Skip to main content

Home/ Larvata/ Group items tagged path

Rss Feed Group items tagged

張 旭

The Asset Pipeline - Ruby on Rails Guides - 0 views

  • provides a framework to concatenate and minify or compress JavaScript and CSS assets
  • adds the ability to write these assets in other languages and pre-processors such as CoffeeScript, Sass and ERB
  • invalidate the cache by altering this fingerprint
  • ...80 more annotations...
  • Rails 4 automatically adds the sass-rails, coffee-rails and uglifier gems to your Gemfile
  • reduce the number of requests that a browser makes to render a web page
  • Starting with version 3.1, Rails defaults to concatenating all JavaScript files into one master .js file and all CSS files into one master .css file
  • In production, Rails inserts an MD5 fingerprint into each filename so that the file is cached by the web browser
  • The technique sprockets uses for fingerprinting is to insert a hash of the content into the name, usually at the end.
  • asset minification or compression
  • The sass-rails gem is automatically used for CSS compression if included in Gemfile and no config.assets.css_compressor option is set.
  • Supported languages include Sass for CSS, CoffeeScript for JavaScript, and ERB for both by default.
  • When a filename is unique and based on its content, HTTP headers can be set to encourage caches everywhere (whether at CDNs, at ISPs, in networking equipment, or in web browsers) to keep their own copy of the content
  • asset pipeline is technically no longer a core feature of Rails 4
  • Rails uses for fingerprinting is to insert a hash of the content into the name, usually at the end
  • With the asset pipeline, the preferred location for these assets is now the app/assets directory.
  • Fingerprinting is enabled by default for production and disabled for all other environments
  • The files in app/assets are never served directly in production.
  • Paths are traversed in the order that they occur in the search path
  • You should use app/assets for files that must undergo some pre-processing before they are served.
  • By default .coffee and .scss files will not be precompiled on their own
  • app/assets is for assets that are owned by the application, such as custom images, JavaScript files or stylesheets.
  • lib/assets is for your own libraries' code that doesn't really fit into the scope of the application or those libraries which are shared across applications.
  • vendor/assets is for assets that are owned by outside entities, such as code for JavaScript plugins and CSS frameworks.
  • Any path under assets/* will be searched
  • By default these files will be ready to use by your application immediately using the require_tree directive.
  • By default, this means the files in app/assets take precedence, and will mask corresponding paths in lib and vendor
  • Sprockets uses files named index (with the relevant extensions) for a special purpose
  • Rails.application.config.assets.paths
  • causes turbolinks to check if an asset has been updated and if so loads it into the page
  • if you add an erb extension to a CSS asset (for example, application.css.erb), then helpers like asset_path are available in your CSS rules
  • If you add an erb extension to a JavaScript asset, making it something such as application.js.erb, then you can use the asset_path helper in your JavaScript code
  • The asset pipeline automatically evaluates ERB
  • data URI — a method of embedding the image data directly into the CSS file — you can use the asset_data_uri helper.
  • Sprockets will also look through the paths specified in config.assets.paths, which includes the standard application paths and any paths added by Rails engines.
  • image_tag
  • the closing tag cannot be of the style -%>
  • asset_data_uri
  • app/assets/javascripts/application.js
  • sass-rails provides -url and -path helpers (hyphenated in Sass, underscored in Ruby) for the following asset classes: image, font, video, audio, JavaScript and stylesheet.
  • Rails.application.config.assets.compress
  • In JavaScript files, the directives begin with //=
  • The require_tree directive tells Sprockets to recursively include all JavaScript files in the specified directory into the output.
  • manifest files contain directives — instructions that tell Sprockets which files to require in order to build a single CSS or JavaScript file.
  • You should not rely on any particular order among those
  • Sprockets uses manifest files to determine which assets to include and serve.
  • the family of require directives prevents files from being included twice in the output
  • which files to require in order to build a single CSS or JavaScript file
  • Directives are processed top to bottom, but the order in which files are included by require_tree is unspecified.
  • In JavaScript files, Sprockets directives begin with //=
  • If require_self is called more than once, only the last call is respected.
  • require directive is used to tell Sprockets the files you wish to require.
  • You need not supply the extensions explicitly. Sprockets assumes you are requiring a .js file when done from within a .js file
  • paths must be specified relative to the manifest file
  • require_directory
  • Rails 4 creates both app/assets/javascripts/application.js and app/assets/stylesheets/application.css regardless of whether the --skip-sprockets option is used when creating a new rails application.
  • The file extensions used on an asset determine what preprocessing is applied.
  • app/assets/stylesheets/application.css
  • Additional layers of preprocessing can be requested by adding other extensions, where each extension is processed in a right-to-left manner
  • require_self
  • use the Sass @import rule instead of these Sprockets directives.
  • Keep in mind that the order of these preprocessors is important
  • In development mode, assets are served as separate files in the order they are specified in the manifest file.
  • when these files are requested they are processed by the processors provided by the coffee-script and sass gems and then sent back to the browser as JavaScript and CSS respectively.
  • css.scss.erb
  • js.coffee.erb
  • Keep in mind the order of these preprocessors is important.
  • By default Rails assumes that assets have been precompiled and will be served as static assets by your web server
  • with the Asset Pipeline the :cache and :concat options aren't used anymore
  • Assets are compiled and cached on the first request after the server is started
  • RAILS_ENV=production bundle exec rake assets:precompile
  • Debug mode can also be enabled in Rails helper methods
  • If you set config.assets.initialize_on_precompile to false, be sure to test rake assets:precompile locally before deploying
  • By default Rails assumes assets have been precompiled and will be served as static assets by your web server.
  • a rake task to compile the asset manifests and other files in the pipeline
  • RAILS_ENV=production bin/rake assets:precompile
  • a recipe to handle this in deployment
  • links the folder specified in config.assets.prefix to shared/assets
  • config/initializers/assets.rb
  • The initialize_on_precompile change tells the precompile task to run without invoking Rails
  • The X-Sendfile header is a directive to the web server to ignore the response from the application, and instead serve a specified file from disk
  • the jquery-rails gem which comes with Rails as the standard JavaScript library gem.
  • Possible options for JavaScript compression are :closure, :uglifier and :yui
  • concatenate assets
張 旭

