Skip to main content

Home/ Larvata/ Group items tagged volume

Rss Feed Group items tagged

張 旭

Volumes - Kubernetes - 0 views

  • On-disk files in a Container are ephemeral,
  • when a Container crashes, kubelet will restart it, but the files will be lost - the Container starts with a clean state
  • In Docker, a volume is simply a directory on disk or in another Container.
  • ...105 more annotations...
  • A Kubernetes volume, on the other hand, has an explicit lifetime - the same as the Pod that encloses it.
  • a volume outlives any Containers that run within the Pod, and data is preserved across Container restarts.
    • 張 旭
       
      Kubernetes Volume 是跟著 Pod 的生命週期在走
  • Kubernetes supports many types of volumes, and a Pod can use any number of them simultaneously.
  • To use a volume, a Pod specifies what volumes to provide for the Pod (the .spec.volumes field) and where to mount those into Containers (the .spec.containers.volumeMounts field).
  • A process in a container sees a filesystem view composed from their Docker image and volumes.
  • Volumes can not mount onto other volumes or have hard links to other volumes.
  • Each Container in the Pod must independently specify where to mount each volume
  • localnfs
  • cephfs
  • awsElasticBlockStore
  • glusterfs
  • vsphereVolume
  • An awsElasticBlockStore volume mounts an Amazon Web Services (AWS) EBS Volume into your Pod.
  • the contents of an EBS volume are preserved and the volume is merely unmounted.
  • an EBS volume can be pre-populated with data, and that data can be “handed off” between Pods.
  • create an EBS volume using aws ec2 create-volume
  • the nodes on which Pods are running must be AWS EC2 instances
  • EBS only supports a single EC2 instance mounting a volume
  • check that the size and EBS volume type are suitable for your use!
  • A cephfs volume allows an existing CephFS volume to be mounted into your Pod.
  • the contents of a cephfs volume are preserved and the volume is merely unmounted.
    • 張 旭
       
      相當於自己的 AWS EBS
  • CephFS can be mounted by multiple writers simultaneously.
  • have your own Ceph server running with the share exported
  • configMap
  • The configMap resource provides a way to inject configuration data into Pods
  • When referencing a configMap object, you can simply provide its name in the volume to reference it
  • volumeMounts: - name: config-vol mountPath: /etc/config volumes: - name: config-vol configMap: name: log-config items: - key: log_level path: log_level
  • create a ConfigMap before you can use it.
  • A Container using a ConfigMap as a subPath volume mount will not receive ConfigMap updates.
  • An emptyDir volume is first created when a Pod is assigned to a Node, and exists as long as that Pod is running on that node.
  • When a Pod is removed from a node for any reason, the data in the emptyDir is deleted forever.
  • By default, emptyDir volumes are stored on whatever medium is backing the node - that might be disk or SSD or network storage, depending on your environment.
  • you can set the emptyDir.medium field to "Memory" to tell Kubernetes to mount a tmpfs (RAM-backed filesystem)
  • volumeMounts: - mountPath: /cache name: cache-volume volumes: - name: cache-volume emptyDir: {}
  • An fc volume allows an existing fibre channel volume to be mounted in a Pod.
  • configure FC SAN Zoning to allocate and mask those LUNs (volumes) to the target WWNs beforehand so that Kubernetes hosts can access them.
  • Flocker is an open-source clustered Container data volume manager. It provides management and orchestration of data volumes backed by a variety of storage backends.
  • emptyDir
  • flocker
  • A flocker volume allows a Flocker dataset to be mounted into a Pod
  • have your own Flocker installation running
  • A gcePersistentDisk volume mounts a Google Compute Engine (GCE) Persistent Disk into your Pod.
  • Using a PD on a Pod controlled by a ReplicationController will fail unless the PD is read-only or the replica count is 0 or 1
  • A glusterfs volume allows a Glusterfs (an open source networked filesystem) volume to be mounted into your Pod.
  • have your own GlusterFS installation running
  • A hostPath volume mounts a file or directory from the host node’s filesystem into your Pod.
  • a powerful escape hatch for some applications
  • access to Docker internals; use a hostPath of /var/lib/docker
  • allowing a Pod to specify whether a given hostPath should exist prior to the Pod running, whether it should be created, and what it should exist as
  • specify a type for a hostPath volume
  • the files or directories created on the underlying hosts are only writable by root.
  • hostPath: # directory location on host path: /data # this field is optional type: Directory
  • An iscsi volume allows an existing iSCSI (SCSI over IP) volume to be mounted into your Pod.
  • have your own iSCSI server running
  • A feature of iSCSI is that it can be mounted as read-only by multiple consumers simultaneously.
  • A local volume represents a mounted local storage device such as a disk, partition or directory.
  • Local volumes can only be used as a statically created PersistentVolume.
  • Compared to hostPath volumes, local volumes can be used in a durable and portable manner without manually scheduling Pods to nodes, as the system is aware of the volume’s node constraints by looking at the node affinity on the PersistentVolume.
  • If a node becomes unhealthy, then the local volume will also become inaccessible, and a Pod using it will not be able to run.
  • PersistentVolume spec using a local volume and nodeAffinity
  • PersistentVolume nodeAffinity is required when using local volumes. It enables the Kubernetes scheduler to correctly schedule Pods using local volumes to the correct node.
  • PersistentVolume volumeMode can now be set to “Block” (instead of the default value “Filesystem”) to expose the local volume as a raw block device.
  • When using local volumes, it is recommended to create a StorageClass with volumeBindingMode set to WaitForFirstConsumer
  • An nfs volume allows an existing NFS (Network File System) share to be mounted into your Pod.
  • NFS can be mounted by multiple writers simultaneously.
  • have your own NFS server running with the share exported
  • A persistentVolumeClaim volume is used to mount a PersistentVolume into a Pod.
  • PersistentVolumes are a way for users to “claim” durable storage (such as a GCE PersistentDisk or an iSCSI volume) without knowing the details of the particular cloud environment.
  • A projected volume maps several existing volume sources into the same directory.
  • All sources are required to be in the same namespace as the Pod. For more details, see the all-in-one volume design document.
  • Each projected volume source is listed in the spec under sources
  • A Container using a projected volume source as a subPath volume mount will not receive updates for those volume sources.
  • RBD volumes can only be mounted by a single consumer in read-write mode - no simultaneous writers allowed
  • A secret volume is used to pass sensitive information, such as passwords, to Pods
  • store secrets in the Kubernetes API and mount them as files for use by Pods
  • secret volumes are backed by tmpfs (a RAM-backed filesystem) so they are never written to non-volatile storage.
  • create a secret in the Kubernetes API before you can use it
  • A Container using a Secret as a subPath volume mount will not receive Secret updates.
  • StorageOS runs as a Container within your Kubernetes environment, making local or attached storage accessible from any node within the Kubernetes cluster.
  • Data can be replicated to protect against node failure. Thin provisioning and compression can improve utilization and reduce cost.
  • StorageOS provides block storage to Containers, accessible via a file system.
  • A vsphereVolume is used to mount a vSphere VMDK Volume into your Pod.
  • supports both VMFS and VSAN datastore.
  • create VMDK using one of the following methods before using with Pod.
  • share one volume for multiple uses in a single Pod.
  • The volumeMounts.subPath property can be used to specify a sub-path inside the referenced volume instead of its root.
  • volumeMounts: - name: workdir1 mountPath: /logs subPathExpr: $(POD_NAME)
  • env: - name: POD_NAME valueFrom: fieldRef: apiVersion: v1 fieldPath: metadata.name
  • Use the subPathExpr field to construct subPath directory names from Downward API environment variables
  • enable the VolumeSubpathEnvExpansion feature gate
  • The subPath and subPathExpr properties are mutually exclusive.
  • There is no limit on how much space an emptyDir or hostPath volume can consume, and no isolation between Containers or between Pods.
  • emptyDir and hostPath volumes will be able to request a certain amount of space using a resource specification, and to select the type of media to use, for clusters that have several media types.
  • the Container Storage Interface (CSI) and Flexvolume. They enable storage vendors to create custom storage plugins without adding them to the Kubernetes repository.
  • all volume plugins (like volume types listed above) were “in-tree” meaning they were built, linked, compiled, and shipped with the core Kubernetes binaries and extend the core Kubernetes API.
  • Container Storage Interface (CSI) defines a standard interface for container orchestration systems (like Kubernetes) to expose arbitrary storage systems to their container workloads.
  • Once a CSI compatible volume driver is deployed on a Kubernetes cluster, users may use the csi volume type to attach, mount, etc. the volumes exposed by the CSI driver.
  • The csi volume type does not support direct reference from Pod and may only be referenced in a Pod via a PersistentVolumeClaim object.
  • This feature requires CSIInlineVolume feature gate to be enabled:--feature-gates=CSIInlineVolume=true
  • In-tree plugins that support CSI Migration and have a corresponding CSI driver implemented are listed in the “Types of Volumes” section above.
  • Mount propagation allows for sharing volumes mounted by a Container to other Containers in the same Pod, or even to other Pods on the same node.
  • Mount propagation of a volume is controlled by mountPropagation field in Container.volumeMounts.
  • HostToContainer - This volume mount will receive all subsequent mounts that are mounted to this volume or any of its subdirectories.
  • Bidirectional - This volume mount behaves the same the HostToContainer mount. In addition, all volume mounts created by the Container will be propagated back to the host and to all Containers of all Pods that use the same volume.
  • Edit your Docker’s systemd service file. Set MountFlags as follows:MountFlags=shared
張 旭

