, and other reviewers can actually see and interact with code changes as part of the review process. Auto Review Apps create a Review App for each branch. Auto Review Apps will deploy your app to your Kubernetes cluster only. When no cluster is available, no deployment will occur.
  • The Review App will have a unique URL based on the project ID, the branch or tag name, and a unique number, combined with the Auto DevOps base domain.
  • Review apps are deployed using the auto-deploy-app chart with Helm, which can be customized.
  • Your apps should not be manipulated outside of Helm (using Kubernetes directly).
  • Dynamic Application Security Testing (DAST) uses the popular open source tool OWASP ZAProxy to perform an analysis on the current code and checks for potential security issues.
  • Auto Browser Performance Testing utilizes the Sitespeed.io container to measure the performance of a web page.
  • add the paths to a file named .gitlab-urls.txt in the root directory, one per line.
  • After a branch or merge request is merged into the project’s default branch (usually master), Auto Deploy deploys the application to a production environment in the Kubernetes cluster, with a namespace based on the project name and unique project ID
  • Auto Deploy doesn’t include deployments to staging or canary by default, but the Auto DevOps template contains job definitions for these tasks if you want to enable them.
  • Apps are deployed using the auto-deploy-app chart with Helm.
  • For internal and private projects a GitLab Deploy Token will be automatically created, when Auto DevOps is enabled and the Auto DevOps settings are saved.
  • If the GitLab Deploy Token cannot be found, CI_REGISTRY_PASSWORD is used. Note that CI_REGISTRY_PASSWORD is only valid during deployment.
  • If present, DB_INITIALIZE will be run as a shell command within an application pod as a helm post-install hook.
  • a post-install hook means that if any deploy succeeds, DB_INITIALIZE will not be processed thereafter.
  • DB_MIGRATE will be run as a shell command within an application pod as a helm pre-upgrade hook.
    • 張 旭
       
      如果專案類型不同,就要去查 buildpacks 裡面如何叫用該指令,例如 laravel 的 migration
    • 張 旭
       
      如果是自己的 Dockerfile 建立起來的,看來就不用鳥 buildpacks 的作法
  • Once your application is deployed, Auto Monitoring makes it possible to monitor your application’s server and response metrics right out of the box.
  • annotate the NGINX Ingress deployment to be scraped by Prometheus using prometheus.io/scrape: "true" and prometheus.io/port: "10254"
  • If you are also using Auto Review Apps and Auto Deploy and choose to provide your own Dockerfile, make sure you expose your application to port 5000 as this is the port assumed by the default Helm chart.
  • While Auto DevOps provides great defaults to get you started, you can customize almost everything to fit your needs; from custom buildpacks, to Dockerfiles, Helm charts, or even copying the complete CI/CD configuration into your project to enable staging and canary deployments, and more.
  • If your project has a Dockerfile in the root of the project repo, Auto DevOps will build a Docker image based on the Dockerfile rather than using buildpacks.
  • Auto DevOps uses Helm to deploy your application to Kubernetes.
  • Bundled chart - If your project has a ./chart directory with a Chart.yaml file in it, Auto DevOps will detect the chart and use it instead of the default one.
  • Create a project variable AUTO_DEVOPS_CHART with the URL of a custom chart to use or create two project variables AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository and AUTO_DEVOPS_CHART with the path to the chart.
  • make use of the HELM_UPGRADE_EXTRA_ARGS environment variable to override the default values in the values.yaml file in the default Helm chart.
  • specify the use of a custom Helm chart per environment by scoping the environment variable to the desired environment.
    • 張 旭
       