Basics - Træfik - 0 views

  • Modifier rules only modify the request. They do not have any impact on routing decisions being made.
  • A frontend consists of a set of rules that determine how incoming requests are forwarded from an entrypoint to a backend.
  • Entrypoints are the network entry points into Træfik
  • ...27 more annotations...
  • Modifiers and matchers
  • Matcher rules determine if a particular request should be forwarded to a backend
  • if any rule matches
  • if all rules match
  • In order to use regular expressions with Host and Path matchers, you must declare an arbitrarily named variable followed by the colon-separated regular expression, all enclosed in curly braces.
  • Use a *Prefix* matcher if your backend listens on a particular base path but also serves requests on sub-paths. For instance, PathPrefix: /products would match /products but also /products/shoes and /products/shirts. Since the path is forwarded as-is, your backend is expected to listen on /products
  • Use Path if your backend listens on the exact path only. For instance, Path: /products would match /products but not /products/shoes.
  • Modifier rules ALWAYS apply after the Matcher rules.
  • A backend is responsible to load-balance the traffic coming from one or more frontends to a set of http servers
  • wrr: Weighted Round Robin
  • drr: Dynamic Round Robin: increases weights on servers that perform better than others.
  • A circuit breaker can also be applied to a backend, preventing high loads on failing servers.
  • To proactively prevent backends from being overwhelmed with high load, a maximum connection limit can also be applied to each backend.
  • Sticky sessions are supported with both load balancers.
  • When sticky sessions are enabled, a cookie is set on the initial request.
  • The check is defined by a path appended to the backend URL and an interval (given in a format understood by time.ParseDuration) specifying how often the health check should be executed (the default being 30 seconds). Each backend must respond to the health check within 5 seconds.
  • The static configuration is the global configuration which is setting up connections to configuration backends and entrypoints.
  • We only need to enable watch option to make Træfik watch configuration backend changes and generate its configuration automatically.
  • Separate the regular expression and the replacement by a space.
  • a comma-separated key/value pair where both key and value must be literals.
  • namespacing of your backends happens on the basis of hosts in addition to paths
  • Modifiers will be applied in a pre-determined order regardless of their order in the rule configuration section.
  • customize priority
  • Custom headers can be configured through the frontends, to add headers to either requests or responses that match the frontend's rules.
  • Security related headers (HSTS headers, SSL redirection, Browser XSS filter, etc) can be added and configured per frontend in a similar manner to the custom headers above.
  • Servers are simply defined using a url. You can also apply a custom weight to each server (this will be used by load-balancing).
  • Maximum connections can be configured by specifying an integer value for maxconn.amount and maxconn.extractorfunc which is a strategy used to determine how to categorize requests in order to evaluate the maximum connections.
張 旭

Ingress - Kubernetes - 0 views

  • An API object that manages external access to the services in a cluster, typically HTTP.
  • load balancing
  • SSL termination
  • ...62 more annotations...
  • name-based virtual hosting
  • Edge routerA router that enforces the firewall policy for your cluster.
  • Cluster networkA set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • A Kubernetes ServiceA way to expose an application running on a set of Pods as a network service. that identifies a set of Pods using labelTags objects with identifying attributes that are meaningful and relevant to users. selectors.
  • Services are assumed to have virtual IPs only routable within the cluster network.
  • Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster.
  • Traffic routing is controlled by rules defined on the Ingress resource.
  • An Ingress can be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name based virtual hosting.
  • Exposing services other than HTTP and HTTPS to the internet typically uses a service of type Service.Type=NodePort or Service.Type=LoadBalancer.
  • You must have an ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • As with all other Kubernetes resources, an Ingress needs apiVersion, kind, and metadata fields
  • Ingress frequently uses annotations to configure some options depending on the Ingress controller,
  • Ingress resource only supports rules for directing HTTP traffic.
  • An optional host.
  • A list of paths
  • A backend is a combination of Service and port names
  • has an associated backend
  • Both the host and path must match the content of an incoming request before the load balancer directs traffic to the referenced Service.
  • HTTP (and HTTPS) requests to the Ingress that matches the host and path of the rule are sent to the listed backend.
  • A default backend is often configured in an Ingress controller to service any requests that do not match a path in the spec.
  • An Ingress with no rules sends all traffic to a single default backend.
  • Ingress controllers and load balancers may take a minute or two to allocate an IP address.
  • A fanout configuration routes traffic from a single IP address to more than one Service, based on the HTTP URI being requested.
  • nginx.ingress.kubernetes.io/rewrite-target: /
  • describe ingress
  • get ingress
  • Name-based virtual hosts support routing HTTP traffic to multiple host names at the same IP address.
  • route requests based on the Host header.
  • an Ingress resource without any hosts defined in the rules, then any web traffic to the IP address of your Ingress controller can be matched without a name based virtual host being required.
  • secure an Ingress by specifying a SecretStores sensitive information, such as passwords, OAuth tokens, and ssh keys. that contains a TLS private key and certificate.
  • Currently the Ingress only supports a single TLS port, 443, and assumes TLS termination.
  • An Ingress controller is bootstrapped with some load balancing policy settings that it applies to all Ingress, such as the load balancing algorithm, backend weight scheme, and others.
  • persistent sessions, dynamic weights) are not yet exposed through the Ingress. You can instead get these features through the load balancer used for a Service.
  • review the controller specific documentation to see how they handle health checks
  • edit ingress
  • After you save your changes, kubectl updates the resource in the API server, which tells the Ingress controller to reconfigure the load balancer.
  • kubectl replace -f on a modified Ingress YAML file.
  • Node: A worker machine in Kubernetes, part of a cluster.
  • in most common Kubernetes deployments, nodes in the cluster are not part of the public internet.
  • Edge router: A router that enforces the firewall policy for your cluster.
  • a gateway managed by a cloud provider or a physical piece of hardware.
  • Cluster network: A set of links, logical or physical, that facilitate communication within a cluster according to the Kubernetes networking model.
  • Service: A Kubernetes Service that identifies a set of Pods using label selectors.
  • An Ingress may be configured to give Services externally-reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based virtual hosting.
  • An Ingress does not expose arbitrary ports or protocols.
  • You must have an Ingress controller to satisfy an Ingress. Only creating an Ingress resource has no effect.
  • The name of an Ingress object must be a valid DNS subdomain name
  • The Ingress spec has all the information needed to configure a load balancer or proxy server.
  • Ingress resource only supports rules for directing HTTP(S) traffic.
  • An Ingress with no rules sends all traffic to a single default backend and .spec.defaultBackend is the backend that should handle requests in that case.
  • If defaultBackend is not set, the handling of requests that do not match any of the rules will be up to the ingress controller
  • A common usage for a Resource backend is to ingress data to an object storage backend with static assets.
  • Exact: Matches the URL path exactly and with case sensitivity.
  • Prefix: Matches based on a URL path prefix split by /. Matching is case sensitive and done on a path element by element basis.
  • multiple paths within an Ingress will match a request. In those cases precedence will be given first to the longest matching path.
  • Hosts can be precise matches (for example “foo.bar.com”) or a wildcard (for example “*.foo.com”).
  • No match, wildcard only covers a single DNS label
  • Each Ingress should specify a class, a reference to an IngressClass resource that contains additional configuration including the name of the controller that should implement the class.
  • secure an Ingress by specifying a Secret that contains a TLS private key and certificate.
  • The Ingress resource only supports a single TLS port, 443, and assumes TLS termination at the ingress point (traffic to the Service and its Pods is in plaintext).
  • TLS will not work on the default rule because the certificates would have to be issued for all the possible sub-domains.
  • hosts in the tls section need to explicitly match the host in the rules section.
張 旭