Docker for AWS persistent data volumes | Docker Documentation - 0 views

  • Cloudstor is a modern volume plugin built by Docker
  • Docker swarm mode tasks and regular Docker containers can use a volume created with Cloudstor to mount a persistent data volume.
  • Global shared Cloudstor volumes mounted by all tasks in a swarm service.
  • ...14 more annotations...
  • Workloads running in a Docker service that require access to low latency/high IOPs persistent storage, such as a database engine, can use a relocatable Cloudstor volume backed by EBS.
  • Each relocatable Cloudstor volume is backed by a single EBS volume.
  • If a swarm task using a relocatable Cloudstor volume gets rescheduled to another node within the same availability zone as the original node where the task was running, Cloudstor detaches the backing EBS volume from the original node and attaches it to the new target node automatically.
  • in a different availability zone,
  • Cloudstor transfers the contents of the backing EBS volume to the destination availability zone using a snapshot, and cleans up the EBS volume in the original availability zone.
  • Typically the snapshot-based transfer process across availability zones takes between 2 and 5 minutes unless the work load is write-heavy.
  • A swarm task is not started until the volume it mounts becomes available
  • Sharing/mounting the same Cloudstor volume backed by EBS among multiple tasks is not a supported scenario and leads to data loss.
  • a Cloudstor volume to share data between tasks, choose the appropriate EFS backed shared volume option.
  • When multiple swarm service tasks need to share data in a persistent storage volume, you can use a shared Cloudstor volume backed by EFS.
  • a volume and its contents can be mounted by multiple swarm service tasks without the risk of data loss
  • over NFS
  • the persistent data backed by EFS volumes is always available.
  • shared Cloudstor volumes only work in those AWS regions where EFS is supported.
張 旭