      Auto DevOps 就是一套人家寫好好的傳便便的 .gitlab-ci.yml
  • Your additions will be merged with the Auto DevOps template using the behaviour described for include
  • copy and paste the contents of the Auto DevOps template into your project and edit this as needed.
  • In order to support applications that require a database, PostgreSQL is provisioned by default.
  • Set up the replica variables using a project variable and scale your application by just redeploying it!
  • You should not scale your application using Kubernetes directly.
  • Some applications need to define secret variables that are accessible by the deployed application.
  • Auto DevOps detects variables where the key starts with K8S_SECRET_ and make these prefixed variables available to the deployed application, as environment variables.
  • Auto DevOps pipelines will take your application secret variables to populate a Kubernetes secret.
  • Environment variables are generally considered immutable in a Kubernetes pod.
  • if you update an application secret without changing any code then manually create a new pipeline, you will find that any running application pods will not have the updated secrets.
  • Variables with multiline values are not currently supported
  • The normal behavior of Auto DevOps is to use Continuous Deployment, pushing automatically to the production environment every time a new pipeline is run on the default branch.
  • If STAGING_ENABLED is defined in your project (e.g., set STAGING_ENABLED to 1 as a CI/CD variable), then the application will be automatically deployed to a staging environment, and a production_manual job will be created for you when you’re ready to manually deploy to production.
  • If CANARY_ENABLED is defined in your project (e.g., set CANARY_ENABLED to 1 as a CI/CD variable) then two manual jobs will be created: canary which will deploy the application to the canary environment production_manual which is to be used by you when you’re ready to manually deploy to production.
  • If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead of the standard production job, 4 different manual jobs will be created: rollout 10% rollout 25% rollout 50% rollout 100%
  • The percentage is based on the REPLICAS variable and defines the number of pods you want to have for your deployment.
  • To start a job, click on the play icon next to the job’s name.
  • Once you get to 100%, you cannot scale down, and you’d have to roll back by redeploying the old version using the rollback button in the environment page.
  • With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED
  • not all buildpacks support Auto Test yet
  • When a project has been marked as private, GitLab’s Container Registry requires authentication when downloading containers.
  • Authentication credentials will be valid while the pipeline is running, allowing for a successful initial deployment.
  • After the pipeline completes, Kubernetes will no longer be able to access the Container Registry.
  • We strongly advise using GitLab Container Registry with Auto DevOps in order to simplify configuration and prevent any unforeseen issues.
張 旭

ruby-grape/grape: An opinionated framework for creating REST-like APIs in Ruby. - 0 views

shared by 張 旭 on 17 Dec 16 - No Cached
  • Grape is a REST-like API framework for Ruby.
  • designed to run on Rack or complement existing web application frameworks such as Rails and Sinatra by providing a simple DSL to easily develop RESTful APIs
  • Grape APIs are Rack applications that are created by subclassing Grape::API
  • ...54 more annotations...
  • Rails expects a subdirectory that matches the name of the Ruby module and a file name that matches the name of the class
  • mount multiple API implementations inside another one
  • mount on a path, which is similar to using prefix inside the mounted API itself.
  • four strategies in which clients can reach your API's endpoints: :path, :header, :accept_version_header and :param
  • clients should pass the desired version as a request parameter, either in the URL query string or in the request body.
  • clients should pass the desired version in the HTTP Accept head
  • clients should pass the desired version in the UR
  • clients should pass the desired version in the HTTP Accept-Version header.
  • add a description to API methods and namespaces
  • Request parameters are available through the params hash object
  • Parameters are automatically populated from the request body on POST and PUT
  • route string parameters will have precedence.
  • Grape allows you to access only the parameters that have been declared by your params block
  • By default declared(params) includes parameters that have nil values
  • all valid types
  • type: File
  • JSON objects and arrays of objects are accepted equally
  • any class can be used as a type so long as an explicit coercion method is supplied
  • As a special case, variant-member-type collections may also be declared, by passing a Set or Array with more than one member to type
  • Parameters can be nested using group or by calling requires or optional with a block
  • relevant if another parameter is given
  • Parameters options can be grouped
  • allow_blank can be combined with both requires and optional
  • Parameters can be restricted to a specific set of values
  • Parameters can be restricted to match a specific regular expression
  • Never define mutually exclusive sets with any required params
  • Namespaces allow parameter definitions and apply to every method within the namespace
  • define a route parameter as a namespace using route_param
  • create custom validation that use request to validate the attribute
  • rescue a Grape::Exceptions::ValidationErrors and respond with a custom response or turn the response into well-formatted JSON for a JSON API that separates individual parameters and the corresponding error messages
  • custom validation messages
  • Request headers are available through the headers helper or from env in their original form
  • define requirements for your named route parameters using regular expressions on namespace or endpoint
  • route will match only if all requirements are met
  • mix in a module
  • define reusable params
  • using cookies method
  • a 201 for POST-Requests
  • 204 for DELETE-Requests
  • 200 status code for all other Requests
  • use status to query and set the actual HTTP Status Code
  • raising errors with error!
  • It is very crucial to define this endpoint at the very end of your API, as it literally accepts every request.
  • rescue_from will rescue the exceptions listed and all their subclasses.
  • Grape::API provides a logger method which by default will return an instance of the Logger class from Ruby's standard library.
  • Grape supports a range of ways to present your data
  • Grape has built-in Basic and Digest authentication (the given block is executed in the context of the current Endpoint).
  • Authentication applies to the current namespace and any children, but not parents.
  • Blocks can be executed before or after every API call, using before, after, before_validation and after_validation
  • Before and after callbacks execute in the following order
  • Grape by default anchors all request paths, which means that the request URL should match from start to end to match
  • The namespace method has a number of aliases, including: group, resource, resources, and segment. Use whichever reads the best for your API.
  • test a Grape API with RSpec by making HTTP requests and examining the response
  • POST JSON data and specify the correct content-type.
張 旭

