Skip to main content

Home/ Larvata/ Group items tagged oriented

Rss Feed Group items tagged

crazylion lee

Goodbye, Object Oriented Programming - Medium - 0 views

  •  
    "Goodbye, Object Oriented Programming"
張 旭

Ruby and AOP: Decouple your code even more - Arkency Blog - 0 views

  • Dark Parts in our apps - persistence, networking, logging, notifications… these parts are scattered in our code
  • aspect-oriented programming!
  • components are parts we can easily encapsulate into some kind of code abstraction - a methods, objects or procedures.
  • ...16 more annotations...
  • application’s logic is a great example of a component
  • Aspects cross-cut our application - when we use some kind of persistence (e.g. a database) or network communication (such as ZMQ sockets) our components need to know about it.
  • Aspect-oriented programming aims to get rid of cross-cuts by separating aspect code from component code using injections of our aspects in certain join points in our component code.
  • It’s responsible for pushing snippets scenario
  • SRP-conformant object
  • the join points in Ruby
  • advice
    • 張 旭
       
      AOP 裡面的術語
  • In most cases after and before advice are sufficient.
  • what does it mean to “evaluate code around” something? In our case it means: Don’t run this method. Take it and push to my advice as an argument and evaluate this advice
  • to provide a join point
  • You’ll often see empty methods in code written in AOP paradigm
  • provide aspect code to link with our use case
  • use case is a pure domain object, without even knowing it’s connected with some kind of persistence and logging layer.
  • Aspect-oriented programming is fixing the problem with polluting pure logic objects with technical context of our applications.
  • we treat our glues as a configuration part, not the logic part of our apps.
  • Glues should not contain any logic at all
crazylion lee

Fluent interface - Wikipedia, the free encyclopedia - 1 views

  •  
    "In software engineering, a fluent interface (as first coined by Eric Evans and Martin Fowler) is an implementation of an object oriented API that aims to provide more readable code. A fluent interface is normally implemented by using method cascading (concretely method chaining) to relay the instruction context of a subsequent call (but a fluent interface entails more than just method chaining [1]). Generally, the context is defined through the return value of a called method self-referential, where the new context is equivalent to the last context terminated through the return of a void context."
crazylion lee

Amazon Ion - 0 views

  •  
    "Amazon Ion is a richly-typed, self-describing, hierarchical data serialization format offering interchangeable binary and text representations. The text format (a superset of JSON) is easy to read and author, supporting rapid prototyping. The binary representation is efficient to store, transmit, and skip-scan parse. The rich type system provides unambiguous semantics for long-term preservation of business data which can survive multiple generations of software evolution. Ion was built to solve the rapid development, decoupling, and efficiency challenges faced every day while engineering large-scale, service-oriented architectures. Ion has been addressing these challenges within Amazon for nearly a decade, and we believe others will benefit as well. "
張 旭

What is DevOps? | Atlassian - 0 views

  • DevOps is a set of practices that automates the processes between software development and IT teams, in order that they can build, test, and release software faster and more reliably.
  • increased trust, faster software releases, ability to solve critical issues quickly, and better manage unplanned work.
  • bringing together the best of software development and IT operations.
  • ...39 more annotations...
  • DevOps is a culture, a movement, a philosophy.
  • a firm handshake between development and operations
  • DevOps isn’t magic, and transformations don’t happen overnight.
  • Infrastructure as code
  • Culture is the #1 success factor in DevOps.
  • Building a culture of shared responsibility, transparency and faster feedback is the foundation of every high performing DevOps team.
  •  'not our problem' mentality
  • DevOps is that change in mindset of looking at the development process holistically and breaking down the barrier between Dev and Ops.
  • Speed is everything.
  • Lack of automated test and review cycles block the release to production and poor incident response time kills velocity and team confidence
  • Open communication helps Dev and Ops teams swarm on issues, fix incidents, and unblock the release pipeline faster.
  • Unplanned work is a reality that every team faces–a reality that most often impacts team productivity.
  • “cross-functional collaboration.”
  • All the tooling and automation in the world are useless if they aren’t accompanied by a genuine desire on the part of development and IT/Ops professionals to work together.
  • DevOps doesn’t solve tooling problems. It solves human problems.
  • Forming project- or product-oriented teams to replace function-based teams is a step in the right direction.
  • sharing a common goal and having a plan to reach it together
  • join sprint planning sessions, daily stand-ups, and sprint demos.
  • DevOps culture across every department
  • open channels of communication, and talk regularly
  • DevOps isn’t one team’s job. It’s everyone’s job.
  • automation eliminates repetitive manual work, yields repeatable processes, and creates reliable systems.
  • Build, test, deploy, and provisioning automation
  • continuous delivery: the practice of running each code change through a gauntlet of automated tests, often facilitated by cloud-based infrastructure, then packaging up successful builds and promoting them up toward production using automated deploys.
  • automated deploys alert IT/Ops to server “drift” between environments, which reduces or eliminates surprises when it’s time to release.
  • “configuration as code.”
  • when DevOps uses automated deploys to send thoroughly tested code to identically provisioned environments, “Works on my machine!” becomes irrelevant.
  • A DevOps mindset sees opportunities for continuous improvement everywhere.
  • regular retrospectives
  • A/B testing
  • failure is inevitable. So you might as well set up your team to absorb it, recover, and learn from it (some call this “being anti-fragile”).
  • Postmortems focus on where processes fell down and how to strengthen them – not on which team member f'ed up the code.
  • Our engineers are responsible for QA, writing, and running their own tests to get the software out to customers.
  • How long did it take to go from development to deployment? 
  • How long does it take to recover after a system failure?
  • service level agreements (SLAs)
  • Devops isn't any single person's job. It's everyone's job.
  • DevOps is big on the idea that the same people who build an application should be involved in shipping and running it.
  • developers and operators pair with each other in each phase of the application’s lifecycle.
張 旭