Kubernetes Volumes Guide - Examples for NFS and Persistent Volume - 0 views

  • Persistent volumes exist beyond containers, pods, and nodes.
  • Volumes also let you share data between containers in the same pod.
  • data in that volume will be destroyed when the pod is restarted.
  • ...9 more annotations...
  • Persistent volumes are long-term storage in your Kubernetes cluster.
  • A pod uses a persistent volume claim to to get read and write access to the persistent volume.
  • NFS stands for Network File System – it's a shared filesystem that can be accessed over the network.
  • The NFS must already exist – Kubernetes doesn't run the NFS, pods in just access it.
  • what's already stored in the NFS is not deleted when a pod is destroyed. Data is persistent.
  • an NFS can be accessed from multiple pods at the same time. An NFS can be used to share data between pods!
  • volumes: - name: nfs-volume nfs: # URL for the NFS server server: 10.108.211.244 # Change this! path: /
  • volumeMounts: - name: nfs-volume mountPath: /var/nfs
  • Just add the volume to each pod, and add a volume mount to use the NFS volume from each container.
  •  
    "Persistent volumes exist beyond containers, pods, and nodes. "
張 旭

Secrets - Kubernetes - 0 views

  • Putting this information in a secret is safer and more flexible than putting it verbatim in a PodThe smallest and simplest Kubernetes object. A Pod represents a set of running containers on your cluster. definition or in a container imageStored instance of a container that holds a set of software needed to run an application. .
  • A Secret is an object that contains a small amount of sensitive data such as a password, a token, or a key.
  • Users can create secrets, and the system also creates some secrets.
  • ...63 more annotations...
  • To use a secret, a pod needs to reference the secret.
  • A secret can be used with a pod in two ways: as files in a volumeA directory containing data, accessible to the containers in a pod. mounted on one or more of its containers, or used by kubelet when pulling images for the pod.
  • --from-file
  • You can also create a Secret in a file first, in json or yaml format, and then create that object.
  • The Secret contains two maps: data and stringData.
  • The data field is used to store arbitrary data, encoded using base64.
  • Kubernetes automatically creates secrets which contain credentials for accessing the API and it automatically modifies your pods to use this type of secret.
  • kubectl get and kubectl describe avoid showing the contents of a secret by default.
  • stringData field is provided for convenience, and allows you to provide secret data as unencoded strings.
  • where you are deploying an application that uses a Secret to store a configuration file, and you want to populate parts of that configuration file during your deployment process.
  • a field is specified in both data and stringData, the value from stringData is used.
  • The keys of data and stringData must consist of alphanumeric characters, ‘-’, ‘_’ or ‘.’.
  • Newlines are not valid within these strings and must be omitted.
  • When using the base64 utility on Darwin/macOS users should avoid using the -b option to split long lines.
  • create a Secret from generators and then apply it to create the object on the Apiserver.
  • The generated Secrets name has a suffix appended by hashing the contents.
  • base64 --decode
  • Secrets can be mounted as data volumes or be exposed as environment variablesContainer environment variables are name=value pairs that provide useful information into containers running in a Pod. to be used by a container in a pod.
  • Multiple pods can reference the same secret.
  • Each key in the secret data map becomes the filename under mountPath
  • each container needs its own volumeMounts block, but only one .spec.volumes is needed per secret
  • use .spec.volumes[].secret.items field to change target path of each key:
  • If .spec.volumes[].secret.items is used, only keys specified in items are projected. To consume all keys from the secret, all of them must be listed in the items field.
  • You can also specify the permission mode bits files part of a secret will have. If you don’t specify any, 0644 is used by default.
  • JSON spec doesn’t support octal notation, so use the value 256 for 0400 permissions.
  • Inside the container that mounts a secret volume, the secret keys appear as files and the secret values are base-64 decoded and stored inside these files.
  • Mounted Secrets are updated automatically
  • Kubelet is checking whether the mounted secret is fresh on every periodic sync.
  • cache propagation delay depends on the chosen cache type
  • A container using a Secret as a subPath volume mount will not receive Secret updates.
  • Multiple pods can reference the same secret.
  • env: - name: SECRET_USERNAME valueFrom: secretKeyRef: name: mysecret key: username
  • Inside a container that consumes a secret in an environment variables, the secret keys appear as normal environment variables containing the base-64 decoded values of the secret data.
  • An imagePullSecret is a way to pass a secret that contains a Docker (or other) image registry password to the Kubelet so it can pull a private image on behalf of your Pod.
  • a secret needs to be created before any pods that depend on it.
  • Secret API objects reside in a namespaceAn abstraction used by Kubernetes to support multiple virtual clusters on the same physical cluster. . They can only be referenced by pods in that same namespace.
  • Individual secrets are limited to 1MiB in size.
  • Kubelet only supports use of secrets for Pods it gets from the API server.
  • Secrets must be created before they are consumed in pods as environment variables unless they are marked as optional.
  • References to Secrets that do not exist will prevent the pod from starting.
  • References via secretKeyRef to keys that do not exist in a named Secret will prevent the pod from starting.
  • Once a pod is scheduled, the kubelet will try to fetch the secret value.
  • Think carefully before sending your own ssh keys: other users of the cluster may have access to the secret.
  • volumes: - name: secret-volume secret: secretName: ssh-key-secret
  • Special characters such as $, \*, and ! require escaping. If the password you are using has special characters, you need to escape them using the \\ character.
  • You do not need to escape special characters in passwords from files
  • make that key begin with a dot
  • Dotfiles in secret volume
  • .secret-file
  • a frontend container which handles user interaction and business logic, but which cannot see the private key;
  • a signer container that can see the private key, and responds to simple signing requests from the frontend
  • When deploying applications that interact with the secrets API, access should be limited using authorization policies such as RBAC
  • watch and list requests for secrets within a namespace are extremely powerful capabilities and should be avoided
  • watch and list all secrets in a cluster should be reserved for only the most privileged, system-level components.
  • additional precautions with secret objects, such as avoiding writing them to disk where possible.
  • A secret is only sent to a node if a pod on that node requires it
  • only the secrets that a pod requests are potentially visible within its containers
  • each container in a pod has to request the secret volume in its volumeMounts for it to be visible within the container.
  • In the API server secret data is stored in etcdConsistent and highly-available key value store used as Kubernetes’ backing store for all cluster data.
  • limit access to etcd to admin users
  • Base64 encoding is not an encryption method and is considered the same as plain text.
  • A user who can create a pod that uses a secret can also see the value of that secret.
  • anyone with root on any node can read any secret from the apiserver, by impersonating the kubelet.
張 旭