Understanding the Nginx Configuration File Structure and Configuration Contexts | Digit... - 0 views

  • discussing the basic structure of an Nginx configuration file along with some guidelines on how to design your files
  • /etc/nginx/nginx.conf
  • In Nginx parlance, the areas that these brackets define are called "contexts" because they contain configuration details that are separated according to their area of concern
  • ...50 more annotations...
  • contexts can be layered within one another
  • if a directive is valid in multiple nested scopes, a declaration in a broader context will be passed on to any child contexts as default values.
  • The children contexts can override these values at will
  • Nginx will error out on reading a configuration file with directives that are declared in the wrong context.
  • The most general context is the "main" or "global" context
  • Any directive that exist entirely outside of these blocks is said to inhabit the "main" context
  • The main context represents the broadest environment for Nginx configuration.
  • The "events" context is contained within the "main" context. It is used to set global options that affect how Nginx handles connections at a general level.
  • Nginx uses an event-based connection processing model, so the directives defined within this context determine how worker processes should handle connections.
  • the connection processing method is automatically selected based on the most efficient choice that the platform has available
  • a worker will only take a single connection at a time
  • When configuring Nginx as a web server or reverse proxy, the "http" context will hold the majority of the configuration.
  • The http context is a sibling of the events context, so they should be listed side-by-side, rather than nested
  • fine-tune the TCP keep alive settings (keepalive_disable, keepalive_requests, and keepalive_timeout)
  • The "server" context is declared within the "http" context.
  • multiple declarations
  • each instance defines a specific virtual server to handle client requests
  • Each client request will be handled according to the configuration defined in a single server context, so Nginx must decide which server context is most appropriate based on details of the request.
  • listen: The ip address / port combination that this server block is designed to respond to.
  • server_name: This directive is the other component used to select a server block for processing.
  • "Host" header
  • configure files to try to respond to requests (try_files)
  • issue redirects and rewrites (return and rewrite)
  • set arbitrary variables (set)
  • Location contexts share many relational qualities with server contexts
  • multiple location contexts can be defined, each location is used to handle a certain type of client request, and each location is selected by virtue of matching the location definition against the client request through a selection algorithm
  • Location blocks live within server contexts and, unlike server blocks, can be nested inside one another.
  • While server contexts are selected based on the requested IP address/port combination and the host name in the "Host" header, location blocks further divide up the request handling within a server block by looking at the request URI
  • The request URI is the portion of the request that comes after the domain name or IP address/port combination.
  • New directives at this level allow you to reach locations outside of the document root (alias), mark the location as only internally accessible (internal), and proxy to other servers or locations (using http, fastcgi, scgi, and uwsgi proxying).
  • These can then be used to do A/B testing by providing different content to different hosts.
  • configures Perl handlers for the location they appear in
  • set the value of a variable depending on the value of another variable
  • used to map MIME types to the file extensions that should be associated with them.
  • this context defines a named pool of servers that Nginx can then proxy requests to
  • The upstream context should be placed within the http context, outside of any specific server contexts.
  • The upstream context can then be referenced by name within server or location blocks to pass requests of a certain type to the pool of servers that have been defined.
  • function as a high performance mail proxy server
  • The mail context is defined within the "main" or "global" context (outside of the http context).
  • Nginx has the ability to redirect authentication requests to an external authentication server
  • the if directive in Nginx will execute the instructions contained if a given test returns "true".
  • Since Nginx will test conditions of a request with many other purpose-made directives, if should not be used for most forms of conditional execution.
  • The limit_except context is used to restrict the use of certain HTTP methods within a location context.
  • The result of the above example is that any client can use the GET and HEAD verbs, but only clients coming from the 192.168.1.1/24 subnet are allowed to use other methods.
  • Many directives are valid in more than one context
  • it is usually best to declare directives in the highest context to which they are applicable, and overriding them in lower contexts as necessary.
  • Declaring at higher levels provides you with a sane default
  • Nginx already engages in a well-documented selection algorithm for things like selecting server blocks and location blocks.
  • instead of relying on rewrites to get a user supplied request into the format that you would like to work with, you should try to set up two blocks for the request, one of which represents the desired method, and the other that catches messy requests and redirects (and possibly rewrites) them to your correct block.
  • incorrect requests can get by with a redirect rather than a rewrite, which should execute with lower overhead.
張 旭