Data Sources - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • Each provider may offer data sources alongside its set of resource types.
  • When distinguishing from data resources, the primary kind of resource (as declared by a resource block) is known as a managed resource.
  • Each data resource is associated with a single data source, which determines the kind of object (or objects) it reads and what query constraint arguments are available.
  • ...4 more annotations...
  • Terraform reads data resources during the planning phase when possible, but announces in the plan when it must defer reading resources until the apply phase to preserve the order of operations.
  • local-only data sources exist for rendering templates, reading local files, and rendering AWS IAM policies.
  • As with managed resources, when count or for_each is present it is important to distinguish the resource itself from the multiple resource instances it creates. Each instance will separately read from its data source with its own variant of the constraint arguments, producing an indexed result.
  • Data instance arguments may refer to computed values, in which case the attributes of the instance itself cannot be resolved until all of its arguments are defined. I
張 旭

Providers - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • Terraform relies on plugins called providers to interact with cloud providers, SaaS providers, and other APIs.
  • Terraform configurations must declare which providers they require so that Terraform can install and use them.
  • Each provider adds a set of resource types and/or data sources that Terraform can manage.
  • ...6 more annotations...
  • Every resource type is implemented by a provider; without providers, Terraform can't manage any kind of infrastructure.
  • The Terraform Registry is the main directory of publicly available Terraform providers, and hosts providers for most major infrastructure platforms.
  • Dependency Lock File documents an additional HCL file that can be included with a configuration, which tells Terraform to always use a specific set of provider versions.
  • Terraform CLI finds and installs providers when initializing a working directory. It can automatically download providers from a Terraform registry, or load them from a local mirror or cache.
  • To save time and bandwidth, Terraform CLI supports an optional plugin cache. You can enable the cache using the plugin_cache_dir setting in the CLI configuration file.
  • you can use Terraform CLI to create a dependency lock file and commit it to version control along with your configuration.
張 旭

Rails Routing from the Outside In - Ruby on Rails Guides - 0 views

  • Resource routing allows you to quickly declare all of the common routes for a given resourceful controller.
  • Rails would dispatch that request to the destroy method on the photos controller with { id: '17' } in params.
  • a resourceful route provides a mapping between HTTP verbs and URLs to controller actions.
  • ...86 more annotations...
  • each action also maps to particular CRUD operations in a database
  • resource :photo and resources :photos creates both singular and plural routes that map to the same controller (PhotosController).
  • One way to avoid deep nesting (as recommended above) is to generate the collection actions scoped under the parent, so as to get a sense of the hierarchy, but to not nest the member actions.
  • to only build routes with the minimal amount of information to uniquely identify the resource
  • The shallow method of the DSL creates a scope inside of which every nesting is shallow
  • These concerns can be used in resources to avoid code duplication and share behavior across routes
  • add a member route, just add a member block into the resource block
  • You can leave out the :on option, this will create the same member route except that the resource id value will be available in params[:photo_id] instead of params[:id].
  • Singular Resources
  • use a singular resource to map /profile (rather than /profile/:id) to the show action
  • Passing a String to get will expect a controller#action format
  • workaround
  • organize groups of controllers under a namespace
  • route /articles (without the prefix /admin) to Admin::ArticlesController
  • route /admin/articles to ArticlesController (without the Admin:: module prefix)
  • Nested routes allow you to capture this relationship in your routing.
  • helpers take an instance of Magazine as the first parameter (magazine_ads_url(@magazine)).
  • Resources should never be nested more than 1 level deep.
  • via the :shallow option
  • a balance between descriptive routes and deep nesting
  • :shallow_path prefixes member paths with the specified parameter
  • Routing Concerns allows you to declare common routes that can be reused inside other resources and routes
  • Rails can also create paths and URLs from an array of parameters.
  • use url_for with a set of objects
  • In helpers like link_to, you can specify just the object in place of the full url_for call
  • insert the action name as the first element of the array
  • This will recognize /photos/1/preview with GET, and route to the preview action of PhotosController, with the resource id value passed in params[:id]. It will also create the preview_photo_url and preview_photo_path helpers.
  • pass :on to a route, eliminating the block:
  • Collection Routes
  • This will enable Rails to recognize paths such as /photos/search with GET, and route to the search action of PhotosController. It will also create the search_photos_url and search_photos_path route helpers.
  • simple routing makes it very easy to map legacy URLs to new Rails actions
  • add an alternate new action using the :on shortcut
  • When you set up a regular route, you supply a series of symbols that Rails maps to parts of an incoming HTTP request.
  • :controller maps to the name of a controller in your application
  • :action maps to the name of an action within that controller
  • optional parameters, denoted by parentheses
  • This route will also route the incoming request of /photos to PhotosController#index, since :action and :id are
  • use a constraint on :controller that matches the namespace you require
  • dynamic segments don't accept dots
  • The params will also include any parameters from the query string
  • :defaults option.
  • set params[:format] to "jpg"
  • cannot override defaults via query parameters
  • specify a name for any route using the :as option
  • create logout_path and logout_url as named helpers in your application.
  • Inside the show action of UsersController, params[:username] will contain the username for the user.
  • should use the get, post, put, patch and delete methods to constrain a route to a particular verb.
  • use the match method with the :via option to match multiple verbs at once
  • Routing both GET and POST requests to a single action has security implications
  • 'GET' in Rails won't check for CSRF token. You should never write to the database from 'GET' requests
  • use the :constraints option to enforce a format for a dynamic segment
  • constraints
  • don't need to use anchors
  • Request-Based Constraints
  • the same name as the hash key and then compare the return value with the hash value.
  • constraint values should match the corresponding Request object method return type
    • 張 旭
       
      應該就是檢查來源的 request, 如果是某個特定的 request 來訪問的,就通過。
  • blacklist
    • 張 旭
       
      這裡有點複雜 ...
  • redirect helper
  • reuse dynamic segments from the match in the path to redirect
  • this redirection is a 301 "Moved Permanently" redirect.
  • root method
  • put the root route at the top of the file
  • The root route only routes GET requests to the action.
  • root inside namespaces and scopes
  • For namespaced controllers you can use the directory notation
  • Only the directory notation is supported
  • use the :constraints option to specify a required format on the implicit id
  • specify a single constraint to apply to a number of routes by using the block
  • non-resourceful routes
  • :id parameter doesn't accept dots
  • :as option lets you override the normal naming for the named route helpers
  • use the :as option to prefix the named route helpers that Rails generates for a rout
  • prevent name collisions
  • prefix routes with a named parameter
  • This will provide you with URLs such as /bob/articles/1 and will allow you to reference the username part of the path as params[:username] in controllers, helpers and views
  • :only option
  • :except option
  • generate only the routes that you actually need can cut down on memory use and speed up the routing process.
  • alter path names
  • http://localhost:3000/rails/info/routes
  • rake routes
  • setting the CONTROLLER environment variable
  • Routes should be included in your testing strategy
  • assert_generates assert_recognizes assert_routing
張 旭