Configuration - docker-sync 0.5.10 documentation - 0 views

  • Be sure to use a sync-name which is unique, since it will be a container name.
    • 張 旭
       
      慣例是 docker-sync 的 container name 後綴都是 -sync
  • split your docker-compose configuration for production and development (as usual)
  • ...9 more annotations...
  • production stack (docker-compose.yml) does not need any changes and would look like this (and is portable, no docker-sync adjustments).
  • docker-compose-dev.yml ( it needs to be called that way, look like this ) will override
    • 張 旭
       
      開發版的 docker-compose-dev.yml 僅會覆寫 production docker-compose.yml 的 volumes 設定,也就接上 docker-sync.yml 的 volumes,其它都維持不變
  • nocopy # nocopy is important
  • nocopy # nocopy is important
  • docker-compose -f docker-compose.yml -f docker-compose-dev.yml up
  • add the external volume and the mount here
  • In case the folder we mount to has been declared as a VOLUME during image build, its content will be merged with the name volume we mount from the host
    • 張 旭
       
      如果在 Dockerfile 裡面有宣告一個 volume,那麼在 docker build 的時候這個 volume mount point 會被記錄起來,在 container 跑起來的時候,會將 host (server) 上的同名的 volume 內容合併進來 (取代)。也就是說 container 跑起來的時候,會去接上已經存在的既有的 host (server) 上的 volume。
  • enforce the content from our host on the initial wiring
  • set your environment variables by creating a .env file at the root of your project
  •  
    "Be sure to use a sync-name which is unique, since it will be a container name."
張 旭

Practical persistent cloud storage for Docker in AWS using RexRay - pt 4 - 0 views

  • Docker volumes can then be created and managed via the plugin, as requests are passed by Docker, and then orchestrated by the local server.
  • volumes are usually protected from deletion via a reference count.
  • Using the plugin means that the reference count is kept at the node level, so the plugin is only aware of the containers on a single node.
  • ...3 more annotations...
  • The S3FS plugin as of version 0.9.2 cannot delete an S3 bucket unless the bucket is empty, and has never been used (just created) as a Docker volume.
  • Starting with Docker 1.13 a new plugin system was introduced in which the plugin runs inside of a container.
  • Even though the plugin is a container image, you cannot start it using either docker image pull or docker container run; you need to use the docker plugin set of sub‑commands.
  •  
    "Docker volumes can then be created and managed via the plugin, as requests are passed by Docker, and then orchestrated by the local server."
張 旭

Pods - Kubernetes - 0 views

  • Pods are the smallest deployable units of computing
  • A Pod (as in a pod of whales or pea pod) is a group of one or more containersA lightweight and portable executable image that contains software and all of its dependencies. (such as Docker containers), with shared storage/network, and a specification for how to run the containers.
  • A Pod’s contents are always co-located and co-scheduled, and run in a shared context.
  • ...32 more annotations...
  • A Pod models an application-specific “logical host”
  • application containers which are relatively tightly coupled
  • being executed on the same physical or virtual machine would mean being executed on the same logical host.
  • The shared context of a Pod is a set of Linux namespaces, cgroups, and potentially other facets of isolation
  • Containers within a Pod share an IP address and port space, and can find each other via localhost
  • Containers in different Pods have distinct IP addresses and can not communicate by IPC without special configuration. These containers usually communicate with each other via Pod IP addresses.
  • Applications within a Pod also have access to shared volumesA directory containing data, accessible to the containers in a pod. , which are defined as part of a Pod and are made available to be mounted into each application’s filesystem.
  • a Pod is modelled as a group of Docker containers with shared namespaces and shared filesystem volumes
    • 張 旭
       
      類似 docker-compose 裡面宣告的同一坨?
  • Pods are considered to be relatively ephemeral (rather than durable) entities.
  • Pods are created, assigned a unique ID (UID), and scheduled to nodes where they remain until termination (according to restart policy) or deletion.
  • it can be replaced by an identical Pod
  • When something is said to have the same lifetime as a Pod, such as a volume, that means that it exists as long as that Pod (with that UID) exists.
  • uses a persistent volume for shared storage between the containers
  • Pods serve as unit of deployment, horizontal scaling, and replication
  • The applications in a Pod all use the same network namespace (same IP and port space), and can thus “find” each other and communicate using localhost
  • flat shared networking space
  • Containers within the Pod see the system hostname as being the same as the configured name for the Pod.
  • Volumes enable data to survive container restarts and to be shared among the applications within the Pod.
  • Individual Pods are not intended to run multiple instances of the same application
  • The individual containers may be versioned, rebuilt and redeployed independently.
  • Pods aren’t intended to be treated as durable entities.
  • Controllers like StatefulSet can also provide support to stateful Pods.
  • When a user requests deletion of a Pod, the system records the intended grace period before the Pod is allowed to be forcefully killed, and a TERM signal is sent to the main process in each container.
  • Once the grace period has expired, the KILL signal is sent to those processes, and the Pod is then deleted from the API server.
  • grace period
  • Pod is removed from endpoints list for service, and are no longer considered part of the set of running Pods for replication controllers.
  • When the grace period expires, any processes still running in the Pod are killed with SIGKILL.
  • By default, all deletes are graceful within 30 seconds.
  • You must specify an additional flag --force along with --grace-period=0 in order to perform force deletions.
  • Force deletion of a Pod is defined as deletion of a Pod from the cluster state and etcd immediately.
  • StatefulSet Pods
  • Processes within the container get almost the same privileges that are available to processes outside a container.
crazylion lee

coreos/torus: Torus Distributed Storage - 1 views

  •  
    "Torus is an open source project for distributed storage coordinated through etcd. Torus provides a resource pool and basic file primitives from a set of daemons running atop multiple nodes. These primitives are made consistent by being append-only and coordinated by etcd. From these primitives, a Torus server can support multiple types of volumes, the semantics of which can be broken into subprojects. It ships with a simple block-device volume plugin, but is extensible to more."
crazylion lee