HowTo/LDAP - FreeIPA - 0 views

  • The basedn in an IPA installation consists of a set of domain components (dc) for the initial domain that IPA was configured with.
  • You will only ever have one basedn, the one defined during installation.
  • find your basedn, and other interesting things, in /etc/ipa/default.conf
  • ...8 more annotations...
  • IPA uses a flat structure, storing like objects in what we call containers.
  • Users: cn=users,cn=accounts,$SUFFIX Groups: cn=groups,cn=accounts,$SUFFIX
  • Do not use the Directory Manager account to authenticate remote services to the IPA LDAP server. Use a system account
  • The reason to use an account like this rather than creating a normal user account in IPA and using that is that the system account exists only for binding to LDAP. It is not a real POSIX user, can't log into any systems and doesn't own any files.
  • This use also has no special rights and is unable to write any data in the IPA LDAP server, only read.
  • When possible, configure your LDAP client to communicate over SSL/TLS.
  • The IPA CA certificate can be found in /etc/ipa/ca.crt
  • /etc/openldap/ldap.conf
張 旭

Creating a cluster with kubeadm | Kubernetes - 0 views

  • (Recommended) If you have plans to upgrade this single control-plane kubeadm cluster to high availability you should specify the --control-plane-endpoint to set the shared endpoint for all control-plane nodes
  • set the --pod-network-cidr to a provider-specific value.
  • kubeadm tries to detect the container runtime by using a list of well known endpoints.
  • ...12 more annotations...
  • kubeadm uses the network interface associated with the default gateway to set the advertise address for this particular control-plane node's API server. To use a different network interface, specify the --apiserver-advertise-address=<ip-address> argument to kubeadm init
  • Do not share the admin.conf file with anyone and instead grant users custom permissions by generating them a kubeconfig file using the kubeadm kubeconfig user command.
  • The token is used for mutual authentication between the control-plane node and the joining nodes. The token included here is secret. Keep it safe, because anyone with this token can add authenticated nodes to your cluster.
  • You must deploy a Container Network Interface (CNI) based Pod network add-on so that your Pods can communicate with each other. Cluster DNS (CoreDNS) will not start up before a network is installed.
  • Take care that your Pod network must not overlap with any of the host networks
  • Make sure that your Pod network plugin supports RBAC, and so do any manifests that you use to deploy it.
  • You can install only one Pod network per cluster.
  • The cluster created here has a single control-plane node, with a single etcd database running on it.
  • The node-role.kubernetes.io/control-plane label is such a restricted label and kubeadm manually applies it using a privileged client after a node has been created.
  • By default, your cluster will not schedule Pods on the control plane nodes for security reasons.
  • kubectl taint nodes --all node-role.kubernetes.io/control-plane-
  • remove the node-role.kubernetes.io/control-plane:NoSchedule taint from any nodes that have it, including the control plane nodes, meaning that the scheduler will then be able to schedule Pods everywhere.
1 - 20 of 33 Next ›
Showing 20 items per page