Helm | - 0 views

  • A chart is a collection of files that describe a related set of Kubernetes resources.
  • A single chart might be used to deploy something simple, like a memcached pod, or something complex, like a full web app stack with HTTP servers, databases, caches, and so on.
  • Charts are created as files laid out in a particular directory tree, then they can be packaged into versioned archives to be deployed.
  • ...170 more annotations...
  • A chart is organized as a collection of files inside of a directory.
  • values.yaml # The default configuration values for this chart
  • charts/ # A directory containing any charts upon which this chart depends.
  • templates/ # A directory of templates that, when combined with values, # will generate valid Kubernetes manifest files.
  • version: A SemVer 2 version (required)
  • apiVersion: The chart API version, always "v1" (required)
  • Every chart must have a version number. A version must follow the SemVer 2 standard.
  • non-SemVer names are explicitly disallowed by the system.
  • When generating a package, the helm package command will use the version that it finds in the Chart.yaml as a token in the package name.
  • the appVersion field is not related to the version field. It is a way of specifying the version of the application.
  • appVersion: The version of the app that this contains (optional). This needn't be SemVer.
  • If the latest version of a chart in the repository is marked as deprecated, then the chart as a whole is considered to be deprecated.
  • deprecated: Whether this chart is deprecated (optional, boolean)
  • one chart may depend on any number of other charts.
  • dependencies can be dynamically linked through the requirements.yaml file or brought in to the charts/ directory and managed manually.
  • the preferred method of declaring dependencies is by using a requirements.yaml file inside of your chart.
  • A requirements.yaml file is a simple file for listing your dependencies.
  • The repository field is the full URL to the chart repository.
  • you must also use helm repo add to add that repo locally.
  • helm dependency update and it will use your dependency file to download all the specified charts into your charts/ directory for you.
  • When helm dependency update retrieves charts, it will store them as chart archives in the charts/ directory.
  • Managing charts with requirements.yaml is a good way to easily keep charts updated, and also share requirements information throughout a team.
  • All charts are loaded by default.
  • The condition field holds one or more YAML paths (delimited by commas). If this path exists in the top parent’s values and resolves to a boolean value, the chart will be enabled or disabled based on that boolean value.
  • The tags field is a YAML list of labels to associate with this chart.
  • all charts with tags can be enabled or disabled by specifying the tag and a boolean value.
  • The --set parameter can be used as usual to alter tag and condition values.
  • Conditions (when set in values) always override tags.
  • The first condition path that exists wins and subsequent ones for that chart are ignored.
  • The keys containing the values to be imported can be specified in the parent chart’s requirements.yaml file using a YAML list. Each item in the list is a key which is imported from the child chart’s exports field.
  • specifying the key data in our import list, Helm looks in the exports field of the child chart for data key and imports its contents.
  • the parent key data is not contained in the parent’s final values. If you need to specify the parent key, use the ‘child-parent’ format.
  • To access values that are not contained in the exports key of the child chart’s values, you will need to specify the source key of the values to be imported (child) and the destination path in the parent chart’s values (parent).
  • To drop a dependency into your charts/ directory, use the helm fetch command
  • A dependency can be either a chart archive (foo-1.2.3.tgz) or an unpacked chart directory.
  • name cannot start with _ or .. Such files are ignored by the chart loader.
  • a single release is created with all the objects for the chart and its dependencies.
  • Helm Chart templates are written in the Go template language, with the addition of 50 or so add-on template functions from the Sprig library and a few other specialized functions
  • When Helm renders the charts, it will pass every file in that directory through the template engine.
  • Chart developers may supply a file called values.yaml inside of a chart. This file can contain default values.
  • Chart users may supply a YAML file that contains values. This can be provided on the command line with helm install.
  • When a user supplies custom values, these values will override the values in the chart’s values.yaml file.
  • Template files follow the standard conventions for writing Go templates
  • {{default "minio" .Values.storage}}
  • Values that are supplied via a values.yaml file (or via the --set flag) are accessible from the .Values object in a template.
  • pre-defined, are available to every template, and cannot be overridden
  • the names are case sensitive
  • Release.Name: The name of the release (not the chart)
  • Release.IsUpgrade: This is set to true if the current operation is an upgrade or rollback.
  • Release.Revision: The revision number. It begins at 1, and increments with each helm upgrade
  • Chart: The contents of the Chart.yaml
  • Files: A map-like object containing all non-special files in the chart.
  • Files can be accessed using {{index .Files "file.name"}} or using the {{.Files.Get name}} or {{.Files.GetString name}} functions.
  • .helmignore
  • access the contents of the file as []byte using {{.Files.GetBytes}}
  • Any unknown Chart.yaml fields will be dropped
  • Chart.yaml cannot be used to pass arbitrarily structured data into the template.
  • A values file is formatted in YAML.
  • A chart may include a default values.yaml file
  • be merged into the default values file.
  • The default values file included inside of a chart must be named values.yaml
  • accessible inside of templates using the .Values object
  • Values files can declare values for the top-level chart, as well as for any of the charts that are included in that chart’s charts/ directory.
  • Charts at a higher level have access to all of the variables defined beneath.
  • lower level charts cannot access things in parent charts
  • Values are namespaced, but namespaces are pruned.
  • the scope of the values has been reduced and the namespace prefix removed
  • Helm supports special “global” value.
  • a way of sharing one top-level variable with all subcharts, which is useful for things like setting metadata properties like labels.
  • If a subchart declares a global variable, that global will be passed downward (to the subchart’s subcharts), but not upward to the parent chart.
  • global variables of parent charts take precedence over the global variables from subcharts.
  • helm lint
  • A chart repository is an HTTP server that houses one or more packaged charts
  • Any HTTP server that can serve YAML files and tar files and can answer GET requests can be used as a repository server.
  • Helm does not provide tools for uploading charts to remote repository servers.
  • the only way to add a chart to $HELM_HOME/starters is to manually copy it there.
  • Helm provides a hook mechanism to allow chart developers to intervene at certain points in a release’s life cycle.
  • Execute a Job to back up a database before installing a new chart, and then execute a second job after the upgrade in order to restore data.
  • Hooks are declared as an annotation in the metadata section of a manifest
  • Hooks work like regular templates, but they have special annotations
  • pre-install
  • post-install: Executes after all resources are loaded into Kubernetes
  • pre-delete
  • post-delete: Executes on a deletion request after all of the release’s resources have been deleted.
  • pre-upgrade
  • post-upgrade
  • pre-rollback