YubiKey 4 and YubiKey 4 Nano | U2F, OTP, PIV | Yubico - 0 views

  •  
    "The YubiKey 4 is the strong authentication bullseye the industry has been aiming at for years, enabling one single key to secure an unlimited number of applications. Yubico's 4th generation YubiKey is built on high-performance secure elements. It includes the same range of one-time password and public key authentication protocols as in the YubiKey NEO, excluding NFC, but with stronger public/private keys, faster crypto operations and the world's first touch-to-sign feature. With the YubiKey 4 platform, we have further improved our manufacturing and ordering process, enabling customers to order exactly what functions they want in 500+ unit volumes, with no secrets stored at Yubico or shared with a third-party organization. The best part? An organization can securely customize 1,000 YubiKeys in less than 10 minutes. For customers who require NFC, the YubiKey NEO is our full-featured key with both contact (USB) and contactless (NFC, MIFARE) communications."
張 旭

Developing with Docker - 1 views

  • Before moving our production infrastructure over however, we decided that we wanted to start developing with them locally first. We could shake out any issues with our applications before risking the production environment.
  • using Chef and Vagrant to provision local VMs
  • Engineers at IFTTT currently all use Apple computers
  • ...7 more annotations...
  • /bin/true
    • 張 旭
       
      如果使用 docker create 就不用跑這個, 不過目前 docker-compose 沒有支援 volume-only 的 container
  • it will install gems onto the data volume from the bundler-cache container.
  • dev rm bundler-cache
    • 張 旭
       
      要完全刪除干淨,後面的指令可能是: docker rm -v bundler-cache
  • if you accidentally delete bundler-cache, you then have to install all your gems over again.
  • Containerization and Docker are powerful tools in your infrastructure toolbox.
  • highly recommend starting off in your developer environment first
  • the onboarding time for new developers go from a couple days or more to a matter of hours.
張 旭

| Docker Documentation - 0 views

  • The host directory is declared at container run-time: The host directory (the mountpoint) is, by its nature, host-dependent. This is to preserve image portability, since a given host directory can’t be guaranteed to be available on all hosts.
  • This Dockerfile results in an image that causes docker run to create a new mount point at /myvol and copy the greeting file into the newly created volume.
  •  
    "The host directory is declared at container run-time: The host directory (the mountpoint) is, by its nature, host-dependent. This is to preserve image portability, since a given host directory can't be guaranteed to be available on all hosts."
張 旭

Best practices for writing Dockerfiles | Docker Documentation - 0 views

  • building efficient images
  • Docker builds images automatically by reading the instructions from a Dockerfile -- a text file that contains all commands, in order, needed to build a given image.
  • A Docker image consists of read-only layers each of which represents a Dockerfile instruction.
  • ...47 more annotations...
  • The layers are stacked and each one is a delta of the changes from the previous layer
  • When you run an image and generate a container, you add a new writable layer (the “container layer”) on top of the underlying layers.
  • By “ephemeral,” we mean that the container can be stopped and destroyed, then rebuilt and replaced with an absolute minimum set up and configuration.
  • Inadvertently including files that are not necessary for building an image results in a larger build context and larger image size.
  • To exclude files not relevant to the build (without restructuring your source repository) use a .dockerignore file. This file supports exclusion patterns similar to .gitignore files.
  • minimize image layers by leveraging build cache.
  • if your build contains several layers, you can order them from the less frequently changed (to ensure the build cache is reusable) to the more frequently changed
  • avoid installing extra or unnecessary packages just because they might be “nice to have.”
  • Each container should have only one concern.
  • Decoupling applications into multiple containers makes it easier to scale horizontally and reuse containers
  • Limiting each container to one process is a good rule of thumb, but it is not a hard and fast rule.
  • Use your best judgment to keep containers as clean and modular as possible.
  • do multi-stage builds and only copy the artifacts you need into the final image. This allows you to include tools and debug information in your intermediate build stages without increasing the size of the final image.
  • avoid duplication of packages and make the list much easier to update.
  • When building an image, Docker steps through the instructions in your Dockerfile, executing each in the order specified.
  • the next instruction is compared against all child images derived from that base image to see if one of them was built using the exact same instruction. If not, the cache is invalidated.
  • simply comparing the instruction in the Dockerfile with one of the child images is sufficient.
  • For the ADD and COPY instructions, the contents of the file(s) in the image are examined and a checksum is calculated for each file.
  • If anything has changed in the file(s), such as the contents and metadata, then the cache is invalidated.
  • cache checking does not look at the files in the container to determine a cache match.
  • In that case just the command string itself is used to find a match.
    • 張 旭
       