drapergem/draper: Decorators/View-Models for Rails Applications - 0 views

  • The decorator wraps the model, and deals only with presentational concerns.
  • In the controller, you decorate the article before handing it off to the view
  • whenever you start needing logic in the view or start thinking about a helper method, you can implement a method on the decorator instead.
  • ...5 more annotations...
  • convert an existing Rails helper to a decorator method
  • That method is presentation-centric, and thus does not belong in a model.
  • Where does that come from? It's a method of the source Article, whose methods have been made available on the decorator by the delegate_all call above.
  • a great way to replace procedural helpers like the one above with "real" object-oriented programming
  • format complex data for user display
張 旭

Intro to deployment strategies: blue-green, canary, and more - DEV Community - 0 views

  • using a service-oriented architecture and microservices approach, developers can design a code base to be modular.
  • Modern applications are often distributed and cloud-based
  • different release cycles for different components
  • ...20 more annotations...
  • the abstraction of the infrastructure layer, which is now considered code. Deployment of a new application may require the deployment of new infrastructure code as well.
  • "big bang" deployments update whole or large parts of an application in one fell swoop.
  • Big bang deployments required the business to conduct extensive development and testing before release, often associated with the "waterfall model" of large sequential releases.
  • Rollbacks are often costly, time-consuming, or even impossible.
  • In a rolling deployment, an application’s new version gradually replaces the old one.
  • new and old versions will coexist without affecting functionality or user experience.
  • Each container is modified to download the latest image from the app vendor’s site.
  • two identical production environments work in parallel.
  • Once the testing results are successful, application traffic is routed from blue to green.
  • In a blue-green deployment, both systems use the same persistence layer or database back end.
  • You can use the primary database by blue for write operations and use the secondary by green for read operations.
  • Blue-green deployments rely on traffic routing.
  • long TTL values can delay these changes.
  • The main challenge of canary deployment is to devise a way to route some users to the new application.
  • Using an application logic to unlock new features to specific users and groups.
  • With CD, the CI-built code artifact is packaged and always ready to be deployed in one or more environments.
  • Use Build Automation tools to automate environment builds
  • Use configuration management tools
  • Enable automated rollbacks for deployments
  • An application performance monitoring (APM) tool can help your team monitor critical performance metrics including server response times after deployments.
張 旭

elabs/pundit: Minimal authorization through OO design and pure Ruby classes - 0 views

  • The class implements some kind of query method
  • Pundit will call the current_user method to retrieve what to send into this argumen
  • put these classes in app/policies
  • ...49 more annotations...
  • in leveraging regular Ruby classes and object oriented design patterns to build a simple, robust and scaleable authorization system
  • map to the name of a particular controller action
  • In the generated ApplicationPolicy, the model object is called record.
  • record
  • authorize
  • authorize would have done something like this: raise "not authorized" unless PostPolicy.new(current_user, @post).update?
  • pass a second argument to authorize if the name of the permission you want to check doesn't match the action name.
  • you can chain it
  • authorize returns the object passed to it
  • the policy method in both the view and controller.
  • have some kind of view listing records which a particular user has access to
  • ActiveRecord::Relation
  • Instances of this class respond to the method resolve, which should return some kind of result which can be iterated over.
  • scope.where(published: true)
    • 張 旭
       