  • post-rollback: Executes on a rollback request after all resources have been modified.
  • crd-install
  • test-success: Executes when running helm test and expects the pod to return successfully (return code == 0).
  • test-failure: Executes when running helm test and expects the pod to fail (return code != 0).
  • Hooks allow you, the chart developer, an opportunity to perform operations at strategic points in a release lifecycle
  • Tiller then loads the hook with the lowest weight first (negative to positive)
  • Tiller returns the release name (and other data) to the client
  • If the resources is a Job kind, Tiller will wait until the job successfully runs to completion.
  • if the job fails, the release will fail. This is a blocking operation, so the Helm client will pause while the Job is run.
  • If they have hook weights (see below), they are executed in weighted order. Otherwise, ordering is not guaranteed.
  • good practice to add a hook weight, and set it to 0 if weight is not important.
  • The resources that a hook creates are not tracked or managed as part of the release.
  • leave the hook resource alone.
  • To destroy such resources, you need to either write code to perform this operation in a pre-delete or post-delete hook or add "helm.sh/hook-delete-policy" annotation to the hook template file.
  • Hooks are just Kubernetes manifest files with special annotations in the metadata section
  • One resource can implement multiple hooks
  • no limit to the number of different resources that may implement a given hook.
  • When subcharts declare hooks, those are also evaluated. There is no way for a top-level chart to disable the hooks declared by subcharts.
  • Hook weights can be positive or negative numbers but must be represented as strings.
  • sort those hooks in ascending order.
  • Hook deletion policies
  • "before-hook-creation" specifies Tiller should delete the previous hook before the new hook is launched.
  • By default Tiller will wait for 60 seconds for a deleted hook to no longer exist in the API server before timing out.
  • Custom Resource Definitions (CRDs) are a special kind in Kubernetes.
  • The crd-install hook is executed very early during an installation, before the rest of the manifests are verified.
  • A common reason why the hook resource might already exist is that it was not deleted following use on a previous install/upgrade.
  • Helm uses Go templates for templating your resource files.
  • two special template functions: include and required
  • include function allows you to bring in another template, and then pass the results to other template functions.
  • The required function allows you to declare a particular values entry as required for template rendering.
  • If the value is empty, the template rendering will fail with a user submitted error message.
  • When you are working with string data, you are always safer quoting the strings than leaving them as bare words
  • Quote Strings, Don’t Quote Integers
  • when working with integers do not quote the values
  • env variables values which are expected to be string
  • to include a template, and then perform an operation on that template’s output, Helm has a special include function
  • The above includes a template called toYaml, passes it $value, and then passes the output of that template to the nindent function.
  • Go provides a way for setting template options to control behavior when a map is indexed with a key that’s not present in the map
  • The required function gives developers the ability to declare a value entry as required for template rendering.
  • The tpl function allows developers to evaluate strings as templates inside a template.
  • Rendering a external configuration file
  • (.Files.Get "conf/app.conf")
  • Image pull secrets are essentially a combination of registry, username, and password.
  • Automatically Roll Deployments When ConfigMaps or Secrets change
  • configmaps or secrets are injected as configuration files in containers
  • a restart may be required should those be updated with a subsequent helm upgrade
  • The sha256sum function can be used to ensure a deployment’s annotation section is updated if another file changes
  • checksum/config: {{ include (print $.Template.BasePath "/configmap.yaml") . | sha256sum }}
  • helm upgrade --recreate-pods
  • "helm.sh/resource-policy": keep
  • resources that should not be deleted when Helm runs a helm delete
  • this resource becomes orphaned. Helm will no longer manage it in any way.
  • create some reusable parts in your chart
  • In the templates/ directory, any file that begins with an underscore(_) is not expected to output a Kubernetes manifest file.
  • by convention, helper templates and partials are placed in a _helpers.tpl file.
  • The current best practice for composing a complex application from discrete parts is to create a top-level umbrella chart that exposes the global configurations, and then use the charts/ subdirectory to embed each of the components.
  • SAP’s Converged charts: These charts install SAP Converged Cloud a full OpenStack IaaS on Kubernetes. All of the charts are collected together in one GitHub repository, except for a few submodules.
  • Deis’s Workflow: This chart exposes the entire Deis PaaS system with one chart. But it’s different from the SAP chart in that this umbrella chart is built from each component, and each component is tracked in a different Git repository.
  • YAML is a superset of JSON
  • any valid JSON structure ought to be valid in YAML.
  • As a best practice, templates should follow a YAML-like syntax unless the JSON syntax substantially reduces the risk of a formatting issue.
  • There are functions in Helm that allow you to generate random data, cryptographic keys, and so on.
  • a chart repository is a location where packaged charts can be stored and shared.
  • A chart repository is an HTTP server that houses an index.yaml file and optionally some packaged charts.
  • Because a chart repository can be any HTTP server that can serve YAML and tar files and can answer GET requests, you have a plethora of options when it comes down to hosting your own chart repository.
  • It is not required that a chart package be located on the same server as the index.yaml file.
  • A valid chart repository must have an index file. The index file contains information about each chart in the chart repository.
  • The Helm project provides an open-source Helm repository server called ChartMuseum that you can host yourself.
  • $ helm repo index fantastic-charts --url https://fantastic-charts.storage.googleapis.com
  • A repository will not be added if it does not contain a valid index.yaml
  • add the repository to their helm client via the helm repo add [NAME] [URL] command with any name they would like to use to reference the repository.
  • Helm has provenance tools which help chart users verify the integrity and origin of a package.
  • Integrity is established by comparing a chart to a provenance record
  • The provenance file contains a chart’s YAML file plus several pieces of verification information
  • Chart repositories serve as a centralized collection of Helm charts.
  • Chart repositories must make it possible to serve provenance files over HTTP via a specific request, and must make them available at the same URI path as the chart.
  • We don’t want to be “the certificate authority” for all chart signers. Instead, we strongly favor a decentralized model, which is part of the reason we chose OpenPGP as our foundational technology.
  • The Keybase platform provides a public centralized repository for trust information.
  • A chart contains a number of Kubernetes resources and components that work together.
  • A test in a helm chart lives under the templates/ directory and is a pod definition that specifies a container with a given command to run.
  • The pod definition must contain one of the helm test hook annotations: helm.sh/hook: test-success or helm.sh/hook: test-failure
  • helm test
  • nest your test suite under a tests/ directory like <chart-name>/templates/tests/
張 旭