      RUN apt-get 這樣的指令,直接比對指令內容的意思。
  • Whenever possible, use current official repositories as the basis for your images.
  • Using RUN apt-get update && apt-get install -y ensures your Dockerfile installs the latest package versions with no further coding or manual intervention.
  • cache busting
  • Docker executes these commands using the /bin/sh -c interpreter, which only evaluates the exit code of the last operation in the pipe to determine success.
  • set -o pipefail && to ensure that an unexpected error prevents the build from inadvertently succeeding.
  • The CMD instruction should be used to run the software contained by your image, along with any arguments.
  • CMD should almost always be used in the form of CMD [“executable”, “param1”, “param2”…]
  • CMD should rarely be used in the manner of CMD [“param”, “param”] in conjunction with ENTRYPOINT
  • The ENV instruction is also useful for providing required environment variables specific to services you wish to containerize,
  • Each ENV line creates a new intermediate layer, just like RUN commands
  • COPY is preferred
  • COPY only supports the basic copying of local files into the container
  • the best use for ADD is local tar file auto-extraction into the image, as in ADD rootfs.tar.xz /
  • If you have multiple Dockerfile steps that use different files from your context, COPY them individually, rather than all at once.
  • using ADD to fetch packages from remote URLs is strongly discouraged; you should use curl or wget instead
  • The best use for ENTRYPOINT is to set the image’s main command, allowing that image to be run as though it was that command (and then use CMD as the default flags).
  • the image name can double as a reference to the binary as shown in the command
  • The VOLUME instruction should be used to expose any database storage area, configuration storage, or files/folders created by your docker container.
  • use VOLUME for any mutable and/or user-serviceable parts of your image
  • If you absolutely need functionality similar to sudo, such as initializing the daemon as root but running it as non-root), consider using “gosu”.
  • always use absolute paths for your WORKDIR
  • An ONBUILD command executes after the current Dockerfile build completes.
  • Think of the ONBUILD command as an instruction the parent Dockerfile gives to the child Dockerfile
  • A Docker build executes ONBUILD commands before any command in a child Dockerfile.
  • Be careful when putting ADD or COPY in ONBUILD. The “onbuild” image fails catastrophically if the new build’s context is missing the resource being added.
張 旭

你到底知不知道什麼是 Kubernetes? | Hwchiu Learning Note - 0 views

  • Storage(儲存) 實際上一直都不是一個簡單處理的問題,從軟體面來看實際上牽扯到非常多的層級,譬如 Linux Kernel, FileSystem, Block/File-Level, Cache, Snapshot, Object Storage 等各式各樣的議題可以討論。
  • DRBD
  • 異地備援,容錯機制,快照,重複資料刪除等超多相關的議題基本上從來沒有一個完美的解法能夠滿足所有使用情境。
  • ...20 more annotations...
  • 管理者可能會直接在 NFS Server 上進行 MDADM 來設定相關的 Block Device 並且基於上面提供 Export 供 NFS 使用,甚至底層套用不同的檔案系統 (EXT4/BTF4) 來獲取不同的功能與效能。
  • Kubernetes 就只是 NFS Client 的角色
  • CSI(Container Storage Interface)。CSI 本身作為 Kubernetes 與 Storage Solution 的中介層。
  • 基本上 Pod 裡面每個 Container 會使用 Volume 這個物件來代表容器內的掛載點,而在外部實際上會透過 PVC 以及 PV 的方式來描述這個 Volume 背後的儲存方案伺服器的資訊。
  • 整體會透過 CSI 的元件們與最外面實際上的儲存設備連接,所有儲存相關的功能是否有實現,有支援全部都要仰賴最後面的實際提供者, kubernetes 只透過 CSI 的標準去執行。
  • 在網路部分也有與之對應的 CNI(Container Network Interface). kubernetes 透過 CNI 這個介面來與後方的 網路解決方案 溝通
  • CNI 最基本的要求就是在在對應的階段為對應的容器提供網路能力
  • 目前最常見也是 IPv4 + TCP/UDP 的傳輸方式,因此才會看到大部分的 CNI 都在講這些。
  • 希望所有容器彼此之間可以透過 IPv4 來互相存取彼此,不論是同節點或是跨節點的容器們都要可以滿足這個需求。
  • 容器間到底怎麼傳輸的,需不需要封裝,透過什麼網卡,要不要透過 NAT 處理? 這一切都是 CNI 介面背後的實現
  • 外部網路存取容器服務 (Service/Ingress)
  • kubernetes 在 Service/Ingress 中間自行實現了一個模組,大抵上稱為 kube-proxy, 其底層可以使用 iptables, IPVS, user-space software 等不同的實現方法,這部分是跟 CNI 完全無關。
  • CNI 跟 Service/Ingress 是會衝突的,也有可能彼此沒有配合,這中間沒有絕對的穩定整合。
  • CNI 一般會處理的部份,包含了容器內的 網卡數量,網卡名稱,網卡IP, 以及容器與外部節點的連接能力等
  • CRI (Container Runtime Interface) 或是 Device Plugin
  • 對於 kubernetes 來說,其實本身並不在意到底底下的容器化技術實際上是怎麼實現的,你要用 Docker, rkt, CRI-O 都無所謂,甚至背後是一個偽裝成 Container 的 Virtaul Machine virtlet 都可以。
  • 去思考到底為什麼自己本身的服務需要容器化,容器化可以帶來什麼優點
  • 太多太多的人都認為只要寫一個 Dockerfile 將原先的應用程式們全部包裝起來放在一起就是一個很好的容器 來使用了。
  • 最後就會發現根本把 Container 當作 Virtual Machine 來使用,然後再補一句 Contaienr 根本不好用啊
  • 容器化 不是把直接 Virtual Machine 的使用習慣換個環境使用就叫做 容器化,而是要從概念上去暸解與使用
張 旭

Dynamic Provisioning | vSphere Storage for Kubernetes - 0 views

  • Storage Policy based Management (SPBM). SPBM provides a single unified control plane across a broad range of data services and storage solutions
  • Kubernetes StorageClasses allow the creation of PersistentVolumes on-demand without having to create storage and mount it into K8s nodes upfront
  • When a PVC is created, the PersistentVolume will be provisioned on a compatible datastore with the most free space that satisfies the gold storage policy requirements.
  • ...2 more annotations...
  • When a PVC is created, the vSphere Cloud Provider checks if the user specified datastore satisfies the gold storage policy requirements. If it does, the vSphere Cloud Provider will provision the PersistentVolume on the user specified datastore. If not, it will create an error telling the user that the specified datastore is not compatible with gold storage policy requirements.
  • The Kubernetes user will have the ability to specify custom vSAN Storage Capabilities during dynamic volume provisioning.
  •  
    "Storage Policy based Management (SPBM). SPBM provides a single unified control plane across a broad range of data services and storage solutions"
張 旭