      我想大概的意思就是:如果是 admin 可以看到全部 post,如果不是只能看到 published = true 的 post
  • use this class from your controller via the policy_scope method:
  • PostPolicy::Scope.new(current_user, Post).resolve
  • policy_scope(@user.posts).each
  • This method will raise an exception if authorize has not yet been called.
  • verify_policy_scoped to your controller. This will raise an exception in the vein of verify_authorized. However, it tracks if policy_scope is used instead of authorize
  • need to conditionally bypass verification, you can use skip_authorization
  • skip_policy_scope
  • Having a mechanism that ensures authorization happens allows developers to thoroughly test authorization scenarios as units on the policy objects themselves.
  • Pundit doesn't do anything you couldn't have easily done yourself. It's a very small library, it just provides a few neat helpers.
  • all of the policy and scope classes are just plain Ruby classes
  • rails g pundit:policy post
  • define a filter that redirects unauthenticated users to the login page
  • fail more gracefully
  • raise Pundit::NotAuthorizedError, "must be logged in" unless user
  • having rails handle them as a 403 error and serving a 403 error page.
  • config.action_dispatch.rescue_responses["Pundit::NotAuthorizedError"] = :forbidden
  • with I18n to generate error messages
  • retrieve a policy for a record outside the controller or view
  • define a method in your controller called pundit_user
  • Pundit strongly encourages you to model your application in such a way that the only context you need for authorization is a user object and a domain model that you want to check authorization for.
  • Pundit does not allow you to pass additional arguments to policies
  • authorization is dependent on IP address in addition to the authenticated user
  • create a special class which wraps up both user and IP and passes it to the policy.
  • set up a permitted_attributes method in your policy
  • policy(@post).permitted_attributes
  • permitted_attributes(@post)
  • Pundit provides a convenient helper method
  • permit different attributes based on the current action,
  • If you have defined an action-specific method on your policy for the current action, the permitted_attributes helper will call it instead of calling permitted_attributes on your controller
  • If you don't have an instance for the first argument to authorize, then you can pass the class
  • restart the Rails server
  • Given there is a policy without a corresponding model / ruby class, you can retrieve it by passing a symbol
  • after_action :verify_authorized
  • It is not some kind of failsafe mechanism or authorization mechanism.
  • Pundit will work just fine without using verify_authorized and verify_policy_scoped
  •  
    "Minimal authorization through OO design and pure Ruby classes"
張 旭

Introducing the MinIO Operator and Operator Console - 0 views

  • Object-storage-as-a-service is a game changer for IT.
  • provision multi-tenant object storage as a service.
  • have the skill set to create, deploy, tune, scale and manage modern, application oriented object storage using Kubernetes
  • ...12 more annotations...
  • MinIO is purpose-built to take full advantage of the Kubernetes architecture.
  • MinIO and Kubernetes work together to simplify infrastructure management, providing a way to manage object storage infrastructure within the Kubernetes toolset.  
  • The operator pattern extends Kubernetes's familiar declarative API model with custom resource definitions (CRDs) to perform common operations like resource orchestration, non-disruptive upgrades, cluster expansion and to maintain high-availability
  • The Operator uses the command set kubectl that the Kubernetes community was already familiar with and adds the kubectl minio plugin . The MinIO Operator and the MinIO kubectl plugin facilitate the deployment and management of MinIO Object Storage on Kubernetes - which is how multi-tenant object storage as a service is delivered.
  • choosing a leader for a distributed application without an internal member election process
  • The Operator Console makes Kubernetes object storage easier still. In this graphical user interface, MinIO created something so simple that anyone in the organization can create, deploy and manage object storage as a service.
  • The primary unit of managing MinIO on Kubernetes is the tenant.
  • The MinIO Operator can allocate multiple tenants within the same Kubernetes cluster.
  • Each tenant, in turn, can have different capacity (i.e: a small 500GB tenant vs a 100TB tenant), resources (1000m CPU and 4Gi RAM vs 4000m CPU and 16Gi RAM) and servers (4 pods vs 16 pods), as well a separate configurations regarding Identity Providers, Encryption and versions.
  • each tenant is a cluster of server pools (independent sets of nodes with their own compute, network, and storage resources), that, while sharing the same physical infrastructure, are fully isolated from each other in their own namespaces.
  • Each tenant runs their own MinIO cluster, fully isolated from other tenants
  • Each tenant scales independently by federating clusters across geographies.
張 旭

Java microservices architecture by example - 0 views

  • A microservices architecture is a particular case of a service-oriented architecture (SOA)
  • What sets microservices apart is the extent to which these modules are interconnected.
  • Every server comprises just one certain business process and never consists of several smaller servers.
  • ...12 more annotations...
  • Microservices also bring a set of additional benefits, such as easier scaling, the possibility to use multiple programming languages and technologies, and others.
  • Java is a frequent choice for building a microservices architecture as it is a mature language tested over decades and has a multitude of microservices-favorable frameworks, such as legendary Spring, Jersey, Play, and others.
  • A monolithic architecture keeps it all simple. An app has just one server and one database.
  • All the connections between units are inside-code calls.
  • split our application into microservices and got a set of units completely independent for deployment and maintenance.
  • Each of microservices responsible for a certain business function communicates either via sync HTTP/REST or async AMQP protocols.
  • ensure seamless communication between newly created distributed components.
  • The gateway became an entry point for all clients’ requests.
  • We also set the Zuul 2 framework for our gateway service so that the application could leverage the benefits of non-blocking HTTP calls.
  • we've implemented the Eureka server as our server discovery that keeps a list of utilized user profile and order servers to help them discover each other.
  • We also have a message broker (RabbitMQ) as an intermediary between the notification server and the rest of the servers to allow async messaging in-between.
  • microservices can definitely help when it comes to creating complex applications that deal with huge loads and need continuous improvement and scaling.
1 - 11 of 11
Showing 20 items per page