Specification - Swagger - 0 views

shared by 張 旭 on 29 Jul 16 - No Cached
  • A list of parameters that are applicable for all the operations described under this path.
  • MUST NOT include duplicated parameters
  • this field SHOULD be less than 120 characters.
  • ...33 more annotations...
  • Unique string used to identify the operation.
  • The id MUST be unique among all operations described in the API.
  • A list of MIME types the operation can consume.
  • A list of MIME types the operation can produce
  • A unique parameter is defined by a combination of a name and location.
  • There can be one "body" parameter at most.
  • Required. The list of possible responses as they are returned from executing this operation.
  • The transfer protocol for the operation. Values MUST be from the list: "http", "https", "ws", "wss".
  • Declares this operation to be deprecated. Usage of the declared operation should be refrained. Default value is
  • A declaration of which security schemes are applied for this operation.
  • A unique parameter is defined by a combination of a name and location.
  • Path
  • Query
  • Header
  • Body
  • Form
  • Required. The location of the parameter. Possible values are "query", "header", "path", "formData" or "body".
  • the parameter value is actually part of the operation's URL
  • Parameters that are appended to the URL
  • The payload that's appended to the HTTP request.
  • Since there can only be one payload, there can only be one body parameter.
  • The name of the body parameter has no effect on the parameter itself and is used for documentation purposes only
  • body and form parameters cannot exist together for the same operation
  • This is the only parameter type that can be used to send files, thus supporting the file type.
  • If the parameter is in "path", this property is required and its value MUST be true.
  • default value is false.
  • The schema defining the type used for the body parameter.
  • The value MUST be one of "string", "number", "integer", "boolean", "array" or "file"
  • Default value is false
  • Required if type is "array". Describes the type of items in the array.
  • Determines the format of the array if type array is used
  • enum
  • pattern
張 旭

Syntax - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write.
  • Terraform's configuration language is based on a more general language called HCL, and HCL's documentation usually uses the word "attribute" instead of "argument."
  • A particular block type may have any number of required labels, or it may require none
  • ...34 more annotations...
  • After the block type keyword and any labels, the block body is delimited by the { and } characters
  • Identifiers can contain letters, digits, underscores (_), and hyphens (-). The first character of an identifier must not be a digit, to avoid ambiguity with literal numbers.
  • The # single-line comment style is the default comment style and should be used in most cases.
  • he idiomatic style is to use the Unix convention
  • Indent two spaces for each nesting level.
  • align their equals signs
  • Use empty lines to separate logical groups of arguments within a block.
  • Use one blank line to separate the arguments from the blocks.
  • "meta-arguments" (as defined by the Terraform language semantics)
  • Avoid separating multiple blocks of the same type with other blocks of a different type, unless the block types are defined by semantics to form a family.
  • Resource names must start with a letter or underscore, and may contain only letters, digits, underscores, and dashes.
  • Each resource is associated with a single resource type, which determines the kind of infrastructure object it manages and what arguments and other attributes the resource supports.
  • Each resource type is implemented by a provider, which is a plugin for Terraform that offers a collection of resource types.
  • By convention, resource type names start with their provider's preferred local name.
  • Most publicly available providers are distributed on the Terraform Registry, which also hosts their documentation.
  • The Terraform language defines several meta-arguments, which can be used with any resource type to change the behavior of resources.
  • use precondition and postcondition blocks to specify assumptions and guarantees about how the resource operates.
  • Some resource types provide a special timeouts nested block argument that allows you to customize how long certain operations are allowed to take before being considered to have failed.
  • Timeouts are handled entirely by the resource type implementation in the provider
  • Most resource types do not support the timeouts block at all.
  • A resource block declares that you want a particular infrastructure object to exist with the given settings.
  • Destroy resources that exist in the state but no longer exist in the configuration.
  • Destroy and re-create resources whose arguments have changed but which cannot be updated in-place due to remote API limitations.
  • Expressions within a Terraform module can access information about resources in the same module, and you can use that information to help configure other resources. Use the <RESOURCE TYPE>.<NAME>.<ATTRIBUTE> syntax to reference a resource attribute in an expression.
  • resources often provide read-only attributes with information obtained from the remote API; this often includes things that can't be known until the resource is created, like the resource's unique random ID.
  • data sources, which are a special type of resource used only for looking up information.
  • some dependencies cannot be recognized implicitly in configuration.
  • local-only resource types exist for generating private keys, issuing self-signed TLS certificates, and even generating random ids.
  • The behavior of local-only resources is the same as all other resources, but their result data exists only within the Terraform state.
  • The count meta-argument accepts a whole number, and creates that many instances of the resource or module.
  • count.index — The distinct index number (starting with 0) corresponding to this instance.
  • the count value must be known before Terraform performs any remote resource actions. This means count can't refer to any resource attributes that aren't known until after a configuration is applied
  • Within nested provisioner or connection blocks, the special self object refers to the current resource instance, not the resource block as a whole.
  • This was fragile, because the resource instances were still identified by their index instead of the string values in the list.
  •  
    "the native syntax of the Terraform language, which is a rich language designed to be relatively easy for humans to read and write. "
張 旭

The for_each Meta-Argument - Configuration Language | Terraform | HashiCorp Developer - 0 views

  • A given resource or module block cannot use both count and for_each
  • The for_each meta-argument accepts a map or a set of strings, and creates an instance for each item in that map or set
  • each.key — The map key (or set member) corresponding to this instance.
  • ...10 more annotations...
  • each.value — The map value corresponding to this instance. (If a set was provided, this is the same as each.key.)
  • for_each keys cannot be the result (or rely on the result of) of impure functions, including uuid, bcrypt, or timestamp, as their evaluation is deferred during the main evaluation step.
  • The value used in for_each is used to identify the resource instance and will always be disclosed in UI output, which is why sensitive values are not allowed.
  • if you would like to call keys(local.map), where local.map is an object with sensitive values (but non-sensitive keys), you can create a value to pass to for_each with toset([for k,v in local.map : k]).
  • for_each can't refer to any resource attributes that aren't known until after a configuration is applied (such as a unique ID generated by the remote API when an object is created).
  • he for_each argument does not implicitly convert lists or tuples to sets.
  • Transform a multi-level nested structure into a flat list by using nested for expressions with the flatten function.
  • Instances are identified by a map key (or set member) from the value provided to for_each
  • Within nested provisioner or connection blocks, the special self object refers to the current resource instance, not the resource block as a whole.
  • Conversion from list to set discards the ordering of the items in the list and removes any duplicate elements.
張 旭