Best practices for building Kubernetes Operators and stateful apps | Google Cloud Blog - 0 views

  • use the StatefulSet workload controller to maintain identity for each of the pods, and to use Persistent Volumes to persist data so it can survive a service restart.
  • a way to extend Kubernetes functionality with application specific logic using custom resources and custom controllers.
  • An Operator can automate various features of an application, but it should be specific to a single application
  • ...12 more annotations...
  • Kubebuilder is a comprehensive development kit for building and publishing Kubernetes APIs and Controllers using CRDs
  • Design declarative APIs for operators, not imperative APIs. This aligns well with Kubernetes APIs that are declarative in nature.
  • With declarative APIs, users only need to express their desired cluster state, while letting the operator perform all necessary steps to achieve it.
  • scaling, backup, restore, and monitoring. An operator should be made up of multiple controllers that specifically handle each of the those features.
  • the operator can have a main controller to spawn and manage application instances, a backup controller to handle backup operations, and a restore controller to handle restore operations.
  • each controller should correspond to a specific CRD so that the domain of each controller's responsibility is clear.
  • If you keep a log for every container, you will likely end up with unmanageable amount of logs.
  • integrate application-specific details to the log messages such as adding a prefix for the application name.
  • you may have to use external logging tools such as Google Stackdriver, Elasticsearch, Fluentd, or Kibana to perform the aggregations.
  • adding labels to metrics to facilitate aggregation and analysis by monitoring systems.
  • a more viable option is for application pods to expose a metrics HTTP endpoint for monitoring tools to scrape.
  • A good way to achieve this is to use open-source application-specific exporters for exposing Prometheus-style metrics.
張 旭

Kubernetes Deployments: The Ultimate Guide - Semaphore - 1 views

  • Continuous integration gives you confidence in your code. To extend that confidence to the release process, your deployment operations need to come with a safety belt.
  • these Kubernetes objects ensure that you can progressively deploy, roll back and scale your applications without downtime.
  • A pod is just a group of containers (it can be a group of one container) that run on the same machine, and share a few things together.
  • ...34 more annotations...
  • the containers within a pod can communicate with each other over localhost
  • From a network perspective, all the processes in these containers are local.
  • we can never create a standalone container: the closest we can do is create a pod, with a single container in it.
  • Kubernetes is a declarative system (by opposition to imperative systems).
  • All we can do, is describe what we want to have, and wait for Kubernetes to take action to reconcile what we have, with what we want to have.
  • In other words, we can say, “I would like a 40-feet long blue container with yellow doors“, and Kubernetes will find such a container for us. If it doesn’t exist, it will build it; if there is already one but it’s green with red doors, it will paint it for us; if there is already a container of the right size and color, Kubernetes will do nothing, since what we have already matches what we want.
  • The specification of a replica set looks very much like the specification of a pod, except that it carries a number, indicating how many replicas
  • What happens if we change that definition? Suddenly, there are zero pods matching the new specification.
  • the creation of new pods could happen in a more gradual manner.
  • the specification for a deployment looks very much like the one for a replica set: it features a pod specification, and a number of replicas.
  • Deployments, however, don’t create or delete pods directly.
  • When we update a deployment and adjust the number of replicas, it passes that update down to the replica set.
  • When we update the pod specification, the deployment creates a new replica set with the updated pod specification. That replica set has an initial size of zero. Then, the size of that replica set is progressively increased, while decreasing the size of the other replica set.
  • we are going to fade in (turn up the volume) on the new replica set, while we fade out (turn down the volume) on the old one.
  • During the whole process, requests are sent to pods of both the old and new replica sets, without any downtime for our users.
  • A readiness probe is a test that we add to a container specification.
  • Kubernetes supports three ways of implementing readiness probes:Running a command inside a container;Making an HTTP(S) request against a container; orOpening a TCP socket against a container.
  • When we roll out a new version, Kubernetes will wait for the new pod to mark itself as “ready” before moving on to the next one.
  • If there is no readiness probe, then the container is considered as ready, as long as it could be started.
  • MaxSurge indicates how many extra pods we are willing to run during a rolling update, while MaxUnavailable indicates how many pods we can lose during the rolling update.
  • Setting MaxUnavailable to 0 means, “do not shutdown any old pod before a new one is up and ready to serve traffic“.
  • Setting MaxSurge to 100% means, “immediately start all the new pods“, implying that we have enough spare capacity on our cluster, and that we want to go as fast as possible.
  • kubectl rollout undo deployment web
  • the replica set doesn’t look at the pods’ specifications, but only at their labels.
  • A replica set contains a selector, which is a logical expression that “selects” (just like a SELECT query in SQL) a number of pods.
  • it is absolutely possible to manually create pods with these labels, but running a different image (or with different settings), and fool our replica set.
  • Selectors are also used by services, which act as the load balancers for Kubernetes traffic, internal and external.
  • internal IP address (denoted by the name ClusterIP)
  • during a rollout, the deployment doesn’t reconfigure or inform the load balancer that pods are started and stopped. It happens automatically through the selector of the service associated to the load balancer.
  • a pod is added as a valid endpoint for a service only if all its containers pass their readiness check. In other words, a pod starts receiving traffic only once it’s actually ready for it.
  • In blue/green deployment, we want to instantly switch over all the traffic from the old version to the new, instead of doing it progressively
  • We can achieve blue/green deployment by creating multiple deployments (in the Kubernetes sense), and then switching from one to another by changing the selector of our service
  • kubectl label pods -l app=blue,version=v1.5 status=enabled
  • kubectl label pods -l app=blue,version=v1.4 status-
  •  
    "Continuous integration gives you confidence in your code. To extend that confidence to the release process, your deployment operations need to come with a safety belt."
張 旭