Production environment | Kubernetes - 0 views

  • to promote an existing cluster for production use
  • Separating the control plane from the worker nodes.
  • Having enough worker nodes available
  • ...22 more annotations...
  • You can use role-based access control (RBAC) and other security mechanisms to make sure that users and workloads can get access to the resources they need, while keeping workloads, and the cluster itself, secure. You can set limits on the resources that users and workloads can access by managing policies and container resources.
  • you need to plan how to scale to relieve increased pressure from more requests to the control plane and worker nodes or scale down to reduce unused resources.
  • Managed control plane: Let the provider manage the scale and availability of the cluster's control plane, as well as handle patches and upgrades.
  • The simplest Kubernetes cluster has the entire control plane and worker node services running on the same machine.
  • You can deploy a control plane using tools such as kubeadm, kops, and kubespray.
  • Secure communications between control plane services are implemented using certificates.
  • Certificates are automatically generated during deployment or you can generate them using your own certificate authority.
  • Separate and backup etcd service: The etcd services can either run on the same machines as other control plane services or run on separate machines
  • Create multiple control plane systems: For high availability, the control plane should not be limited to a single machine
  • Some deployment tools set up Raft consensus algorithm to do leader election of Kubernetes services. If the primary goes away, another service elects itself and take over.
  • Groups of zones are referred to as regions.
  • if you installed with kubeadm, there are instructions to help you with Certificate Management and Upgrading kubeadm clusters.
  • Production-quality workloads need to be resilient and anything they rely on needs to be resilient (such as CoreDNS).
  • Add nodes to the cluster: If you are managing your own cluster you can add nodes by setting up your own machines and either adding them manually or having them register themselves to the cluster’s apiserver.
  • Set up node health checks: For important workloads, you want to make sure that the nodes and pods running on those nodes are healthy.
  • Authentication: The apiserver can authenticate users using client certificates, bearer tokens, an authenticating proxy, or HTTP basic auth.
  • Authorization: When you set out to authorize your regular users, you will probably choose between RBAC and ABAC authorization.
  • Role-based access control (RBAC): Lets you assign access to your cluster by allowing specific sets of permissions to authenticated users. Permissions can be assigned for a specific namespace (Role) or across the entire cluster (ClusterRole).
  • Attribute-based access control (ABAC): Lets you create policies based on resource attributes in the cluster and will allow or deny access based on those attributes.
  • Set limits on workload resources
  • Set namespace limits: Set per-namespace quotas on things like memory and CPU
  • Prepare for DNS demand: If you expect workloads to massively scale up, your DNS service must be ready to scale up as well.
crazylion lee

github/scientist: A Ruby library for carefully refactoring critical paths. - 0 views

  •  
    " A Ruby library for carefully refactoring critical paths."
張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

Outbound connections in Azure | Microsoft Docs - 0 views

  • When an instance initiates an outbound flow to a destination in the public IP address space, Azure dynamically maps the private IP address to a public IP address.
  • After this mapping is created, return traffic for this outbound originated flow can also reach the private IP address where the flow originated.
  • Azure uses source network address translation (SNAT) to perform this function
  • ...22 more annotations...
  • When multiple private IP addresses are masquerading behind a single public IP address, Azure uses port address translation (PAT) to masquerade private IP addresses.
  • If you want outbound connectivity when working with Standard SKUs, you must explicitly define it either with Standard Public IP addresses or Standard public Load Balancer.
  • the VM is part of a public Load Balancer backend pool. The VM does not have a public IP address assigned to it.
  • The Load Balancer resource must be configured with a load balancer rule to create a link between the public IP frontend with the backend pool.
  • VM has an Instance Level Public IP (ILPIP) assigned to it. As far as outbound connections are concerned, it doesn't matter whether the VM is load balanced or not.
  • When an ILPIP is used, the VM uses the ILPIP for all outbound flows.
  • A public IP assigned to a VM is a 1:1 relationship (rather than 1: many) and implemented as a stateless 1:1 NAT.
  • Port masquerading (PAT) is not used, and the VM has all ephemeral ports available for use.
  • When the load-balanced VM creates an outbound flow, Azure translates the private source IP address of the outbound flow to the public IP address of the public Load Balancer frontend.
  • Azure uses SNAT to perform this function. Azure also uses PAT to masquerade multiple private IP addresses behind a public IP address.
  • Ephemeral ports of the load balancer's public IP address frontend are used to distinguish individual flows originated by the VM.
  • When multiple public IP addresses are associated with Load Balancer Basic, any of these public IP addresses are a candidate for outbound flows, and one is selected at random.
  • the VM is not part of a public Load Balancer pool (and not part of an internal Standard Load Balancer pool) and does not have an ILPIP address assigned to it.
  • The public IP address used for this outbound flow is not configurable and does not count against the subscription's public IP resource limit.
  • Do not use this scenario for whitelisting IP addresses.
  • This public IP address does not belong to you and cannot be reserved.
  • Standard Load Balancer uses all candidates for outbound flows at the same time when multiple (public) IP frontends is present.
  • Load Balancer Basic chooses a single frontend to be used for outbound flows when multiple (public) IP frontends are candidates for outbound flows.
  • the disableOutboundSnat option defaults to false and signifies that this rule programs outbound SNAT for the associated VMs in the backend pool of the load balancing rule.
  • Port masquerading SNAT (PAT)
  • Ephemeral port preallocation for port masquerading SNAT (PAT)
  • determine the public source IP address of an outbound connection.
張 旭

ruby-grape/grape: An opinionated framework for creating REST-like APIs in Ruby. - 0 views

shared by 張 旭 on 17 Dec 16 - No Cached
  • Grape is a REST-like API framework for Ruby.
  • designed to run on Rack or complement existing web application frameworks such as Rails and Sinatra by providing a simple DSL to easily develop RESTful APIs
  • Grape APIs are Rack applications that are created by subclassing Grape::API
  • ...54 more annotations...
  • Rails expects a subdirectory that matches the name of the Ruby module and a file name that matches the name of the class
  • mount multiple API implementations inside another one
  • mount on a path, which is similar to using prefix inside the mounted API itself.
  • four strategies in which clients can reach your API's endpoints: :path, :header, :accept_version_header and :param
  • clients should pass the desired version as a request parameter, either in the URL query string or in the request body.
  • clients should pass the desired version in the HTTP Accept head
  • clients should pass the desired version in the UR
  • clients should pass the desired version in the HTTP Accept-Version header.
  • add a description to API methods and namespaces
  • Request parameters are available through the params hash object
  • Parameters are automatically populated from the request body on POST and PUT
  • route string parameters will have precedence.
  • Grape allows you to access only the parameters that have been declared by your params block
  • By default declared(params) includes parameters that have nil values
  • all valid types
  • type: File
  • JSON objects and arrays of objects are accepted equally
  • any class can be used as a type so long as an explicit coercion method is supplied
  • As a special case, variant-member-type collections may also be declared, by passing a Set or Array with more than one member to type
  • Parameters can be nested using group or by calling requires or optional with a block
  • relevant if another parameter is given
  • Parameters options can be grouped
  • allow_blank can be combined with both requires and optional
  • Parameters can be restricted to a specific set of values
  • Parameters can be restricted to match a specific regular expression
  • Never define mutually exclusive sets with any required params
  • Namespaces allow parameter definitions and apply to every method within the namespace
  • define a route parameter as a namespace using route_param
  • create custom validation that use request to validate the attribute
  • rescue a Grape::Exceptions::ValidationErrors and respond with a custom response or turn the response into well-formatted JSON for a JSON API that separates individual parameters and the corresponding error messages
  • custom validation messages
  • Request headers are available through the headers helper or from env in their original form
  • define requirements for your named route parameters using regular expressions on namespace or endpoint
  • route will match only if all requirements are met
  • mix in a module
  • define reusable params
  • using cookies method
  • a 201 for POST-Requests
  • 204 for DELETE-Requests
  • 200 status code for all other Requests
  • use status to query and set the actual HTTP Status Code
  • raising errors with error!
  • It is very crucial to define this endpoint at the very end of your API, as it literally accepts every request.
  • rescue_from will rescue the exceptions listed and all their subclasses.
  • Grape::API provides a logger method which by default will return an instance of the Logger class from Ruby's standard library.
  • Grape supports a range of ways to present your data
  • Grape has built-in Basic and Digest authentication (the given block is executed in the context of the current Endpoint).
  • Authentication applies to the current namespace and any children, but not parents.
  • Blocks can be executed before or after every API call, using before, after, before_validation and after_validation
  • Before and after callbacks execute in the following order
  • Grape by default anchors all request paths, which means that the request URL should match from start to end to match
  • The namespace method has a number of aliases, including: group, resource, resources, and segment. Use whichever reads the best for your API.
  • test a Grape API with RSpec by making HTTP requests and examining the response
  • POST JSON data and specify the correct content-type.
張 旭