Docker can now run within Docker - Docker Blog - 0 views

  • Docker 0.6 is the new “privileged” mode for containers. It allows you to run some containers with (almost) all the capabilities of their host machine, regarding kernel features and device access.
  • Among the (many!) possibilities of the “privileged” mode, you can now run Docker within Docker itself.
  • in the new privileged mode.
  • ...8 more annotations...
  • that /var/lib/docker should be a volume. This is important, because the filesystem of a container is an AUFS mountpoint, composed of multiple branches; and those branches have to be “normal” filesystems (i.e. not AUFS mountpoints).
  • /var/lib/docker, the place where Docker stores its containers, cannot be an AUFS filesystem.
  • we use them as a pass-through to the “normal” filesystem of the host machine.
  • The /var/lib/docker directory of the nested Docker will live somewhere in /var/lib/docker/volumes on the host system.
  • since the private Docker instances run in privileged mode, they can easily escalate to the host, and you probably don’t want this! If you really want to run something like this and expose it to the public, you will have to fine-tune the LXC template file, to restrict the capabilities and devices available to the Docker instances.
  • When you are inside a privileged container, you can always nest one more level
  • the LXC tools cannot start nested containers if the devices control group is not in its own hierarchy.
  • if you use AppArmor, you need a special policy to support nested containers.
張 旭

Kubernetes 架构浅析 - 0 views

  • 将Loadbalancer改造成Smart Loadbalancer,通过服务发现机制,应用实例启动或者销毁时自动注册到一个配置中心(etcd/zookeeper),Loadbalancer监听应用配置的变化自动修改自己的配置。
  • Mysql计划该成域名访问方式,而不是ip。为了避免dns变更时的延迟问题,需要在内网架设私有dns。
  • 配合服务发现机制自动修改dns
  • ...23 more annotations...
  • 通过增加一层代理的机制实现
  • 操作系统和基础库的依赖允许应用自定义
  • 对磁盘路径以及端口的依赖通过Docker运行参数动态注入
  • Docker的自定义变量以及参数,需要提供标准化的配置文件
  • 每个服务器节点上要有个agent来执行具体的操作,监控该节点上的应用
  • 还要提供接口以及工具去操作。
  • 应用进程和资源(包括 cpu,内存,磁盘,网络)的解耦
  • 服务依赖关系的解耦
  • scheduler在Kubernetes中是一个plugin,可以用其他的实现替换(比如mesos)
  • 大多数接口都是直接读写etcd中的数据。
  • etcd 作为配置中心和存储服务
  • kubelet 主要包含容器管理,镜像管理,Volume管理等。同时kubelet也是一个rest服务,和pod相关的命令操作都是通过调用接口实现的。
  • kube-proxy 主要用于实现Kubernetes的service机制。提供一部分SDN功能以及集群内部的智能LoadBalancer。
  • Pods Kubernetes将应用的具体实例抽象为pod。每个pod首先会启动一个google_containers/pause docker容器,然后再启动应用真正的docker容器。这样做的目的是为了可以将多个docker容器封装到一个pod中,共享网络地址。
  • Replication Controller 控制pod的副本数量
  • Services service是对一组pods的抽象,通过kube-proxy的智能LoadBalancer机制,pods的销毁迁移不会影响services的功能以及上层的调用方。
  • Namespace Kubernetes中的namespace主要用来避免pod,service的名称冲突。同一个namespace内的pod,service的名称必须是唯一的。
  • Kubernetes的理念里,pod之间是可以直接通讯的
  • 需要用户自己选择解决方案: Flannel,OpenVSwitch,Weave 等。
  • Hypernetes就是一个实现了多租户的Kubernetes版本。
  • 如果运维系统跟不上,服务拆太细,很容易出现某个服务器的角落里部署着一个很古老的不常更新的服务,后来大家竟然忘记了,最后服务器迁移的时候给丢了,用户投诉才发现。
  • 在Kubernetes上的微服务治理框架可以一揽子解决微服务的rpc,监控,容灾问题
  • 同一个pod的多个容器定义中没有优先级,启动顺序不能保证
張 旭

How to write excellent Dockerfiles - 0 views

  • minimize image size, build time and number of layers.
  • maximize build cache usage
  • Container should do one thing
    • 張 旭
       
      這個有待商榷,在 baseimage 的 blog 介紹中有詳細的討論。
  • ...25 more annotations...
  • Use COPY and RUN commands in proper order
  • Merge multiple RUN commands into one
  • alpine versions should be enough
  • Use exec inside entrypoint script
  • Prefer COPY over ADD
  • Specify default environment variables, ports and volumes inside Dockerfile
  • problems with zombie processes
  • prepare separate Docker image for each component, and use Docker Compose to easily start multiple containers at the same time
  • Layers are cached and reused
  • Layers are immutable
  • They both makes you cry
  • rely on our base image updates
  • make a cleanup
  • alpine is a very tiny linux distribution, just about 4 MB in size.
  • Your disk will love you :)
  • WORKDIR command changes default directory, where we run our RUN / CMD / ENTRYPOINT commands.
  • CMD is a default command run after creating container without other command specified.
  • put your command inside array
  • entrypoint adds complexity
  • Entrypoint is a script, that will be run instead of command, and receive command as arguments
  • Without it, we would not be able to stop our application grecefully (SIGTERM is swallowed by bash script).
  • Use "exec" inside entrypoint script
  • ADD has some logic for downloading remote files and extracting archives.
  • stick with COPY.
  • ADD
    • 張 旭
       
      不是說要用 COPY 嗎?
1 - 20 of 38 Next ›
Showing 20 items per page