手动安装 Prometheus · 从 Docker 到 Kubernetes 进阶手册 - 1 views

  • 参数storage.tsdb.path指定了 TSDB 数据的存储路径、通过storage.tsdb.retention设置了保留多长时间的数据,还有下面的web.enable-admin-api参数可以用来开启对 admin api 的访问权限,参数web.enable-lifecycle非常重要,用来开启支持热更新的,有了这个参数之后,prometheus.yml 配置文件只要更新了,通过执行localhost:9090/-/reload就会立即生效,所以一定要加上这个参数。
  • Prometheus 由多个组件组成,但是其中许多组件是可选的: Prometheus Server:用于抓取指标、存储时间序列数据 exporter:暴露指标让任务来抓 pushgateway:push 的方式将指标数据推送到该网关 alertmanager:处理报警的报警组件 adhoc:用于数据查询
  • scrape_configs 用于控制 prometheus 监控哪些资源。
  • ...6 more annotations...
  • prometheus 通过 HTTP 的方式来暴露的它本身的监控数据
  • prometheus 默认会通过目标的/metrics路径采集 metrics
  • 需要配置 rbac 认证,因为我们需要在 prometheus 中去访问 Kubernetes 的相关信息
  • 要获取的资源信息,在每一个 namespace 下面都有可能存在,所以我们这里使用的是 ClusterRole 的资源对象,值得一提的是我们这里的权限规则声明中有一个nonResourceURLs的属性,是用来对非资源型 metrics 进行操作的权限声明
  • 添加一个securityContext的属性,将其中的runAsUser设置为0,这是因为现在的 prometheus 运行过程中使用的用户是 nobody,否则会出现下面的permission denied之类的权限错误
  • PromQL其实就是 prometheus 便于数据聚合展示开发的一套 ad hoc 查询语言的,你想要查什么找对应函数取你的数据好了。
  •  
    "参数storage.tsdb.path指定了 TSDB 数据的存储路径、通过storage.tsdb.retention设置了保留多长时间的数据,还有下面的web.enable-admin-api参数可以用来开启对 admin api 的访问权限,参数web.enable-lifecycle非常重要,用来开启支持热更新的,有了这个参数之后,prometheus.yml 配置文件只要更新了,通过执行localhost:9090/-/reload就会立即生效,所以一定要加上这个参数。"
張 旭

Memory inside Linux containers | Fabio Kung - 0 views

  • /sys/fs/cgroup/ is the recommended location for cgroup hierarchies, but it is not a standard.
  • most container specific metrics are available at the cgroup filesystem via /path/to/cgroup/memory.stat, /path/to/cgroup/memory.usage_in_bytes, /path/to/cgroup/memory.limit_in_bytes and others.
  • cat /sys/fs/cgroup/memory/memory.stat
  • ...3 more annotations...
  • /sys/fs/cgroup is just an umbrella for all cgroup hierarchies, there is no recommendation or standard for my own cgroup location.
  • an userspace library that processes can use to query their memory usage and available memory.
  • we might need to encourage people to stop using those tools inside containers.
張 旭

Handlebars.js: Minimal Templating on Steroids - 0 views

  • Handlebars templates look like regular HTML, with embedded handlebars expressions.
  • don't want Handlebars to escape a value, use the "triple-stash", {{{.
  • Handlebars will not escape a Handlebars.SafeString
  • ...13 more annotations...
  • block helpers are identified by a # preceeding the helper name and require a matching closing mustache, /, of the same name.
  • use Handlebars templates with more raw JSON objects.
  • Nested handlebars paths can also include ../ segments, which evaluate their paths against a parent context.
  • The exact value that ../ will resolve to varies based on the helper that is calling the block.
  • reference the same permalink value even though they are located within different blocks.
  • name conflict resolution between helpers and data fields via a this reference
  • comments will not be in the resulting output.
  • register a helper with the Handlebars.registerHelper method.
  • Helpers receive the current context as the this context of the function.
  • returns HTML that you do not want escaped, make sure to return a new Handlebars.SafeString
  • literal values passed to them either as parameter arguments or hash arguments
  • Handlebars partials allow for code reuse by creating shared templates
  • Handlebars.registerPartial
張 旭

php - CakePHP: No such file or directory (trying to connect via unix:///var/mysql/mysql... - 0 views

  •  
    'port' => '/path/to/mysql.sock'
  •  
    'port' => '/private/tmp/mysql.sock'
張 旭

Caddyfile Tutorial - How to Configure Caddy - 0 views

  • Directives are keywords that Caddy recognizes.
  • Directives might have one or more arguments after them
  • Some directives require more configuration than can fit on one line. For those directives, you can open a block and set more parameters.
  • ...11 more annotations...
  • The first line of the Caddyfile is always the address of the site to serve
  • If the directive block is left empty, you should omit the curly braces entirely.
  • Arguments that contain whitespace must be enclosed in quotes ".
  • To configure multiple sites with a single Caddyfile, you must use curly braces around each one to separate their configurations:
  • he opening curly brace must be at the end of the same line.
  • The closing curly brace must be on its own line.
  • All directives must appear inside a site's definition.
  • Site addresses can also be defined under a specific path or have wildcards in place of individual domain labels from the left side
  • using a path in your site address will route requests by longest matching prefix.
  • Use of environment variables is allowed in addresses and arguments. They must be enclosed in curly braces,
  • you may not specify the same site address more than once
  •  
    "Directives"
1 - 20 of 47 Next › Last »
Showing 20 items per page